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Tomus 42 (2006), 175 – 184

A DESCRIPTION OF DERIVATIONS OF THE ALGEBRA

OF SYMMETRIC TENSORS

A. HEYDARI, N. BOROOJERDIAN AND E. PEYGHAN

Abstract. In this paper the symmetric differential and symmetric Lie deriv-
ative are introduced. Using these tools derivations of the algebra of symmetric
tensors are classified. We also define a Frölicher-Nijenhuis bracket for vector
valued symmetric tensors.

1. Introduction

Frölicher and Nijenhuis described in [2] that any derivation on the algebra of
differential forms is the sum of an insertion operator i(Φ) and a Lie derivative
Θ(Ψ) for tangent bundle valued differential forms Φ and Ψ. It was found in [7]
that any derivation of the algebra of vector bundle valued differential forms, if a
covariant derivative ∇ is fixed, may uniquely be written as i(Φ) + Θ∇(Ψ) + µ(Ξ).

Therefore, in parallel to the space of alternating tensors and existing notions
for them, similar notions should exist in the space of symmetric tensors. The main
purpose of this paper is to define and study the derivations of the algebra of the
symmetric tensors similar to those of the algebra of differential forms.

Grozman described all invariant (with respect to the group of all volume preserv-
ing diffeomorphisms or with respect to symplectomorphisms) differential operators
of the algebra of tensors [4]. Here, the differential operators of the algebra of the
symmetric tensors are invariant with respect to the transformations that preserve
a certain connection. Hence they are not on Grozman’s list.

Manin described the exterior differential in terms of representations of a Grass-
mann superalgebra [6]. We would like to investigate Manin’s description for sym-
metric differential in a forthcoming paper.

Throughout this paper all connections on the base manifold M will be assumed
to be linear and torsion-free.
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2. Symmetric forms

2.1. Symmetric forms and vector valued symmetric forms.

Let TM be the tangent space of C∞-manifold M , and
∨k

(TM)∗ be the vec-
tor bundle of symmetric covariant tensors of degree k over M . The sections of
∨k(TM)∗ are called k-symmetric forms and they span a space denoted by Sk(M).
The set of all symmetric forms, i.e., S(M) :=

⊕

k≥0 S
k(M) with the symmetric

product ∨ given by

(ω ∨ η)(X1, . . . , Xk+l) =
1

k!l!

∑

σ∈Sk+l

ω(Xσ(1), . . . , Xσ(k))η(Xσ(k+1), . . . , Xσ(k+l)) ,

where ω ∈ Sk(M), η ∈ Sl(M), is a graded algebra.

Let E be a vector bundle on manifoldM , the sections of vector bundle
∨k

(TM)∗
⊗

E are called k-symmetric forms with values in E, and denoted by Sk(M,E).
The set of all symmetric forms with values in E i.e., S(M,E) :=

⊕

k≥0 S
k(M,E)

with the above product in which ω ∈ Sk(M) and η ∈ Sl(M,E) is a (graded)
S(M)-module.

2.2. Insertion operator.

Let U ∈ X (M), where X (M) is the space of vector fields on M . The insertion
operator iU : Sk(M) −→ Sk−1(M) is a linear map given by

iUω(X1, . . . , Xk−1) = ω(U,X1, . . . , Xk−1) ,

where ω ∈ Sk(M) and X1, . . . , Xk−1 ∈ X (M).
This operator can be defined on vector valued symmetric forms as follows:

iUΦ(X1, . . . , Xk−1) = Φ(U,X1, . . . , Xk−1) ,

where Φ ∈ Sk(M,E) and X1, . . . , Xk−1 ∈ X (M).
For any simple vector valued symmetric form ω ⊗X ∈ Sk(M,E), we have

iU (ω ⊗X) = (iUω) ⊗X .

3. Derivations of the algebra of symmetric forms

A linear mapping D : S(M) −→ S(M) is said to be of degree k if D
(

Sl(M)
)

⊂

Sk+l(M), and D is said to be a derivation of degree k if furthermore

D(ω ∨ η) = Dω ∨ η + ω ∨Dη for any ω, η ∈ S(M) .

Let Derk

(

S(M)
)

be the linear space of all derivations of degree k and let

Der
(

S(M)
)

=
⊕

k≥0 Derk

(

S(M)
)

. A derivationD is called algebraic, ifD|S0(M) =
0.
If D1 and D2 are derivations of degrees k and l, respectively, then [D1, D2] =
D1 ◦ D2 − D2 ◦ D1 is a derivation of degree k + l. A derivation is completely
determined by its effect on S0(M) = C∞(M) and S1(M).
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3.1. Insertion of vector valued symmetric forms in symmetric forms.

For any nonzero Φ ∈ Sk+1(M,TM), the symmetric insertion operator is the linear
map i(Φ) : Sl(M) → Sk+l(M) homogeneous of degree k, defined by

(

i(Φ)ω
)

(X1, . . . , Xk+l) =

1

(l − 1)!(k + 1)!

∑

σ∈Sk+l

ω
(

Φ(Xσ(1), . . . , Xσ(k+1)), Xσ(k+2), . . . , Xσ(k+l)

)

,

where l ≥ 1, and

i(Φ)f = 0 for any f ∈ C∞(M) .

Remark 1. Note that i(Φ)ω = ω ◦ Φ for any ω ∈ S1(M). So, if i(Φ) = 0, then
Φ = 0.

Proposition 1. For any η ⊗ U ∈ Sk+1(M,TM) and ω ∈ Sl(M), we have

i(η ⊗ U)ω = η ∨ iUω .

Hence i(Φ)
(

for Φ ∈ Sk(M,TM)
)

is a derivation of degree k − 1 on S(M).

Remark 2. The insertion of vector valued symmetric forms in a vector valued
symmetric form can be defined in a similar way.

Example. Let 1TM be the identity map of TM , then i(1TM )(ω) = kω, where
ω ∈ Sk(M).

Lemma 2. Every algebraic derivation of degree k on S(M) is an insertion of a

unique TM -valued (k + 1)-symmetric form.

Proof. The proof can be done in a way similar to that of [7, 1.2]. �

3.2. Nijenhuis-Richardson bracket on symmetric forms.

Let Φ ∈ Sk+1(M,TM) and Ψ ∈ Sl+1(M,TM). The bracket [i(Φ), i(Ψ)] is an
algebraic derivation of degree k + l. Thus by the Lemma 2 there is a unique
[Φ,Ψ]∨ ∈ Sk+l+1(M,TM) such that [i(Φ), i(Ψ)] = i([Φ,Ψ]∨). In view of the
bracket [K,L]∧ for TM -valued differential forms K,L ∈ Ω(M,TM), see [2] and
[3], we call [Φ,Ψ]∨ Nijenhuis-Richardson bracket of Φ and Ψ. With this bracket
S(M,TM) is a Lie superalgebra and it can be deduced that

[Φ,Ψ]∨ = i(Φ)Ψ − i(Ψ)Φ .

3.3. The symmetric bracket and symmetric Lie derivative.

The symmetric bracket was introduced and named symmetric product by Crouch
[1]. It also arises in the work of Lewis and Murray [5] on a class of mechanical
control systems.

Let ∇ be a connection on M . Since 2∇XY is a bilinear map with respect to
two vector fields X and Y , it can be written as the sum of its symmetric and
antisymmetric parts as follows

2∇XY = (∇XY + ∇YX) + (∇XY −∇Y X) = ∇XY + ∇Y X + [X,Y ] .
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The symmetric bracket of two vector fields X and Y on M is defined and denoted
by

[X,Y ]s = ∇XY + ∇Y X .

For any X,Y ∈ X (M) and f ∈ C∞(M), we have

[fX, Y ]s = f [X,Y ]s + Y (f)X .

The symmetric Lie derivative along a vector field X is the linear map θs(X) :
X (M) −→ X (M) and defined by θs(X)Y = [X,Y ]s. For f ∈ C∞(M), ω ∈ Sk(M),
and X1, . . . , Xk ∈ X (M), we set

(θs(X)ω)(X1, . . . , Xk) = Xω(X1, . . . , Xk) −

k
∑

i=1

ω(X1, . . . , θ
s(X)Xi, . . . , Xk) ,

and θs(X)f = X(f).
Then, it is obvious that θs(X) ∈ Der0

(

S(M)
)

.

Proposition 3. Let θ(X) and θs(X) be the Lie derivative and symmetric Lie

derivative along the vector field X with respect to connection ∇ on M . Then

2∇X = θ(X) + θs(X).

Proof. For every f ∈ C∞(M), ω ∈ S1(M), and Y ∈ X (M), we have
(

θ(X) + θs(X)
)

f = 2X(f) = 2∇Xf

and
(

θ(X) + θs(X)
)

ω)(Y ) = Xω(Y ) − ω([X,Y ]) +Xω(Y ) − ω([X,Y ]s)

= 2Xω(Y ) − 2ω(∇XY )

= 2∇Xω(Y ) . �

3.4. The symmetric differential.

Let ∇ be a connection on M . The symmetric differential is the derivation ds :
S(M) −→ S(M) of degree 1, defined by

(dsω)(X1, . . . , Xk+1) =

k+1
∑

i=1

Xiω(X1, . . . , X̂i, . . . , Xk+1)

−
∑

i<j

ω([Xi, Xj]
s, X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1)

where ω ∈ Sk(M) and X1, . . . , Xk+1 ∈ X (M).
It is easy to verify that unlike the exterior differential, the symmetric differential
dose not satisfies ds ◦ ds = 0.

Lemma 4. Let ds be the symmetric differential of ∇. Let ω ∈ Sk(M) and

X1, . . . , Xk+1 ∈ X (M). Then

i) (dsω)(X1, . . . , Xk+1) =
∑k+1

i=1 (∇Xi
ω)(X1, . . . , X̂i, . . . , Xk+1);

ii) dsω = (k + 1)Symm(∇ω) = 1
k!

∑

σ∈Sk+1
(∇ω)(Xσ(1), . . . , Xσ(k+1));
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iii) dsω =
∑n

i=1 ω
i ∨∇Ei

ω;

where {Ei}
n
i=1 is a local base of vector fields and {ωi}

n
i=1 is its dual base.

Proposition 5. Let (M, g) be a Riemmanian manifold with Levi-Civita connection

∇. The 1-form ω is Killing if and only if dsω = 0. (Recall that ω is Killing if the

vector field ω♯ is Killing, where g(ω♯, X) = ω(X); recall also that a vector field X

is said to be Killing one if LXg = 0.)

Proof. It suffices to show that dsω = Lω♯g. For X and Y in X (M), we have

(dsω)(X,Y ) = Xg(ω♯, Y ) + Y g(ω♯, X) − g(ω♯,∇XY ) − g(ω♯,∇YX)

= g(∇Xω
♯, Y ) + g(X,∇Y ω

♯)

= Lω♯g(X,Y ) , �

It is well-known that if ∇ and ∇̄ are two torsion-free connections on M , then there
exists a Φ ∈ S2(M,TM) such that ∇̄ = ∇ + Φ.

Lemma 6. Let ∇ and ∇̄ be two torsion-free connections with symmetric dif-

ferentials ds and d̄s respectively and ∇̄ = ∇ + Φ, for Φ ∈ S2(M,TM). Then

d̄s = ds − 2i(Φ).

Proof. Since, dsf = d̄sf = df for any f ∈ C∞(M), it suffices to prove the relation
for all 1-forms. If X,Y are two vector fields on M , then

d̄sω(X,Y ) = Xω(Y ) + Y ω(X) − ω(∇̄XY + ∇̄Y X)

= Xω(Y ) + Y ω(X) − ω(∇XY + ∇Y X) − 2ω
(

Φ(X,Y )
)

= (dsω)(X,Y ) − 2
(

i(Φ)ω
)

(X,Y ) . �

The next result was proved in [11]. Here we prove it in a different way.

Proposition 7 (Proposition 2.4 of [11]). Every derivation of degree 1 on symmet-

ric forms, whose value for a function is the differential of the function, is of the

form of a symmetric differential of a connection which is also unique.

Proof. Let D be a derivation of degree 1 on symmetric forms, ∇ an arbitrary
connection and ds its symmetric differential on the manifold M . Since, D−ds is an
algebraic derivation, there exists a unique Φ ∈ S2(M,TM) such thatD−ds = i(Φ).

Now set ∇̄ = ∇− 1
2Φ and let d̄s be its symmetric differential, then D = d̄s. If ∇̃ is a

connection with symmetric differential d̃s = D, then there exists Ψ ∈ S2(M,TM),

such that ∇̃ = ∇̄ + Ψ. According to Lemma 6 we have d̃s = d̄s − 2i(Ψ). So
2i(Ψ) = 0 and as a result Ψ=0. �

Proposition 8. Let ∇ be a connection on M with symmetric differential ds and

let X be a vector field. We have [iX , d
s] = θs(X).

Proof. For f ∈ C∞(M), we have

[iX , d
s](f) = iXd

sf − ds(iXf) = X(f) = θs(X)f.
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For any ω ∈ S1(M), Y ∈ X (M), we also have
(

[iX , d
s](w)

)

(Y ) =
(

iX(dsω)
)

(Y ) −
(

ds(iXω)
)

(Y )

= dsω(X,Y ) − Y
(

ω(X)
)

= Xω(Y ) − ω([X,Y ]s)

=
(

θs(X)ω
)

(Y ). �

By considering a fixed connection onM , we can define the symmetric Lie derivative
along a TM -valued symmetric forms. For any Φ ∈ S(M,TM), we put

θs(Φ) = [i(Φ), ds] .

Proposition 9. Let η ⊗X be a simple symmetric form. For any ω ∈ S(M), we

have

θs(η ⊗X)ω = η ∨ θs(X)ω − dsη ∨ iXω.

Proof. We compute as follows

θs(η ⊗X)ω =
(

i(η ⊗X) ◦ ds
)

ω −
(

ds ◦ i(η ⊗X)
)

ω

= η ∨ iXd
sω − ds(η ∨ iXω)

= η ∨ iXd
sω − dsη ∨ iXω − η ∨ dsiXω

= η ∨ (iXd
s − dsiX)ω − dsη ∨ iXω

= η ∨ θs(X)ω − dsη ∨ iXω . �

Lemma 10. Let Φ and Ψ be two symmetric forms. If θs(Φ)f = θs(Ψ)f for every

f ∈ C∞(M), then Φ = Ψ.

Proof. The assertion easily follows from θs(Φ)f = df ◦ Φ.

Lemma 11. Let ∇ and ∇̄ be two connections having symmetric Lie derivatives

θs(Φ) and θ̄s(Φ) along Φ ∈ Sk(M,TM) on M , and ∇̄ = ∇ + Ψ for some Ψ ∈
S2(M,TM). Then

θ̄s(Φ) = θs(Φ) − 2i([Φ,Ψ]∨).

Proof. Use Lemma 6. �

Theorem 12. Let ∇ be a connection on M . Every derivation D ∈ Derk

(

S(M)
)

can be uniquely written in the form D = i(Φ)+θs(Ψ), for some Φ ∈ Sk+1(M,TM)
and Ψ ∈ Sk(M,TM). Moreover, Ψ is independent of ∇.

Proof. Let X1, . . . , Xk ∈ X (M). Then f 7−→ (Df)(X1, . . . , Xk) is a derivation of
degree 0 on C∞(M), so it is given by the action of a vector field Ψ(X1, . . . , Xk),
which is symmetric and C∞(M)-linear in Xj, thus Ψ ∈ Sk(M,TM). Then D −
θs(Ψ) is algebraic, therefore equals i(Φ) for some Φ ∈ Sk+1(M,TM).
We are now in a position to show uniqueness of Φ and Ψ. Let i(Φ) + θs(Ψ) =
i(Φ′) + θs(Ψ′) for some Φ′ and Ψ′. Applying this relation to functions, Lemma 10
yields Ψ = Ψ′. By Remark 1 we get Φ = Φ′.
Using Lemma 11 and uniqueness of Ψ implies that Ψ is independent of ∇. �
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Corollary 13. D is algebraic if and only if Ψ = 0.

Corollary 14. D = ds if and only if Ψ = 1TM .

3.5. Frölicher-Nijenhuis bracket on symmetric forms.

In the remainder of this paper let us fix a connection on M . Let Φ ∈ Sk(M,TM)
and Ψ ∈ Sl(M,TM). Then [θs(Φ), θs(Ψ)] is a derivation of degree k+ l on S(M).
By Theorem 12 there exist unique Θ ∈ Sk+l(M,TM) and Ω ∈ Sk+l+1(M,TM)
such that [θs(Φ), θs(Ψ)] = i(Ω)+θs(Θ). We define the Frölicher-Nijenhuis bracket
of symmetric forms Φ and Ψ to be

[Φ,Ψ] = Θ .

Proposition 15. Let Φ = φ⊗X and Ψ = ψ⊗Y be two simple symmetric forms.

Then

[φ⊗X,ψ ⊗ Y ] = φ ∨ ψ ⊗ [X,Y ] + φ ∨ (θs(X)ψ) ⊗ Y − (θs(Y )φ) ∨ ψ ⊗X

− dsφ ∨ iXψ ⊗ Y + dsψ ∨ iY φ⊗X.

Proof. For simplicity we denote the right hand side of the above relation by Θ.
It suffices to show that [θs(φ⊗X), θs(ψ ⊗ Y )]f = θs(Θ)f for any f ∈ C∞(M):

[θs(φ⊗X), θs(ψ ⊗ Y )]fθs(φ⊗X) ◦ θs(ψ ⊗ Y )(f) − θs(ψ ⊗ Y ) ◦ θs(φ ⊗X)(f)

= θs(φ⊗X)(Y (f)ψ) − θs(ψ ⊗ Y )(X(f)φ)

= φ ∨ θ(X)(Y (f)ψ) − dsφ ∨ iX(Y (f)ψ)

− ψ ∨ θs(Y )(X(f)φ) + dsψ ∨ iY (X(f)φ)

= [X,Y ](f)φ ∨ ψ + Y (f)φ ∨ θ(X)ψ − Y (f)dsφ ∨ iXψ

−X(f)ψ ∨ θs(Y )φ +X(f)dsψ ∨ iY φ

= θs(Θ)f . �

Remark 3. Note that the operators: symmetric bracket, symmetric differential,
Frölicher-Nijenhuis bracket on symmetric forms are not invariant with respect to
the group of all volume preserving diffeomorphisms or with respect to symplecto-
morphisms. Hence they are not be covered in Grozman’s list [4].

4. Derivations of the algebra of vector valued symmetric forms

Let E be a vector bundle on M . A derivation of degree k of S(M,E) is a linear
mapping D : S(M,E) −→ S(M,E) with D

(

Sl(M,E)
)

⊂ Sk+l(M,E) such that
for any ω ∈ S(M) and Φ ∈ S(M,E), we have

D(ω ∨ Φ) = D(ω) ∨ Φ + ω ∨D(Φ),

where D : S(M) −→ S(M) is a linear mapping.

Lemma 16. D is uniquely determined by D and is a derivation of degree k on

S(M).
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Proof. The action of S(M) on S(M,E) is effective: ω ∨ Φ = η ∨ Φ for all Φ ∈
S(M,E) implies ω = η. The assertion follows easily from the derivation property
of D. �

A derivation D of S(M,E) is called algebraic if the associated derivation D of
S(M) is algebraic. Thus D(fΦ) = fD(Φ) for any f ∈ C∞(M) and Φ ∈ S(M,E).
Therefore D is of tensorial character.

Suppose Ep is the fiber of E at p ∈M . The bundle of linear endomorphisms of
fibers of E (i.e., L(E,E)) naturally acts on E

L(E,E)p × Ep −→ Ep

(Ξp,Φp) 7−→ Ξp(Φp)

induces a symmetric product between S(M,L(E,E)) and S(M,E). Namely, for
Ξ ∈ S

(

M,L(E,E)
)

, we define

µ(Ξ) : S(M,E) −→ S(M,E)

Φ 7−→ Ξ ∨ Φ .

More precisely,
(

µ(Ξ)Φ
)

(X1, . . . , Xk+l) =
1

k!l!

∑

σ

Ξ(Xσ(1), . . . , Xσ(k))
(

Φ(Xσ(k+1), . . . , Xσ(k+l))
)

.

Thus µ(Ξ) for Ξ ∈ Sk
(

M,L(E,E)
)

is a derivation of degree k of S(M,E) and

µ(Ξ) = 0.

The following results are analogs of Theorems 3.4, 3.8, 4.7, Lemmas 3.2, 4.3,
4.4, and Corollary 3.3 of [7]. Their proofs can be done with proper modifications
in the arguments of [7].

Lemma 17. Let D be a derivation of degree k on S(M,E) with D = 0. Then

there exists a unique Ξ in Sk
(

M,L(E,E)
)

such that D = µ(Ξ).

So the graded S(M)-module endomorphisms of S(M,E) are exactly of the form
µ(Ξ).

Corollary 18. If D is an algebraic derivation of S(M,E) of degree k, then there

exist unique Ψ ∈ Sk+1(M,TM) and Ξ ∈ Sk
(

M,L(E,E)
)

such that D = i(Ψ) +
µ(Ξ).

Proposition 19. The space DerS(M,E) of derivations of the S(M)-module

S(M,E) is a Lie algebra with the commutator as bracket. We have [D1, D2] =
[D1, D2].

Let ∇ be a connection on E, and denote by d∇
s

the exterior symmetric covariant
derivative Sk(M,E) −→ Sk+1(M,E), given by

(d∇
s

Φ)(X1, . . . , Xk+1) =
∑

i

∇Xi
Φ(X1, . . . , X̂i, . . . , Xk+1)

−
∑

i<j

Φ([Xi, Xj]
s, X1, . . . , X̂i, . . . , X̂j , . . . , Xk+1) .
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It is a graded derivation of degree 1 and

d∇
s

(ω ∨ Φ) = dsω ∨ Φ + ω ∨ d∇
s

Φ

for any ω ∈ S(M) and Φ ∈ S(M,E).
Let us fix a connection ∇ on E. Then, for any Φ ∈ Sk(M,TM), we consider the

derivation θs
∇(Φ) = [i(Φ), d∇

s

] of degree k on S(M,E), which we call the covariant

symmetric Lie derivative along Φ. Clearly θs
∇(Φ) = θs(Φ) on S(M).

Theorem 20. If d∇
s

is an exterior symmetric covariant derivative on E, then

any derivation D in Derk S(M,E) can be written in the form D = i(Φ)+ θs
∇(Ψ)+

µ(Ξ) for unique Φ ∈ Sk+1(M,TM), Ψ ∈ Sk(M,TM) and Ξ ∈ Sk
(

M,L(E,E)
)

.

Moreover, D is algebraic if and only if Ψ = 0.

5. Derivations on the algebra of symmetric forms into the module
of vector valued symmetric forms

Let E be a vector bundle on M . A linear mapping D from S(M) into S(M)-
module S(M,E) is called a derivation of degree k if D

(

Sl(M)
)

⊂ Sk+l(M,E) and
D(ω ∨ η) = Dω ∨ η + ω ∨Dη for any ω ∈ S(M) and η ∈ S(M). The space of all
derivations of degree k from S(M) into S(M,E) is denoted by Derk

(

S(M), S(M,E)
)

.

Let D′ be a derivation of degree l on S(M,E). Then [D′, D] = D′ ◦D−D ◦D′ is
a derivation of degree k + l from S(M) into S(M,E).

For any Φ⊗T ∈ Sk+1(M,TM ⊗E), where Φ ∈ Sk+1(M,TM) and T ∈ ΓE, we
define ρ(Φ ⊗ T ) ∈ Derk

(

S(M), S(M,E)
)

by setting

ρ(Φ ⊗ T )ω = i(Φ)ω ⊗ T for any ω ∈ S(M) .

We extend ρ linearly to Sk+1(M,TM ⊗ E).

Lemma 21. Every algebraic derivation from S(M) into S(M,E) is in the form

ρ(Ξ), for a unique Ξ ∈ Sk+1(M,TM ⊗ E).

Let ∇ be a connection on E. For Ξ ∈ Sk+1(M,TM ⊗ E), we call the derivation
θ∇

s

(Ξ) := [ρ(Ξ), d∇
s

] the E-valued covariant symmetric Lie derivative along Ξ.
For any Φ ∈ Sk+1(M,TM) and Ξ ∈ Sl+1(M,TM⊗E), the derivation [i(Φ), ρ(Ξ)]

is algebraic, so it is of the form ρ([Φ,Ξ]∨) for unique [Φ,Ξ]∨ ∈ Sk+l+1(M,TM⊗E).

Proposition 22. We have [Φ,Ξ]∨ = i(Φ)Ξ− ρ(Ξ)Φ, where ρ(Ξ)(φ⊗X) = ρ(Ξ)φ
⊗X.

Theorem 23. Let D be a derivation from S(M) into S(M,E). Then there exist

unique Ξ ∈ Sk+1(M,TM ⊗ E) and Π ∈ Sk(M,TM ⊗ E) such that D = ρ(Ξ) +
θ∇

s

(Π).
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