Archivum Mathematicum

Wiesław Królikowski

On 4-dimensional locally conformally flat almost Kähler manifolds

Archivum Mathematicum, Vol. 42 (2006), No. 3, 215--223

Persistent URL: http://dml.cz/dmlcz/107999

Terms of use:

© Masaryk University, 2006

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ON 4-DIMENSIONAL LOCALLY CONFORMALLY FLAT ALMOST KÄHLER MANIFOLDS

WIES£AW KRÓLIKOWSKI

Abstract

Using the fundamental notions of the quaternionic analysis we show that there are no 4-dimensional almost Kähler manifolds which are locally conformally flat with a metric of a special form.

I. Basic notions and the aim of the paper

Let $M^{2 n}$ be a real C^{∞}-manifold of dimension $2 n$ endowed with an almost complex structure J and a Riemannian metric g. If the metric g is invariant by the almost complex structure J, i.e.

$$
g(J X, J Y)=g(X, Y)
$$

for any vector fields X and Y on $M^{2 n}$, then $\left(M^{2 n}, J, g\right)$ is called almost Hermitian manifold.

Define the fundamental 2-form Ω by

$$
\Omega(X, Y):=g(X, J Y)
$$

An almost Hermitian manifold ($M^{2 n}, J, g, \Omega$) is said to be almost Kähler if Ω is a closed form, i.e.

$$
d \Omega=0
$$

Suppose that

$$
n=2
$$

The aim of the paper is to prove the following:

[^0]Theorem I. If $\left(M^{4}, J, g, \Omega\right)$ is a 4-dimensional almost Kähler manifold which is locally conformally flat, i.e. in a neighbourhood of every point $p_{0} \in M^{4}$ there exists a system of local coordinates $\left(U_{p_{0}} ; w, x, y, z\right)$ such that the metric g is expressed by

$$
g=g_{0}(p)\left[d w^{2}+d x^{2}+d y^{2}+d z^{2}\right], \quad p \in U_{p_{0}}
$$

where $g_{0}(p)$ is a real positive $C^{\infty}-$ function defined around p_{0}, then g_{0} is a modulus of some quaternionic function left (right) regular in the sense of Fueter [1] uniquely determined by J and Ω.

II. Proof of Theorem

Let us denote by the same letters the matrices of g, J and Ω with respect to the coordinate basis. These matrices satisfy the equality:

$$
g \cdot J=\Omega
$$

The metric g, by the assumption, is proportional to the identity, so it has the form

$$
g=g_{0} \cdot I=g_{0} \cdot\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

An almost complex structure J satisfies the condition:

$$
J^{2}=-I
$$

Since Ω is skew-symmetric then J is a skew-symmetric and orthogonal 4×4-matrix.
It is easy to check that J is of the form

$$
\left.a)\left(\begin{array}{cccc}
0 & a & b & c \tag{1}\\
-a & 0 & c & -b \\
-b & -c & 0 & a \\
-c & b & -a & 0
\end{array}\right) \quad \text { or } \quad b\right) \quad\left(\begin{array}{cccc}
0 & a & b & c \\
-a & 0 & -c & b \\
-b & c & 0 & -a \\
-c & -b & a & 0
\end{array}\right)
$$

with

$$
a^{2}+b^{2}+c^{2}=1
$$

Suppose that J is of the form (1a). Then the matrix Ω looks as follows:

$$
\Omega=g_{o} \cdot\left(\begin{array}{cccc}
0 & a & -b & c \\
-a & 0 & c & b \\
b & -c & 0 & a \\
-c & -b & -a & 0
\end{array}\right):=\left(\begin{array}{cccc}
0 & A & -B & C \\
-A & 0 & C & B \\
B & -C & 0 & A \\
-C & -B & -A & 0
\end{array}\right) .
$$

Since

$$
\left(\frac{A}{g_{0}}\right)^{2}+\left(\frac{B}{g_{0}}\right)^{2}+\left(\frac{C}{g_{0}}\right)^{2}=a^{2}+b^{2}+c^{2}=1
$$

then we get

$$
\begin{equation*}
A^{2}+B^{2}+C^{2}=g_{0}^{2} \tag{2}
\end{equation*}
$$

By the assumption

$$
d \Omega=0
$$

Using the following formula (see e.g. [4], p.36):

$$
\begin{aligned}
d \Omega(X, Y, Z)= & \frac{1}{3}\{X \Omega(Y, Z)+Y \Omega(Z, X)+Z \Omega(X, Y) \\
& -\Omega([X, Y], Z)-\Omega([Z, X], Y)-\Omega([Y, Z], X)\}
\end{aligned}
$$

the condition $d \Omega=0$ can be written in the form:

$$
\begin{aligned}
& 0=3 d \Omega\left(\partial_{x}, \partial_{y}, \partial_{z}\right)=A_{x}+B_{y}+C_{z} \\
& 0=3 d \Omega\left(\partial_{x}, \partial_{y}, \partial_{w}\right)=B_{x}-A_{y}+C_{w} \\
& 0=3 d \Omega\left(\partial_{x}, \partial_{z}, \partial_{w}\right)=C_{x}-A_{z}-B_{w} \\
& 0=3 d \Omega\left(\partial_{y}, \partial_{z}, \partial_{w}\right)=C_{y}-B_{z}+A_{w}
\end{aligned}
$$

Then the components A, B and C of Ω satisfy the following system of first order partial differential equations:

$$
\begin{align*}
A_{x}+B_{y}+C_{z} & =0 \\
B_{x}-A_{y}+C_{w} & =0 \\
C_{x}-A_{z}-B_{w} & =0 \tag{3}\\
C_{y}-B_{z}+A_{w} & =0
\end{align*}
$$

and the condition (2).
The above system (3), although overdetermined, does have solutions. We will show that the system (3) has a nice interpretation in the quaternionic analysis.

III. Fueter's regular functions

Denote by \mathbf{H} the field of quaternions. \mathbf{H} is a 4-dimensional division algebra over \mathbf{R} with basis $\{1, i, j, k\}$ and the quaternionic units i, j, k satisfy:

$$
\begin{aligned}
& i^{2}=j^{2}=k^{2}=i j k=-1 \\
& i j=-j i=k
\end{aligned}
$$

A typical element q of \mathbf{H} can be written as

$$
q=w+i x+j y+k z, \quad w, x, y, z \in \mathbf{R}
$$

The conjugate of q is defined by

$$
\bar{q}:=w-i x-j y-k z
$$

and the modulus $\|q\|$ by

$$
\|q\|^{2}=q \cdot \bar{q}=\bar{q} \cdot q=w^{2}+x^{2}+y^{2}+z^{2}
$$

We will need the following relation (which is easy to check)

$$
\overline{q_{1} \cdot q_{2}}=\overline{q_{2}} \cdot \overline{q_{1}}
$$

A function $F: \mathbf{H} \rightarrow \mathbf{H}$ of the quaternionic variable q can be written as

$$
F=F_{o}+i F_{1}+j F_{2}+k F_{3} .
$$

F_{o} is called the real part of F and $i F_{1}+j F_{2}+k F_{3}$ - the imaginary part of F.
In [1] Fueter introduced the following operators:

$$
\begin{aligned}
\bar{\partial}_{\text {left }} & :=\frac{1}{4}\left(\frac{\partial}{\partial w}+i \frac{\partial}{\partial x}+j \frac{\partial}{\partial y}+k \frac{\partial}{\partial z}\right) \\
\bar{\partial}_{\text {right }} & :=\frac{1}{4}\left(\frac{\partial}{\partial w}+\frac{\partial}{\partial x} i+\frac{\partial}{\partial y} j+\frac{\partial}{\partial z} k\right)
\end{aligned}
$$

analogous to $\frac{\partial}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$ in the complex analysis, to generalize the Cauchy--Riemann equations.

A quaternionic function F is said to be left regular (respectively, right regular) (in the sense of Fueter) if it is differentiable in the real variable sense and

$$
\begin{equation*}
\bar{\partial}_{\mathrm{left}} \cdot F=0 \quad\left(\text { resp. } \bar{\partial}_{\text {right }} \cdot F=0\right) \tag{4}
\end{equation*}
$$

Note that the condition (4) is equivalent to the following system of equations:

$$
\begin{aligned}
& \partial_{w} F_{o}-\partial_{x} F_{1}-\partial_{y} F_{2}-\partial_{z} F_{3}=0, \\
& \partial_{w} F_{1}+\partial_{x} F_{o}+\partial_{y} F_{3}-\partial_{z} F_{2}=0 \\
& \partial_{w} F_{2}-\partial_{x} F_{3}+\partial_{y} F_{o}+\partial_{z} F_{1}=0 \\
& \partial_{w} F_{3}+\partial_{x} F_{2}-\partial_{y} F_{1}+\partial_{z} F_{o}=0
\end{aligned}
$$

There are many examples of left and right regular functions in the sense of Fueter. Many papers have been devoted studying the properties of those functions (e.g. [3]). One has found the quaternionic generalizations of the Cauchy theorem, the Cauchy integral formula, Taylor series in terms of special polynomials etc.

Now we need an important result of [5]. It can be described as follows.
Let ν be an unordered set of n integers $\left\{i_{1}, \ldots, i_{n}\right\}$ with $1 \leq i_{r} \leq 3 ; \nu$ is determined by three integers n_{1}, n_{2} and n_{3} with $n_{1}+n_{2}+n_{3}=n$, where n_{1} is the number of 1 's in ν, n_{2} - the number of 2 's and n_{3} - the number of 3 's.

There are $\frac{1}{2}(n+1)(n+2)$ such sets ν and we denote the set of all of them by σ_{n}.

Let $e_{i_{r}}$ and $x_{i_{r}}$ denote i, j, k and x, y, z according as i_{r} is 1,2 or 3 , respectively. Then one defines the following polynomials

$$
P_{\nu}(q):=\frac{1}{n!} \sum\left(w e_{i_{1}}-x_{i_{1}}\right) \cdot \ldots \cdot\left(w e_{i_{n}}-x_{i_{n}}\right)
$$

where the sum is taken over all $n!\cdot n_{1}!\cdot n_{2}!\cdot n_{3}!$ different orderings of $n_{1} 1$'s, $n_{2} 2$'s and $n_{3} 3$'s; when $n=0$, so $\nu=\emptyset$, we take $P_{\emptyset}(q)=1$.

For example we present the explicit forms of the polynomials P_{ν} of the first and second degrees. Thus we have

$$
\begin{aligned}
P_{1} & =w i-x, \\
P_{2} & =w j-y, \\
P_{3} & =w k-z, \\
P_{11} & =\frac{1}{2}\left(x^{2}-w^{2}\right)-x w i, \\
P_{12} & =x y-w y i-w x j, \\
P_{13} & =x z-w z i-w x k, \\
P_{22} & =\frac{1}{2}\left(y^{2}-w^{2}\right)-y w j, \\
P_{23} & =y z-w z j-w y k, \\
P_{33} & =\frac{1}{2}\left(z^{2}-w^{2}\right)-z w k .
\end{aligned}
$$

In [5] Sudbery proved the following
Proposition. Suppose F is left regular in a neighbourhood of the origin $0 \in \mathbf{H}$. Then there is a ball $B=B(0, r)$ with center 0 in which $F(q)$ is represented by a uniformly convergent series

$$
F(q)=\sum_{n=0}^{\infty} \sum_{\nu \in \sigma_{n}} P_{\nu}(q) a_{\nu}, \quad a_{\nu} \in \mathbf{H} .
$$

IV. The end of the proof

Let us denote

$$
F_{A B C}(q):=A i+B j+C k,
$$

where we have identified $q \in \mathbf{H}$ with $(w, x, y, z) \in \mathbf{R}^{4}$. Then (3) is nothing but the condition that $F_{A B C}$ is left regular in the sense of Fueter. Then, by (2), we have

$$
\left\|F_{A B C}\right\|=g_{0}
$$

V. Conclusions

Let F satisfy the assumptions of Proposition. Then

$$
F(q)=a_{0}+\sum_{i=1}^{3} P_{i} \cdot a_{i}+\sum_{i \leq j} P_{i j} \cdot a_{i j}+\sum_{i \leq j \leq k} P_{i j k} \cdot a_{i j k}+\ldots
$$

and

$$
\overline{F(q)}=\overline{a_{o}}+\sum_{i=1}^{3} \overline{a_{i}} \cdot \overline{P_{i}}+\sum_{i \leq j} \overline{a_{i j}} \cdot \overline{P_{i j}}+\sum_{i \leq j \leq k} \overline{a_{i j k}} \cdot \overline{P_{i j k}}+\ldots
$$

Multiplying the above expressions we get

$$
\begin{align*}
\|F(q)\|^{2}= & \left\|a_{o}\right\|^{2}+\sum_{i=1}^{3}\left(P_{i} a_{i} \overline{a_{o}}+a_{o} \overline{a_{i}} \overline{P_{i}}\right) \\
& +\sum_{i \leq j}\left(P_{i j} a_{i j} \overline{a_{o}}+a_{o} \overline{a_{i j}} \overline{P_{i j}}\right)+\sum_{i, j} P_{i} a_{i} \overline{a_{j}} \overline{P_{j}} \\
& +\sum_{i \leq j \leq k}\left(P_{i j k} a_{i j k} \overline{a_{o}}+a_{o} \overline{a_{i j k}} \overline{P_{i j k}}\right) \tag{5}\\
& +\sum_{m=1}^{3} \sum_{i \leq j}\left(P_{m} a_{m} \overline{a_{i j}} \overline{P_{i j}}+P_{i j} a_{i j} \overline{a_{m}} \overline{P_{m}}\right)+\ldots
\end{align*}
$$

Example 1. Let

$$
g_{0}(w, x, y, z)=\frac{1}{1+r}, \quad r^{2}=w^{2}+x^{2}+y^{2}+z^{2}
$$

then
(6) $\quad g_{0}^{2}=\frac{1}{(1+r)^{2}}=1-2 r+3 r^{2}-4 r^{3}+\ldots+(-1)^{n}(n+1) r^{n}+\ldots$.

Comparing the right sides of (5) and (6) we see that

$$
\begin{aligned}
a_{0} & \neq 0, \\
-2 r & =\sum_{i=1}^{3}\left(P_{i} a_{i} \overline{a_{0}}+a_{0} \overline{a_{i}} \overline{P_{i}}\right)
\end{aligned}
$$

but the second equality is impossible.

Example 2. Take

$$
g_{0}(w, x, y, z)=\frac{1}{\sqrt{1+r^{2}}}, \quad r^{2}=w^{2}+x^{2}+y^{2}+z^{2}
$$

then

$$
\begin{equation*}
g_{0}^{2}=\frac{1}{1+r^{2}}=1-r^{3}+r^{6}-r^{9}+\ldots+(-1)^{k} r^{3 k}+\ldots \tag{7}
\end{equation*}
$$

Comparing the right sides of (5) and (7) we get

$$
a_{0} \neq 0, \quad a_{i}=0, \quad a_{i j}=0
$$

and

$$
-r^{3}=\sum_{i \leq j \leq k}\left(P_{i j k} a_{i j k} \overline{a_{0}}+a_{0} \overline{a_{i j k}} \overline{P_{i j k}}\right)
$$

but the last equality is impossible.
Example 3. Let

$$
g_{0}(w, x, y, z)=\frac{1}{\sqrt{1-r^{2}}}, \quad r^{2}=w^{2}+x^{2}+y^{2}+z^{2}
$$

then

$$
\begin{equation*}
g_{0}^{2}=\frac{1}{1-r^{2}}=1+r^{2}+\frac{4}{3} r^{3}+\ldots \tag{8}
\end{equation*}
$$

Comparing the right sides of (5) and (8) we have

$$
a_{0} \neq 0, \quad a_{i}=0
$$

and

$$
\begin{equation*}
r^{2}=\sum_{i \leq j}\left(P_{i j} a_{i j} \overline{a_{0}}+a_{0} \overline{a_{i j}} \overline{\overline{P_{i j}}}\right) . \tag{9}
\end{equation*}
$$

Set

$$
d_{i j}:=a_{i j} \overline{a_{0}}:=d_{i j}^{0}+d_{i j}^{1} \mathbf{i}+d_{i j}^{2} \mathbf{j}+d_{i j}^{3} \mathbf{k}
$$

(i, \mathbf{j}, \mathbf{k} denote the quaternionic units) and rewrite (9) in the form

$$
w^{2}+x^{2}+y^{2}+z^{2}=2 \sum_{i \leq j} R e\left(P_{i j} d_{i j}\right)
$$

then we get

$$
\begin{aligned}
w^{2}+x^{2}+y^{2}+z^{2}= & 2 \operatorname{Re}\left\{\left[\frac{1}{2}\left(x^{2}-w^{2}\right)-x w \mathbf{i}\right] d_{11}\right. \\
& +2 \operatorname{Re}\left\{\left[\frac{1}{2}\left(y^{2}-w^{2}\right)-y w \mathbf{j}\right] d_{22}\right. \\
& +2 \operatorname{Re}\left\{\left[\frac{1}{2}\left(z^{2}-w^{2}\right)-z w \mathbf{k}\right] d_{33}+\ldots\right. \\
= & \left(x^{2}-w^{2}\right) d_{11}^{0}+\left(y^{2}-w^{2}\right) d_{22}^{0}+\left(z^{2}-w^{2}\right) d_{33}^{0}
\end{aligned}
$$

Comparing the terms in x^{2}, y^{2} and z^{2} we get

$$
d_{11}^{0}=d_{22}^{0}=d_{33}^{0}=1
$$

but then

$$
w^{2}=-3 w^{2}
$$

and this is impossible.
Example 4. Let

$$
g_{0}(w, x, y, z)=\frac{1}{\left(1-r^{2}\right)^{2}}, \quad r^{2}=w^{2}+x^{2}+y^{2}+z^{2}
$$

then

$$
\begin{equation*}
g_{0}^{2}=\frac{1}{\left(1-r^{2}\right)^{4}}=1+4 r^{2}+\ldots \tag{10}
\end{equation*}
$$

Comparing the right sides of (5) and (10) we obtain

$$
a_{0} \neq 0, \quad a_{i}=0
$$

and

$$
4 r^{2}=\sum_{i \leq j}\left(P_{i j} a_{i j} \overline{a_{0}}+a_{0} \overline{a_{i j}} \overline{P_{i j}}\right)
$$

Analogously, like in the Example 3, we have

$$
2 w^{2}+2 x^{2}+2 y^{2}+2 z^{2}=\sum_{i \leq j} R e\left(P_{i j} d_{i j}\right)
$$

This time, comparing the terms in x^{2}, y^{2} and z^{2}, we get

$$
\begin{gathered}
a_{0} \neq 0, \quad a_{i}=0, \\
d_{11}^{0}=d_{22}^{0}=d_{33}^{0}=4
\end{gathered}
$$

but then

$$
-6 w^{2}=2 w^{2}
$$

This is again impossible.

VI. General conclusion

There is no 4-dimensional almost Kähler manifold (M^{4}, J, g, Ω) which is locally conformally flat with the metric

$$
g=g_{0}(p)\left[d w^{2}+d x^{2}+d y^{2}+d z^{2}\right]
$$

where g_{0} is expressed by the formulae (6), (7), (8) and (10). In particular the Poincaré model, i.e. the unit ball B^{4} in \mathbf{R}^{4} with the metric

$$
g:=\frac{4}{\left(1-r^{2}\right)^{2}}\left[d w^{2}+d x^{2}+d y^{2}+d z^{2}\right], \quad r^{2}:=w^{2}+x^{2}+y^{2}+z^{2}
$$

is not an almost Kähler manifold.
Remark. If J is of the form (1b) then the proof of Theorem is similar. One has to replace the left regular quaternionic function with the right one (see [3], p.10).

References

[1] Fueter, R., Die Funktionentheorie der Differentialgleichungen $\triangle u=0$ und $\triangle \triangle u=0$ mit vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307-330.
[2] Goldberg, S. I., Integrability of almost Kähler manifolds, Proc. Amer. Math. Soc. 21 (1969), 96-100.
[3] Królikowski, W., On Fueter-Hurwitz regular mappings, Diss. Math. 353 (1996).
[4] Kobayashi, S., Nomizu, K., Foundations of differential geometry, I - II, Interscience, 1963.
[5] Sudbery, A., Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199-225.

Motylowa 4/27, 91-360 Lódź, Poland

[^0]: 2000 Mathematics Subject Classification: 15A63, 15A66, 30G35, 30G99, 32A30, 53C10 53C40, 53C55.

 Key words and phrases: almost Kähler manifold, quaternionic analysis, regular function in the sense of Fueter.

 Received December 7, 2004.

