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OSCILLATORY AND NONOSCILLATORY SOLUTIONS FOR

FIRST ORDER IMPULSIVE DYNAMIC INCLUSIONS ON TIME

SCALES

Mouffak Benchohra1, Samira Hamani1 and Johnny Henderson2

Abstract. In this paper we discuss the existence of oscillatory and nonoscil-
latory solutions for first order impulsive dynamic inclusions on time scales.
We shall rely of the nonlinear alternative of Leray-Schauder type combined
with lower and upper solutions method.

1. Introduction

This paper is concerned with the existence of oscillatory and nonoscillatory
solutions of first order impulsive dynamic inclusions on time scales. More precisely,
we consider the following problem,

(1) y∆(t) ∈ F
(

t, y(t)
)

, t ∈ JT := [t0,∞) ∩ T , t 6= tk , k = 1, . . . , m, . . . ,

(2) y(t+k ) = Ik

(

y(t−k )
)

, k = 1, . . . , m, . . . ,

(3) y(t0) = y0 ,

where T is time scale which is assumed to be unbounded from above, F : JT ×R →
CK(R), is a multivalued map, CK(R) denotes the set of nonempty, closed, and
convex subsets of R, Ik ∈ C(R, R), y0 ∈ R, tk ∈ T, 0 = t0 < t1 < · · · < tm <

tm+1 < . . . ↑ ∞, y(t+k ) = lim
h→0+

y(tk + h) and y(t−k ) = lim
h→0+

y(tk − h) represent

the right and left limits of y(t) at t = tk and lim
k→∞

y(tk) = ∞ in the sense of

the time scales. Impulsive differential equations have become important in re-
cent years in mathematical models of real processes and they rise in phenomena
studied in physics, chemical technology, population dynamics, biotechnology and
economics. There have been significant developments in impulse theory also in
recent years, especially in the area of impulsive differential equations and first
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order impulsive inclusions, with fixed moments; see the monographs of Bainov
and Simeonov [6], Benchohra et al [10], Lakshmikantham et al [28], Samoilenko
and Perestyuk [31] and the references therein. In recent years dynamic equations
on times scales have received much attention. We refer the reader to the books
by Bohner and Peterson [14, 15], Lakshmikantham et al [29] and the references
therein. The time scales calculus has tremendous potential for applications in
mathematical models of real processes, for example, in physics, chemical technol-
ogy, population dynamics, biotechnology and economics, neural networks, social
sciences, see Aulbach and Hilger [5], Bohner and Peterson [14, 15], Lakshmikan-
tham et al [29], and the references therein. The existence of solutions of boundary
value problem on a measure chain (i.e. time scale) was recently studied by Bohner
and Tisdell [17], Henderson [24] and Henderson and Tisdell [26]. The question of
existence of solutions to some classes of impulsive dynamic equations and impul-
sive dynamic inclusions on time scales was treated very recently by Henderson [25]
and Benchohra et al in [1, 11, 12]. Recently (see [9]) we have initiated the study
of oscillation and nonoscillatory of solutions to impulsive dynamic equations on
time scales. The aim of this paper is to continue this study for impulsive dynamic
inclusions on time scales. For oscillation and nonoscillation of impulsive differen-
tial equations, see for instance the monograph of Bainov and Simeonov [7] and the
papers of Graef and Karsai [21, 22]. The purpose of this paper is to give some
sufficient conditions for existence of oscillatory and nonoscillatory solutions of the
first order dynamic impulsive problem (1)–(3) on time scales. There has been, in
fact, a good deal of research already devoted to oscillation questions for dynamic
equations on time scales; see, for example [2, 4, 13, 16, 19, 20, 30]. For the purposes
of this paper, we shall rely on the nonlinear alternative of Leray-Schauder type
combined with a lower and upper solutions method. Our results can be considered
as contributions to this emerging field.

2. Preliminaries

We will briefly recall some basic definitions and facts from times scales calculus
that we will use in the sequel.

A time scale T is a nonempty closed subset of R. It follows that the jump
operators σ, ρ : T → T defined by

σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}

(supplemented by inf ∅ := sup T and sup ∅ := inf T) are well defined. The point
t ∈ T is left-dense, left-scattered, right-dense, right-scattered if ρ(t) = t, ρ(t) < t,
σ(t) = t, σ(t) > t, respectively. If T has a right-scattered minimum m, define
Tk := T − {m}; otherwise, set Tk = T. If T has a left-scattered maximum M ,
define T

k := T − {M}; otherwise, set T
k = T. The notations [a, b], [a, b), and so

on, will denote time scales intervals

[a, b] = {t ∈ T : a ≤ t ≤ b} ,

where a, b ∈ T with a < ρ(b).
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Definition 2.1. Let X be a Banach space. The function f : T → X will be called
rd-continuous provided it is continuous at each right-dense point and has a left-
sided limit at each point, we write f ∈ Crd(T) = Crd(T, X). Let t ∈ T

k, the ∆
derivative of f at t, denoted f∆(t), be the number(provided it exists) if for all
ε > 0 there exists a neighborhood U of t such that

∣

∣f
(

σ(t)
)

− f(s) − f∆(t)[σ(t) − s]
∣

∣ ≤ ε
∣

∣σ(t) − s
∣

∣

for all s ∈ U , at fix t. Let F be a function and it is called antiderivative of
f : T → X provided

F∆(t) = f(t) for each t ∈ T
k .

A function p : T → R is called regressive if

1 + µ(t)p(t) 6= 0 for all t ∈ T ,

where µ(t) = σ(t) − t which called the graininess function. The set of all rd-
continuous function f that satisfy 1 + µ(t)f(t) > 0 for all t ∈ T will be denoted
by R+. The generalized exponential function ep is defined as the unique solution
y(t) = ep(t, a) of the initial value problem y∆ = p(t)y, y(a) = 1, where p is
a regressive function. An explicit formula for ep(t, a) is given by

ep(t, s) = exp
{

∫ t

s

ξµ(τ)(p(τ))∆τ
}

with ξh(z) =

{

log(1 + hz)

h
if h 6= 0

z if h = 0

For more details, see [14]. Clearly, ep(t, s) never vanishes. C([a, b], R) is the Banach
space of all continuous functions from [a, b] into R where [a, b] ⊂ T with the norm

‖y‖∞ = sup
{

|y(t)| : t ∈ [a, b]
}

.

Remark 2.1. (i) If f is continuous, then f rd-continuous.
(ii) If f is delta differentiable at t then f is continuous at t.

For a, b ∈ T and a differentiable function f , the Cauchy integral of f∆ is defined
by

∫ b

a

f∆(t)∆t = f(b) − f(a) .

Note that in the case T = R we have

σ(t) = t , µ(t) ≡ 0 , f∆(t) = f ′(t)

and in the case T = Z we have

σ(t) = t + 1 , µ(t) ≡ 1 , f∆(t) = f(t + 1) − f(t) .

Another important time scale is T = {qk : k ∈ N} with q > 1, for which

σ(t) = qt , µ(t) = (q − 1)t , f∆(t) =
f(qt) − f(t)

(q − 1)t
,

and this time scale gives rise to so-called q-difference equations.
The condition

y ≤ y if and only if y(t) ≤ y(t) for all t ∈ [a, b] ,
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defines a partial ordering in C
(

[a, b], R
)

. If α, β ∈ C
(

[a, b], R
)

and α ≤ β, we
denote

[α, β] =
{

y ∈ C
(

[a, b], R
)

: α(t) ≤ y(t) ≤ β(t)
}

.

Let (X, | · |) be a Banach space. A multivalued map G : X −→ 2X has convex
(closed) values if G(x) is convex (closed) for all x ∈ X . G is bounded on bounded
sets if G(B) is bounded in X for each bounded set B of X (i.e. sup

x∈B

{

sup{|y| : y ∈

G(x)}
}

< ∞).
A map G : X → CK(X) is called upper semicontinuous provided {uk}k∈N,

{vk}k∈N ⊂ X with uk → u, vk → v (k → ∞) and vk ∈ G(uk) for all k ∈ N always
implies v ∈ G(u). G is said to be completely continuous if G(B) is relatively
compact for every bounded subset B ⊆ X . G has a fixed point if there is x ∈ X

such that x ∈ G(x). For more details on multivalued maps see the books of
Deimling [18] and Hu and Papageorgiou [27].

Lemma 2.1 (Nonlinear Alternative [23]). Let X be a Banach spaces with C ⊂ X

convex. Assume U is a open subset of C with 0 ∈ U and G : U → P(C) is

a compact multivalued map, u.s.c. with convex closed values. Then either,

(i) G has a fixed point in U ; or

(ii) there is a point u ∈ ∂U and λ ∈ (0, 1) with u ∈ λG(u).

3. Main result

We will assume for the remainder of the paper that, for each k = 1, . . . , the
points of impulse tk are right dense. In order to define the solution of (1)–(3) we
shall consider the following space

PC =
{

y : [t0,∞) → R : yk ∈ C(Jk, R) , k = 0, . . . , and there exist

y(t−k ) and y(t+k ), k = 1, . . . , with y(t−k ) = y(t+k )
}

,

which is a Banach space with the norm

‖y‖PC = max
{

‖yk‖k, k = 0, . . . ,
}

,

where yk is the restriction of y to Jk = [tk, tk+1], and ‖y‖k = sup
t∈Jk

|y(t)|, k = 0, . . . .

Let us start by defining what we mean by a solution of problem (1)–(3).

Definition 3.1. A function y ∈ PC ∩ C1((tk, tk+1), R), k = 0, . . ., is said to be
a solution of (1)–(3) if y satisfies the inclusion y∆(t) ∈ F (t, y(t)) on J − {t1, . . . , }
and the conditions y(t0) = y0, y(t+k ) = Ik

(

y(t−k )
)

, k = 1, . . . .

For any y ∈ PC we define the set

SF,y = {v ∈ C(JT , R) : v(t) ∈ F
(

t, y(t)
)

for all t ∈ JT } .

The following concept of lower and upper solutions for (1)–(3) was introduced
by Benchohra and Boucherif [8] for initial initial value problems for impulsive
differential inclusions of first order. These will the basic tools in the approach that
follows.
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Definition 3.2. A function α ∈ PC ∩ C1
(

(tk, tk+1), R
)

, k = 0, . . . is said to be

a lower solution of (1)–(3) if there exists v1 ∈ C(JT , R) such that v1(t) ∈ F
(

t, α(t)
)

on JT , α∆(t) ≤ v1(t) on JT , α(t+k ) ≤ Ik

(

α(t−k )
)

, k = 1, . . ., and α(t0) ≤ y0.

Similarly a function β ∈ PC ∩ C1
(

(tk, tk+1), R
)

, k = 0, . . . is said to be an upper

solution of (1)–(3) if there exists v2 ∈ C(JT , R) such that v2(t) ∈ F
(

t, β(t)
)

on JT ,

β∆(t) ≥ v2(t) on JT , β(t+k ) ≥ Ik

(

β(t−k )
)

, k = 1, . . . and β(t0) ≥ y0.

For the study of this problem we first list the following hypotheses:

(H1) F : JT × R → CK(R) is such that F (t, ·) is upper semicontinuous for all
t ∈ JT and SF,y 6= ∅ for all y ∈ C(JT, R).

(H2) For all r > 0 there exists a nonnegative function hr ∈ C(JT, R+) with
∣

∣F (t, y)
∣

∣ ≤ hr(t) for all t ∈ JT and all |y| ≤ r ;

(H3) there exist α and β ∈ PC
(

(tk, tk+1), R
)

, k = 0, . . ., lower and upper solutions
for the problem (1)–(3) such that α ≤ β;

(H4)

α(t+k ) ≤ min
y∈[α(t−

k
),β(t−

k
)]

Ik(y) ≤ max
y∈[α(t−

k
),β(t−

k
)]

Ik(y) ≤ β(t+k ) , k = 1, . . . .

Theorem 3.1. Assume that hypotheses (H1)–(H4) hold. Then the problem (1)–
(3) has at least one solution y such that

α(t) ≤ y(t) ≤ β(t) for all t ∈ JT .

Proof. The proof will be given in several steps.

Step 1 : Consider the following problem:

y∆(t) ∈ F
(

t, y(t)
)

, t ∈ J1 := [t0, t1] ,(4)

y(t0) = y0 .(5)

Transform the problem (4)–(5) into a fixed point problem. Consider the following
modified problem

y∆(t) ∈ F
(

t, (τy)(t)
)

, t ∈ J1 ,(6)

y(t0) = y0 ,(7)

where τ : C(J1, R) −→ C(J1, R) be the truncation operator defined by

(τy)(t) =











α(t), y(t) < α(t) ,

y(t), α(t) ≤ y(t) ≤ β(t) ,

β(t)(t), y(t) > β(t) .

A solution to (6)–(7) is a fixed point of the operator N : C
(

[t0, t1], R
)

−→ CK
(

C
(

[t0, t1], R
))

defined by

N(y) =
{

h ∈ C
(

[t0, t1], R
)

: h(t) = y0 +

∫ t

t0

g(s)∆s
}

,
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where g ∈ S̃1
F,τy and

S̃1
F,τy =

{

g ∈ S1
F,τy : g(t) ≥ v1(t) a.e. on A1 and g(t) ≤ v2(t) a.e. on A2

}

,

S1
F,τy =

{

g ∈ C1(J1, R) : g(t) ∈ F
(

t, (τy)(t)
)

for a.e. t ∈ J1

}

,

A1 =
{

t ∈ J1 : y(t) < α(t) ≤ β(t)
}

, A2 =
{

t ∈ J1 : α(t) ≤ β(t) < y(t)
}

.

Remark 3.1. (i) For each y ∈ C
(

[t0, t1], R
)

, the set S̃1
F,τy is nonempty. In fact,

(H1) implies there exists g3 ∈ S1
F,τy, so we set

g = v1χA1
+ v2χA2

+ v3χA3
,

where

A3 =
{

t ∈ J1 : α(t) ≤ y(t) ≤ β(t)
}

.

Then, by decomposability, g ∈ S̃1
F,τy.

(ii) By the definition of τ it is clear that there exists a nonnegative function
h ∈ C(J1, R

+) with
∣

∣F
(

t, τ(y)(t)
)∣

∣ ≤ h(t) for each t ∈ J1 and each y ∈ R .

We shall show that N satisfies the assumptions of the nonlinear alternative of
Leray-Schauder type [23]. The proof will be given in a couple of claims.

Claim 1: A priori bounds on solutions.

Let y ∈ λN(y) for some λ ∈ (0, 1). Then there exists g ∈ S̃1
F,τy such that for

some λ ∈ (0, 1) we have, for each t ∈ J1

y(t) = λy0 + λ
[

∫ t

t0

g(s)∆s
]

.

This implies by (H2) and Remark 3.1 (ii) that for each t ∈ J1 we have

∣

∣y(t)
∣

∣ ≤ |y0| +

∫ t

t0

∣

∣g(s)
∣

∣∆s ≤ |y0| + ‖h‖L1 := M .

Set

U =
{

y ∈ C
(

[t0, t1], R
)

: ‖y‖∞ < M + 1
}

.

From the choice of U there is no y ∈ ∂U such that y ∈ λN(y) for some λ ∈ (0, 1).
We first show that N : U → CK

(

C
(

[t0, t1], R
))

is compact.

Claim 2: N(y) is convex for each y ∈ C([t0, t1], R).

Indeed, if h1, h2 belong to N(y), then there exist g1, g2 ∈ S̃1
F,τy such that for

each t ∈ J1 we have

hi(t) = y0 +

∫ t

t0

gi(s)∆s , i = 1, 2 .
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Let 0 ≤ d ≤ 1. Then for each t ∈ J1 we have

(

dh1 + (1 − d)h2

)

(t) = y0 +

∫ t

t0

[

dg1(s) + (1 − d)g2(s)
]

∆s .

Since S̃1
F1,τy is convex (because F

(

t, (τy)(t)
)

has convex values) then

dh1 + (1 − d)h2 ∈ N(y) .

Claim 3: N maps bounded sets into sets in C
(

[t0, t1], R
)

.

Indeed, it is enough to show that for each q > 0 there exists a positive constant
ℓ such that for each y ∈ Bq =

{

y ∈ C
(

[t0, t1], R
)

: |y| ≤ q
}

one has |N(y)| ≤ ℓ.

Let y ∈ Bq and h ∈ N(y) then there exists g ∈ S̃1
F,τy such that for each t ∈ J1

we have

h(t) = y0 +

∫ t

t0

g(s)∆s .

By (H2) we have for each t ∈ J1

∣

∣h(t)
∣

∣ ≤ |y0| +

∫ t

t0

∣

∣g(s)
∣

∣∆s ≤ |y0| + ‖hq‖L1 := ℓ .

Claim 4: N maps bounded set into equicontinuous sets of C
(

[t0, t1], R
)

.

Let u1, u2 ∈ J1, u1 < u2 and Bq be a bounded set of C
(

[t0, t1], R
)

as in Claim 3.
Let y ∈ Bq and h ∈ N(y) then for each t ∈ J1 we have

∣

∣h(u2) − h(u1)
∣

∣ =
∣

∣

∣

∫ u2

t0

g(s)∆s −

∫ u
1

t0

g(s)∆s
∣

∣

∣
≤

∫ u2

u1

∣

∣g(s)
∣

∣∆s ≤

∫ u2

u1

hq(s)∆s .

As u2 → u1 the right-hand side of the above inequality tends to zero. Claims 2
to 4 together with the Arzela-Ascoli theorem imply that N : U → CK

(

C
(

[t0, t1], R
))

is a compact multivalued map.

Claim 5: N is upper semicontinuous maps.

We define a linear and continuous operator Γ: C
(

[t0, t1], R
)

→ C
(

[t0, t1], R
)

by

(Γh)(t) =

∫ t

t0

h(s)∆s , t ∈ J1 .

Let {uk}k∈N, {wk}k∈N ⊂ R such that uk → u0, wk → w0 (k → ∞) and wk ∈ N(uk)

for all k ∈ N. Thus there exists vk ∈ S̃1
F,τuk

with wk = Γvk. Since uk ∈ U for

all K ∈ N, (H1) and (H2) imply that there exists a compact set (see [3]) Ω ⊂
C

(

[t0, t1], R
)

with {vk}k∈N ⊂ Ω. Therefore there exists a convergent subsequence
{vkν

}ν∈N of {vk}k∈N, say vkν
→ v0 as ν → ∞. Now vkν

→ v0 and ukν
→ u0

as ν → ∞ and vkν
(t) ∈ F

(

t, τukν
(t)

)

for all t ∈ J1. Thus, since F (t, ·) is upper

semicontinuous for all t ∈ J1, we may conclude v0(t) ∈ F
(

t, τu0(t)
)

for all t ∈ J1

and therefore v0 ∈ S̃1
F,τu0

. Since vkν
→ v0 as ν → ∞ and Γ: C

(

[t0, t1], R
)

→

C
(

[t0, t1], R
)

is continuous, we say that wkν
= Γvkν

→ Γv0 as ν → ∞, and hence

w0 = Γv0 ∈ N(u0) .
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Therefore N : U → CK
(

C
(

[t0, t1], R
))

is upper semicontinuous. As it is also
compact, we deduce from the nonlinear alternative of Leray Schauder type [23]
that N has a fixed point y in U is a solution of the problem (6)–(7).

Claim 6: The solution y of (6)–(7) satisfies

α(t) ≤ y(t) ≤ β(t) for all t ∈ J1 .

Let y be a solution to (6)–(7). We prove that

α(t) ≤ y(t) for all t ∈ J1 .

Suppose not. Then there exist e1, e2 ∈ J1, e1 < e2 such that α(e1) = y(e1) and

(8) y(t) < α(t) for all t ∈ [e1, e2] .

In view of the definition of τ one has

y(t) − y(e1) ∈

∫ t

e1

F
(

s, α(s)
)

∆s .

Thus there exists g(s) ∈ F
(

s, α(s)
)

for all s ∈ (e1, e2) with g(s) ≥ v1(s) for all
s ∈ (e1, e2).

(9) y(t) = y(e1) +

∫ t

e1

g(s)∆s .

Using (8)–(9) and the fact that α is a lower solution to (4)–(5) we get for t ∈ (e1, e2]

0 < α(t) − y(t)

≤ α(e1) +

∫ t

e1

v1(s)∆s − y(t)

= α(e1) +

∫ t

e1

v1(s)∆s −
(

y(e1) +

∫ t

e1

g(s)∆s
)

=

∫ t

e1

(

v1(s) − g(s)
)

∆s

≤ 0

which is a contradiction. Analogously, we can prove that

y(t) ≤ β(t) for all t ∈ [t0, t1] .

This shows that the problem (6)–(7) has a solution in the interval [α, β] which is
solution of (4)–(5). Denote this solution by y0.

Step 2: Consider the following problem:

y∆(t) ∈ F
(

t, y(t)
)

, t ∈ J2 := [t1, t2] ,(10)

y(t+1 ) = I1

(

y0(t
−

1 )
)

.(11)
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Transform the problem (10)–(11) into a fixed point problem. Consider the follow-
ing modified problem

y∆(t) ∈ F1

(

t, τ(t)
)

, t ∈ J2 ,(12)

y(t+1 ) = I1

(

y0(t
−

1 )
)

.(13)

A solution to (12)–(13) is a fixed point of the operator N1 : C
(

[t1, t2], R
)

→

CK
(

C
(

[t1, t2], R
))

defined by

N1(y) =
{

h ∈ C([t0, t1], R) : h(t) =

∫ t

t1

g(s)∆s + I1

(

y0(t
−

1 )
)

}

,

where g ∈ S̃1
F,τy. Since y0(t1) ∈

[

α(t−1 ), β(t−1 )
]

, then (H4) implies that

α(t+1 ) ≤ I1(y0(t
−

1 )) ≤ β(t+1 ) ,

that is

α(t+1 ) ≤ y(t+1 ) ≤ β(t+1 ) .

Claim 1: A priori bounds on solutions.

Let y ∈ λN1(y) for some λ ∈ (0, 1). Then there exists g ∈ S̃1
F,τy such that for

some λ ∈ (0, 1) we have, for each t ∈ J2

y(t) = λ
[

∫ t

t1

g(s)∆s + I1

(

y0(t
−

1 )
)

]

.

This implies by (H2) that for each t ∈ J2 we have

∣

∣y(t)
∣

∣ ≤

∫ t

t1

∣

∣g(s)
∣

∣∆s +
∣

∣I1

(

y0(t
−

1 )
)∣

∣ ≤ ‖h‖L1 + max
(

|α(t+1 )|, |β(t+1 )|
)

:= M1 .

Set

U1 =
{

y ∈ C
(

[t1, t2], R
)

: ‖y1‖∞ < M1 + 1
}

.

From the choice of U1 there is no y ∈ ∂U1 such that y ∈ λN1(y) for some λ ∈
(0, 1). Using the same reasoning as that used for problem (6)–(7) we can conclude
that N1 : U1 → CK

(

C
(

[t1, t2], R
))

is upper semicontinuous and compact. As
a consequence of the nonlinear alternative of Leray Schauder type [23] we deduce
that N1 has a fixed point y1 in U1 is a solution of the problem (12)–(13).

Claim 2: We show that this solution satisfies

α(t) ≤ y(t) ≤ β(t) for all t ∈ J2 .

Let y be a solution to (12)–(13). We first show that

α(t) ≤ y(t) for all t ∈ J2 .

Assume this false, then since y(t+1 ) ≥ α(t+1 ), there exist e3, e4 ∈ J2 with e3 < e4

such that α(e3) = y(e3) and

(14) y(t) > α(t) for all t ∈ (e3, e4] .
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Thus there exists g(s) ∈ F (s, α(s)) on J2 with g(s) ≥ v1(s) on (e3, e4), and

(15) y(t) = y(e3) +

∫ t

e3

g(s)∆s.

Using (14)–(15) and the fact that α is a lower solution to (10)–(11) we get for
t ∈ (e3, e4]

0 < α(t) − y(t)

≤ α(e3) +

∫ t

e3

v1(s)∆s − y(t)

= α(e3) +

∫ t

e3

v1(s)∆s −
(

y(e3) +

∫ t

e3

g(s)∆s
)

=

∫ t

e3

(

v1(s) − g(s)
)

∆s

≤ 0

which is a contradiction. Analogously, we can prove that

y(t) ≤ β(t) for all t ∈ [t1, t2] .

This shows that the problem (12)–(13) has a solution in the interval [α, β] which
is solution of (10)–(11). Denote this solution by y1.

Step 3: We continue this process and into account that ym := y|[tm−1,tm] is a so-
lution the problem

y∆(t) ∈ F
(

t, y(t)
)

, t ∈ Jm := [tm−1, tm] ,(16)

y(t+m) = Im

(

ym−1(t
−

m−1)
)

.(17)

Consider the following modified problem

y∆(t) ∈ F1

(

t, y(t)
)

, t ∈ Jm ,(18)

y(t+m) = Im

(

ym−1(t
−

m−1)
)

.(19)

A solution to (18)–(19) is a fixed point of the operator Nm : C
(

[tm−1, tm], R
)

→

p
(

C
(

[tm−1, tm], R
))

defined by

Nm(y)(t) =
{

h ∈ C
(

[tm−1, tm], R
)

: h(t) =

∫ t

tm

g(s)∆s + Im

(

ym−1(t
−

m−1)
)

}

,

where g ∈ S̃1
F,τy. Using the same reasoning as that used for problem (4)–(5) and

(10)–(11) we can conclude to the existence of at least one solution y to (16)–(17).
Denote this solution by ym−1. The solution y of the problem (1)–(3) is then defined
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by

y(t) =































y1(t), t ∈ [t0, t1],
y2(t), t ∈ (t2, t1],
...
ym(t), t ∈ (tm, tm+1],
...

The following theorem gives sufficient conditions to ensure the nonoscillatory of
the solutions of problem (1)–(3).

Theorem 3.2. Let α and β be lower and upper solutions respectively of (1)–(3)
and assume that

(H5) α is eventually positive nondecreasing or β is eventually negative nonincreas-

ing

Then every solution y of (1)–(3) such that y ∈ [α, β] is nonoscillatory.

Proof. Assume α be eventually positive. Thus there exist Tα > t0 such that

α(t) > 0 for all t > Tα .

Hence y(t) > 0 for all t > Tα, and t 6= tk, k = 1, . . . For some k ∈ N and t > tα
we have y(t+k ) = Ik

(

y(tk)
)

. From (H4) we get y(t+k ) > α(t+k ). Since for each

h > 0, α(tk + h) ≥ α(tk) > 0, then Ik

(

y(tk)
)

> 0 for all tk > Tα, k = 1, . . . which
means that y is nonoscillatory. Analogously, if β eventually negative, then there
exists Tβ > t0 such that

y(t) < 0 for all t > Tβ ,

which means that y is nonoscillatory.

The following theorem discusses the oscillatory of the solutions of problem (1)–
(3).

Theorem 3.3. Let α and β be lower and upper solutions respectively of (1)–(3)
and assume that the sequences α(tk) and β(tk), k = 1, . . . are oscillatory then every

solution y of (1)–(3) such that y ∈ [α, β] is oscillatory.

Proof. Suppose on the contrary that y is nonoscillatory solution of (1)–(3). Then
there exists Ty > 0 such that y(t) > 0 for all t > Ty or y(t) < 0 for all t > Ty. In
the case y(t) > 0 for all t > Ty we have β(tk) > 0 for all tk > Ty, k = 1, . . . which
is a contradiction since β(tk) is an oscillatory upper solution. Analogously in the
case y(t) < 0 for all t > Ty we have α(tk) < 0 for all tk > Ty, k = 1, . . . which is
also a contradiction since α(tk) is an oscillatory lower solution.

4. Example

As an application of our results, we consider the following impulsive dynamic
inclusion

y∆(t) ∈ [f1(t, y(t)), f2(t, y(t))] , t ∈ JT := [t0,∞) ∩ T ,(20)

t 6= tk, k = 1, . . . , m, . . . ,
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(21) y(t+k ) = Ik

(

y(t−k )
)

, k = 1, . . . , m, . . . ,

where t → f1(t, y) is lower semicontinuous and t → f2(t, y) is upper semicontinuous
for each y ∈ R. From [18] the multivalued F (t, y) :=

[

f1(t, y), f2(t, y)
]

is upper
semicontinuous with respect to its second variable and with closed, convex values.
Assume that

∫ t

0

f1(s, y)∆s ≤ Ik

(

∫ t

0

f1(s, y)∆s
)

, k ∈ N ,

∫ t

0

f2(s, y)∆s ≥ Ik

(

∫ t

0

f2(s, y)∆s
)

, k ∈ N .

Consider the functions

α(t) :=

∫ t

0

f1(s, y)∆s ,

and

β(t) :=

∫ t

0

f2(s, y)∆s .

Clearly, α and β are lower abd upper solutions for the problem (20)–(21), respec-
tively; that is,

α∆(t) ≤ f1

(

t, α(t)
)

, t ∈ JT , t 6= tk, k = 1, . . . , m, . . . ,

β∆(t) ≥ f2

(

t, β(t)
)

, t ∈ JT , t 6= tk, k = 1, . . . , m, . . . .

Since all conditions of Theorem 3.1 are satisfied, then problem (20)–(21) has at
leat one solution y satisfying

α(t) ≤ y(t) ≤ β(t) for each t ∈ JT .

If f1(t, y) > 0 for each y ∈ R, then α is positive and nondecreasing, thus the
solution y is nonoscillatory. If f2(t, y) < 0 for each y ∈ R, then β is negative and
nonincreasing, thus the solution y is nonoscillatory. If the sequences α(tk), β(tk)
are both oscillatory, then y is oscillatory.
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