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JET ISOMORPHISM FOR CONFORMAL GEOMETRY

C. ROBIN GRAHAM

Abstract. Jet isomorphism theorems for conformal geometry are discussed.
A new proof of the jet isomorphism theorem for odd-dimensional conformal
geometry is outlined, using an ambient realization of the conformal deforma-
tion complex. An infinite order ambient lift for conformal densities in the
case in which harmonic extension is obstructed is described. A jet isomor-
phism theorem for even dimensional conformal geometry is formulated using
the inhomogeneous ambient metrics recently introduced by the author and
K. Hirachi.

Introduction

Local invariants of a metric in Riemannian geometry are quantities expressible
in local coordinates in terms of the metric and its derivatives and which have an
invariance property under changes of coordinates. It is a fundamental fact that
such invariants may be written in terms of the curvature tensor of the metric and
its covariant derivatives. In this form, they can be identified with invariants of the
orthogonal group acting algebraically on the space of possible curvature tensors
and derivatives. We refer to the result asserting that the space of infinite order jets
of metrics modulo coordinate changes is isomorphic to a space of curvature tensors
and derivatives modulo the orthogonal group as a jet isomorphism theorem. Such
results recast the study and classification of local geometric invariants in purely
algebraic terms, in which form the methods of invariant theory and representation
theory can be brought to bear.

The goal of this paper is to describe analogous jet isomorphism theorems in the
context of conformal geometry. In conformal geometry one is given a metric only
up to scale. The results in the conformal case provide a tensorial description of the
space of jets of metrics modulo changes of coordinates and conformal factor. The
motion group of the flat model is the conformal groupG = O(n+1, 1)/{±I} acting
projectively on the sphere Sn and the role of the orthogonal group in Riemannian
geometry is played by the parabolic subgroup P ⊂ G preserving a null line. Since
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P is a matrix group in n + 2 dimensions, its natural tensor representations are
on tensor powers of Rn+2. Thus one expects the appearance of tensors in n + 2
dimensions in conformal jet isomorphism theorems.

When n is odd, the ambient metric construction of [9] associates to a conformal
Riemannian manifold (M, [g]) of dimension n an infinite order jet of a Lorentzian

metric g̃ along a hypersurface in a space G̃ of dimension n + 2, uniquely deter-
mined up to diffeomorphism. The tensors in the odd-dimensional conformal jet
isomorphism theorem are the curvature tensor and its covariant derivatives for the
ambient metric. They satisfy extra identities beyond those satisfied by the deriva-
tives of curvature of a general metric as a consequence of the Ricci-flatness and
homogeneity conditions satisfied by an ambient metric. The elaboration of these
identities and a formulation and proof of a conformal jet isomorphism theorem in
odd dimensions are given in [10]. The algebra of the proof is more involved than
in the Riemannian case because one is comparing tensors in different dimensions.

In even dimensions, the ambient metric construction is obstructed at finite
order, so this gives only a finite order version of a jet isomorphism theorem. An
extension of the ambient metric construction to all orders in even dimensions has
recently been described in [14]. Based on this, joint work in preparation with
K. Hirachi formulates and proves an infinite order version of the jet isomorphism
theorem in even dimensions. The method of proof of the jet isomorphism theorem
in this work is different than that used in [10]; it relies on an ambient lift of the
conformal deformation complex on G/P . This same method also can be used to
give another proof of the odd-dimensional jet isomorphism theorem. This proof in
the odd-dimensional case will be sketched in §2 below and the details will be the
subject of [15].

In the even-dimensional case, an ambient metric depends not only on the con-
formal manifold (M, [g]), but also on the choice of a trace-free symmetric 2-tensor
called the ambiguity tensor. Likewise, the even-dimensional jet isomorphism the-
orem provides a tensorial description of an enlargement of the space of jets of
metrics by the space of jets of the ambiguity.

The results concerning the ambient lift of the deformation complex are perhaps
of independent interest. In odd dimensions, all the spaces occuring in the com-
plex except for the next to last have isomorphic realizations in terms of infinite
order jets along a hypersurface of tensors defined on the ambient space, and the
maps in the complex simplify when written in these realizations. The situation in
even dimensions is more complicated owing to the existence of ambiguities in the
lifts, but it is nonetheless possible to prove results concerning ambient realization
including ambiguities which can be used to prove the jet isomorphism theorem in
even dimensions.

In §1, we first recall the jet isomorphism theorem for pseudo-Riemannian geom-
etry. We then show how the space of jets of metrics modulo changes of coordinates
and conformal factor has a natural action of P . In both cases, our presentation
is in terms of a quotient of the space of jets of all metrics as in [15] rather than
in terms of metrics in geodesic normal coordinates as in [10]. Next we formulate
the odd-dimensional conformal jet isomorphism theorem. We also briefly review
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the ambient metric construction and show how in odd dimensions it gives rise to
the map from jets of metrics to the algebraic space of ambient curvature tensors
and their covariant derivatives. In §2, we begin by introducing the conformal
deformation complex. We then formulate Theorem 2.1, which gives the ambient
realization in the unobstructed cases for sections of homogeneous bundles on G/P
with symmetries defined by a Young diagram with no more than two columns.
This generalizes to tensors results of [6] for scalars. We sketch the proof for scalars
and 1-forms. A consequence of Theorem 2.1 is the ambient realization of the
deformation complex for n odd. We conclude §2 by sketching the proof of the
odd-dimensional jet isomorphism theorem, using this ambient realization and the
exactness of the deformation complex on jets. In §3, we first discuss the ambi-
ent lift in the simplest obstructed case: that of densities whose weight is such
that smooth harmonic extension is obstructed. We indicate how an infinite order
harmonic extension involving a log term can always be found, albeit with an ambi-
guity, and how to reformulate the harmonic extension in terms of the smooth part.
These considerations result in Theorem 3.3, the substitute ambient lift theorem
for scalars in the obstructed cases. The discussion of the scalar case illustrates
the phenomena which occur for jets of conformal structures in even dimensions.
We next formulate the conformal jet isomorphism theorem in even dimensions.
Then we outline the extension of the ambient metric construction to all orders
and indicate by analogy with §1 how it gives rise to the map from jets of metrics
and ambiguity tensors to ambient curvature tensors and briefly indicate what is
involved in the proof of the even-dimensional jet isomorphism theorem.

A jet isomorphism theorem for a parabolic geometry was first considered in [8],
and the entire perspective explicated here owes much to this pioneering work. The
idea of incorporating an ambiguity into a jet isomorphism theorem was introduced
in [16]. A different approach for conformal geometry using tractor calculus rather
than the ambient metric to construct curvature tensors is given in [12].

The lectures on which this paper is based were delivered at the 2007 Winter
School ’Geometry and Physics’ at Srńı. The author is grateful to the organizing
committee, particularly to Vladimir Souc̆ek, for the opportunity to participate in
this school.

1. Jet isomorphism, odd dimensions

We begin by reviewing the jet isomorphism theorem for pseudo-Riemannian
geometry. Fix a signature (p, q), p + q = n ≥ 2, and a reference quadratic form
hij on Rn of signature (p, q) (one typically takes hij = δij in the positive definite
case). By a change of coordinates, any metric of signature (p, q) can be made
to equal hij at the origin. It is convenient to include this normalization in our
definition. So we set

M = {Jets of metrics gij such that gij(0) = hij} .
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Here jets means infinite order jets of smooth metrics at the origin in Rn. We can
identify an element of M with the list (∂αgij(0))|α|≥1. Define also

Diff = {Jets of local diffeomorphisms ϕ of R
n satisfying ϕ(0) = 0} .

Then Diff is a group under composition. Since we have normalized our metric at
the origin, we need to restrict to diffeomorphisms which preserve the normalization.
So we define the subgroup ODiff ⊂ Diff by

ODiff = {ϕ ∈ Diff : ϕ′(0) ∈ O(h)}

and the normal subgroup Diff0 ⊂ ODiff by

Diff0 = {ϕ : ϕ′(0) = I} .

Then ODiff acts on M on the left by ϕ.g = (ϕ−1)∗g. We can view O(h) as the
subgroup of ODiff consisting of linear transformations. Then O(h) is the isotropy
group in ODiff of the flat metric h ∈ M, and ODiff = O(h) · Diff0.

Since Diff0 is a normal subgroup of ODiff, there is an induced action of O(h)
on the orbit space M/Diff0 (we write the quotient on the right even though this
is a left action). Local invariants of pseudo-Riemannian metrics can be thought of
as functions on M which are invariant under the action of Diff0 and equivariant
under O(h); such a function determines an assignment to each metric on an arbi-
trary manifold of a section of the associated bundle by evaluation at each point
in local coordinates. The jet isomorphism theorem for pseudo-Riemannian geom-
etry provides an O(h)-equivariant description of the space M/Diff0 in terms of
curvature tensors and their covariant derivatives.

Definition 1.1. The space R ⊂
∏∞

r=0

∧2
Rn∗ ⊗

∧2
Rn∗ ⊗

⊗r
Rn∗ is the set of

lists (R(0), R(1), R(2), . . . ) with R(r) ∈
∧2

Rn∗ ⊗
∧2

Rn∗ ⊗
⊗r

Rn∗, such that:

(1) Ri[jkl],m1...mr
= 0

(2) Rij[kl,m1 ]m2...mr
= 0

(3) Rijkl,m1 ...[ms−1ms]...mr
= Q

(s)
ijklm1...mr

(R).

Here the comma after the first four indices is just a marker separating these indices.

Q
(s)
ijklm1···mr

(R) denotes the quadratic expression in the R(r′) with r′ ≤ r−2 which
one obtains by covariantly differentiating the usual Ricci identity for commuting
covariant derivatives, expanding the differentiations using the Leibnitz rule, and
then setting equal to h the metric which contracts the two factors in each term.
We have suppressed the (r) on the R(r) since the value of r is evident from the list
of indices.

The action of O(h) on Rn induces actions on the spaces of tensors in the usual

way and therefore also on
∏∞

r=0

∧2
R

n∗ ⊗
∧2

R
n∗ ⊗

⊗r
R

n∗. Since R is an O(h)-
invariant subset of this product, R has a natural O(h) action.

Evaluation of the covariant derivatives of curvature of a metric at the origin
induces a polynomial map M → R. Since the covariant derivatives of curvature
are tensors, it follows that this map passes to the quotient, and so defines a map
M/Diff0 → R which is O(h)-equivariant. The pseudo-Riemannian jet isomor-
phism theorem is then the following.
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Theorem 1.2. The map M/Diff0 → R is an O(h)-equivariant bijection with

polynomial inverse.

The proof proceeds via the introduction of geodesic normal coordinates. These
provide a slice for the action of Diff0 on M: each orbit in M/Diff0 is represented by
a unique jet of a metric for which the background coordinates on Rn are geodesic
normal coordinates to infinite order at the origin. A linearization argument reduces
the theorem to showing that the linearized map restricted to infinitesimal jets
of metrics in normal coordinates is a vector space isomorphism. The linearized
map can be explicitly identified as the direct sum over r of intertwining maps
between two equivalent realizations corresponding to different Young projectors of
irreducible representations of GL(n,R). See [7] for the analysis of the linearized
map in a similar context.

This jet isomorphism theorem is fundamental in consideration of local pseudo-
Riemannian invariants. It shows that such invariants correspond exactly to O(h)-
invariants of R. Weyl’s classical invariant theory for O(h) completely describes
such invariants.

Next we pass to the conformal analogue. We begin with a discussion of the
conformal group and its parabolic subgroup P which plays the role in conformal
geometry of the group O(h) in pseudo-Riemannian geometry. In the conformal
case we assume that n ≥ 3.

Define a quadratic form h̃ of signature (p+ 1, q + 1) on Rn+2 by

h̃IJ =




0 0 1
0 hij 0
1 0 0


 .

On Rn+2 we use as coordinates xI = (x0, xi, x∞). The null cone of h̃ is

N = {x ∈ R
n+2 \ {0} : h̃IJx

IxJ = 0} ,

whose projectivization is the quadric

Q = {[x] ∈ P
n+1 : x ∈ N} ,

with projection π : N → Q. If x ∈ N , the metric h̃IJdx
IdxJ on Rn+2 is degenerate

when restricted to TxN : h̃(X,Y ) = 0 for all Y ∈ TxN , where X = xI∂I is the

Euler field. Consequently, h̃|TxN determines a nondegenerate quadratic form on
TxN/ spanX ∼= Tπ(x)Q. As x varies over a line in N , the resulting quadratic
forms on Tπ(x)Q define a metric up to scale, i.e. a conformal class of metrics on Q
of signature (p, q).

The conformal group is G = O(h̃)/{±I}. The linear action of O(h̃) on Rn+2

preserves N , so there is an induced action of G on Q which is transitive. Since

O(h̃) acts by isometries of the metric h̃IJdx
IdxJ on Rn+2, the induced action of

G on Q is by conformal transformations. Define the subgroup P ⊂ G to be the
isotropy group of [e0] ∈ Q, so that Q = G/P . Then P can be identified with

the subgroup P = {p ∈ O(h̃) : pe0 = ae0, a > 0}. The first column of p is ae0;
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combining this with the fact that p ∈ O(h̃), one finds that p ∈ P is of the form

(1.1) p =



a bj c
0 mi

j di

0 0 a−1


 ,

where

a > 0, bj ∈ R
n∗, mi

j ∈ O(h) and c = −
1

2a
bjb

j , di = −
1

a
mijbj .

Lower case indices are raised and lowered using h. The parameters a > 0, bj ∈ Rn∗

and mi
j ∈ O(h) are free, so that P can be written as the product of its subgroups:

P = R+ · Rn ·O(h) .

Since h̃IJx
IxJ = 2x0x∞ + |x|2, where |x|2 = hijx

ixj , the intersection of Q with
the cell {[xI ] : x0 6= 0} can be identified with Rn via the inclusion i : Rn → Q
defined by

i(x) =




1
x

− 1
2 |x|

2


 .

In this identification, the conformal structure on Q is represented by the flat metric
hijdx

idxj on Rn. For p ∈ P , we will denote by ϕp the corresponding conformal
transformation on Rn, and by Ωp the conformal factor, so that

ϕ∗
ph = Ω2

p h .

These are given explicitly by:

(
ϕp(x)

)i
=

mi
jx

j − 1
2 |x|

2di

a+ bjxj − 1
2c|x|

2
, Ωp =

(
a+ bjx

j − 1
2c|x|

2
)−1

.

Observe that

(1.2) ϕ′
p(0) = a−1mi

j , Ωp(0) = a−1 , Ω′
p(0) = −a−2bj .

We now consider changing the metric by rescaling as well as by diffeomorphism.
Set

C∞
+ = {Jets at 0 ∈ R

n of smooth positive functions Ω} .

Then C∞
+ is a group under multiplication. Consider the semidirect product group

Diff ⋉ C∞
+ , where the product is defined so that g → (ϕ−1)∗(Ω2g) is an action.

This product is given explicitly by:

(ϕ1,Ω1) · (ϕ2,Ω2) =
(
ϕ1 ◦ ϕ2, (Ω1 ◦ ϕ2)Ω2

)
.

As before, we need to preserve the normalization gij(0) = hij . So we define the
subgroup CDiff ⊂ Diff ⋉ C∞

+ by

CDiff = {(ϕ,Ω) : (Ω−1ϕ′)(0) ∈ O(h)}

and we set

CDiff0 = {(ϕ,Ω) : ϕ′(0) = I , Ω(0) = 1 , dΩ(0) = 0} ⊂ CDiff .
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Then CDiff acts on M by: (ϕ,Ω).g = (ϕ−1)∗(Ω2g). We can view P ⊂ CDiff by
p 7→ (ϕp,Ωp). Then P is the isotropy group of the flat metric h ∈ M under the
CDiff action.

If (ϕ,Ω) ∈ CDiff, (1.2) shows that there is a unique p ∈ P such that to second
order we have ϕ = ϕp and Ω = Ωp. This defines a homomorphism CDiff → P with
kernel CDiff0. Thus CDiff0 is a normal subgroup of CDiff and CDiff = P ·CDiff0.
Moreover, M/CDiff0 has a natural left P -action.

Just as in the pseudo-Riemannian case, local conformal invariants correspond
precisely to P -invariants of M/CDiff0. The conformal jet isomorphism theorem
provides a tensorial description of M/CDiff0. Since P ⊂ GL(n+ 2,R), P acts on
tensor powers of Rn+2, not Rn. Thus one anticipates a description as a P -space
in terms of tensors in n+ 2 dimensions.

A significant difference from the pseudo-Riemannian case which will appear
below is the fact that the structure of M/CDiff0 depends in a fundamental way
on whether n is even or odd. This is not evident at a superficial level. The
tangent space T (M/CDiff0) is isomorphic to the quotient of a particular dual
generalized Verma module, the jets of trace-free symmetric 2-tensors of weight 2,
by the image of the conformal Killing operator acting on jets of vector fields. (See
Lemma 2.3 below.) These spaces have natural structures as (g, P )-modules, where
g denotes the Lie algebra of G. As a (g, P )-module, this quotient is irreducible
if n is odd, but has a unique proper (g, P )-submodule with irreducible quotient
if n is even. Geometrically, the distinction is exhibited by the existence of the
ambient obstruction tensor, a conformally invariant natural tensor which exists
only in even dimensions.

Next we formulate the jet isomorphism theorem for conformal geometry for n
odd.

Definition 1.3. Let n ≥ 3 be odd. The space R̃ ⊂
∏∞

r=0

∧2
Rn+2∗⊗

∧2
Rn+2∗⊗⊗r

Rn+2∗ is the set of lists
(
R̃(0), R̃(1), R̃(2), . . .

)
with R̃(r) ∈

∧2
Rn+2∗⊗

∧2
Rn+2∗⊗⊗r

Rn+2∗, such that:

(1) R̃I[JKL],M1...Mr
= 0

(2) R̃IJ[KL,M1]M2...Mr
= 0

(3) R̃IJKL,M1...[Ms−1Ms]...Mr
= Q̃

(s)
IJKLM1...Mr

(R̃)

(4) h̃IKR̃IJKL,M1...Mr
= 0

(5) R̃IJK0,M1...Mr
= −

∑r
s=1 R̃IJKMs,M1...dMs...Mr

.

Here Q̃
(s)
IJKLM1...Mr

(R̃) is the same quadratic expression in the R̃(r′), r′ ≤ r − 2,

as in Definition 1.1, except that now the tensors are the R̃(r′) instead of the R(r′)

and the contractions are taken with respect to h̃ instead of h. Condition (5) in

case r = 0 is interpreted as R̃IJK0 = 0.

Conditions (1)–(4) are invariant under all of O(h̃). Condition (5) is certainly

not invariant under O(h̃), but it is almost invariant under P . Recall that p ∈ P
given by (1.1) satisfies pe0 = ae0, a > 0. So (5) is invariant under P modulo the
rescaling of e0. To correct the scaling, for w ∈ C define the character σw : P → C
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by σw(p) = a−w. Then if we define the P action by viewing

(1.3) R̃ ⊂
∞∏

r=0

∧2
Rn+2∗ ⊗

∧2
Rn+2∗ ⊗

⊗r
Rn+2∗ ⊗ σ−2−r ,

then the scaling of the R̃(r) cancels the scaling of e0 and condition (5) becomes

invariant under P . Thus R̃ becomes a P -space. (In the factor σ−2−r, the −2 could
be replaced by any other number and condition (5) would still be P -invariant. The
choice of −2 is necessary for the map c below to be P -equivariant.) The conformal
jet isomorphism theorem for n odd is then the following.

Theorem 1.4. If n is odd, then there is a P -equivariant polynomial bijection

c : M/CDiff0 → R̃ with polynomial inverse.

If n is even, the analogous statement holds only for truncated jets: there is a
bijection from (n − 1)-jets of metrics mod CDiff0 to a correspondingly truncated

version of the space R̃. An infinite order extension of this result for n even will
be discussed in §3.

The jet isomorphism theorem reduces the study of conformal invariants to the

study of P -invariants of R̃. This is important because algebraic tensorial opera-
tions can be utilized to construct and study conformal invariants.

Next we discuss the origin of the space R̃ and the construction of the map c. As
described above, the conformal geometry of the quadric Q naturally arises from

the metric h̃IJdx
IdxJ on Rn+2. In [9], a version of the metric h̃ for a general

conformal manifold, called the ambient metric, was introduced. The tensors R̃(r)

arise as the iterated covariant derivatives of the curvature tensor of the ambient
metric.

Suppose that M is a smooth manifold with a conformal class [g] of metrics of
signature (p, q). The metric bundle G of [g] is G =

{
(x, t2g(x)) : x ∈M, t > 0

}
⊂⊙2

T ∗M , where g is a metric in the conformal class. The fiber variable t on G is
associated to the metric g and provides an identification G ∼= R+ ×M . There is a
tautological symmetric 2-tensor g0 on G defined by g0(Y, Z) = g(π∗Y, π∗Z), where

π : G →M is the projection and Y , Z are tangent vectors to G at (x, g) ∈ G. The

family of dilations δs : G → G defined by δs(x, g) = (x, s2g) defines an R+ action

on G, and one has δ∗sg0 = s2g0. We denote by T = d
dsδs|s=1 the vector field on G

which is the infinitesimal generator of the dilations δs. Note that g0 is degenerate:
g0(T, Y ) = 0 for all Y ∈ TG. In the case that (M, [g]) is the quadric Q with
its conformal structure defined above, G can be identified with N/{±I}, g0 with

h̃|TN , and T with X .

The ambient space is defined to be G̃ = G × R; the coordinate in the R factor

is typically written ρ. The dilations δs extend to G̃ acting on the G factor and

we denote also by T the infinitesimal generator of the δs on G̃. We embed G into

G̃ by ι : z → (z, 0) for z ∈ G, and we identify G with its image under ι. We say

that a subset of G̃ is homogeneous if it is invariant under the δs for all s > 0. We
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say that a map between homogeneous subsets of G̃ is homogeneous if it commutes
with the δs.

Definition 1.5. Let n be odd. An ambient metric g̃ for (M, [g]) is a smooth
metric of signature (p + 1, q + 1) on a homogeneous neighborhood of G in G × R

satisfying:

(1) δ∗s g̃ = s2g̃
(2) ι∗g̃ = g0

(3) Ric(g̃) = 0 to infinite order along G.

The main result concerning existence and uniqueness of the ambient metric for n
odd is:

Theorem 1.6. If n is odd, there exists an ambient metric for (M, [g]). It is unique

up to:

(a) Pullback by a homogeneous diffeomorphism Φ satisfying Φ|G = I, and

(b) Addition of a tensor homogeneous of degree 2 which vanishes to infinite

order along G.

The proof proceeds by the introduction of a gauge normalization to break the
diffeomorphism invariance together with a formal power series analysis of the equa-
tions Ric(g̃) = 0. See [10].

When n ≥ 4 is even, there is an obstruction at order n/2 to existence of a
metric satisfying (1)–(3), which is a conformally invariant natural tensor called
the ambient obstruction tensor. However, there is a solution up to this order,
again unique up to homogeneous diffeomorphism and up to a term vanishing to
order n/2.

The solution has an extra geometric property: for each p ∈ G̃, the parametrized
dilation orbit s→ δsp is a geodesic for g̃ (to infinite order along G).

The diffeomorphism ambiguity in g̃ can be fixed by the choice of a metric g in
the conformal class. As described above, the choice of such a metric determines

an identification G ∼= R+ ×M , and therefore an identification G̃ ∼= R+ ×M × R.

Definition 1.7. A metric g̃ satisfying conditions (1) and (2) in Definition 1.5 is

said to be in normal form relative to g if in the identification G̃ ∼= R+ ×M × R

induced by g, one has

(1) g̃ = 2t dt dρ+ g0 at ρ = 0, and
(2) The curve ρ→ (t, x, ρ) is a geodesic for g̃ for each choice of (t, x) ∈ R+×M .

If n is odd, an ambient metric g̃ can always be found which is in normal form
relative to g, and it is uniquely determined up to O(ρ∞). Each term in the Taylor
expansion at ρ = 0 of such a g̃ in normal form relative to g is given by a polynomial
expression in g−1 and in derivatives of g.

An analogue in conformal geometry of the curvature tensor and its covariant
derivatives for a pseudo-Riemannian metric are the restrictions to G of the cur-
vature tensor and its covariant derivatives of the ambient metric. These can be
interpreted as sections of weighted tensor powers of the cotractor bundle associ-
ated to the conformal structure; see [4], [2] and [10]. For our purposes, the map



398 C. ROBIN GRAHAM

c in Theorem 1.4 can be defined directly as follows. For g ∈ M, choose a metric
also denoted g defined near 0 ∈ Rn with the prescribed Taylor expansion. There is
an ambient metric g̃ in normal form relative to g, uniquely determined to infinite

order in ρ. Define the tensors R̃(r) in Theorem 1.4 to be the iterated covariant
derivatives of the curvature tensor of g̃ evaluated at t = 1, x = 0 and ρ = 0.
It can be shown that these covariant derivatives satisfy the relations (1)–(5) in

Definition 1.3 which define R̃. Relations (1)–(3) hold for the covariant derivatives
of curvature of any metric. Relation (4) follows from the fact that g̃ is Ricci-flat
to infinite order, and (5) is a consequence of the homogeneity of g̃ and the fact
that the dilation orbits are geodesics to infinite order. Now using the fact that
the ambient curvature tensors are tensors on the ambient space, it can be shown

that this map M → R̃ passes to a map c : M/CDiff0 → R̃ which is P -equivariant.
Details can be found in [10].

The invertibility of c in Theorem 1.4 is also proved in [10]. As in the pseudo-
Riemannian case, one first constructs a slice for the CDiff0 action, using geodesic
normal coordinates and a “conformal normal form” which normalizes away the
freedom of the derivatives of the conformal factor of order two or more. (Actually,
the formulation of the jet isomorphism theorem in [10] is in terms of this slice
rather than in terms of the space M/CDiff0.) A linearization argument reduces
the matter to showing the invertibility of the linearization dc of c at the flat metric
h. Then the main part of the proof consists of an algebraic study of the relations
obtained by linearizing (1)–(5) (they are all already linear except for (4)) and a
direct analysis of dc. A more conceptual proof of the invertibility of the linearized
map will be outlined in the next section as an application of the results on the
ambient realization of the deformation complex.

2. Ambient lift of deformation complex

In this section we introduce the conformal deformation complex and indicate
how it may be realized ambiently in odd dimensions. We then sketch a proof of the
invertibility of the map c in Theorem 1.4 using the exactness of the deformation
complex on jets together with this ambient realization. Details will appear in [15].

Recall from the previous section that the conformal group G = O(h̃)/{±I}
acts conformally on the quadric Q with isotropy group P so that Q = G/P , and
that there is an embedding i : Rn → Q as an open dense subset on which the
conformal structure is represented by the flat metric h. To each finite-dimensional
representation of P is associated a homogeneous vector bundle on Q = G/P and
therefore also on Rn →֒ Q. Familiar examples include:

• Dw, w ∈ C: the bundle of conformal densities of weight w, induced by σw

• TQ: the tangent bundle, induced by p 7→ a−1m
•

∧r
, 0 ≤ r ≤ n: the bundle of r-forms (the r-th exterior power of the

cotangent bundle).
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Set
∧r

(w) =
∧r ⊗Dw. We denote by E(w), Er(w) the sheaf of germs of smooth

sections of Dw,
∧r

(w), resp., and by EU (w), Er
U (w) the space of sections on an

open set U ⊂ Q.
For 0 ≤ s ≤ r ≤ n, define

∧r,s
to be the homogeneous bundle on Q of covariant

tensors with Young symmetry given by the Young diagram

(2.1) r









s

...
...

...

Explicitly,
∧r,s

is the subbundle of
∧r ⊗

∧s
consisting of those tensors

fi1...irj1...js
= f[i1...ir ][j1...js] ∈

∧r ⊗
∧s

which satisfy

f[i1...irj1]j2...js
= 0 .

Note that
∧r,0

=
∧r

and that
∧1,1

=
⊙2

is the bundle of symmetric 2-tensors. We
denote by

∧r,s
0 ⊂

∧r,s the subbundle of tensors which are trace-free with respect to
a metric in the conformal class, by

∧r,s(w),
∧r,s

0 (w) the respective tensor products
with Dw, and by Er,s(w), Er,s

0 (w) the sheaves of germs of sections. Each of the
bundles

∧r,s
0 (w) is an irreducible homogeneous bundle; i.e., it is induced by an

irreducible representation of P .
We will represent sections of

∧r,s
(w) in either of two ways. On Rn →֒ Q, we

can use h to trivialize the density bundle and can thereby identify a section with
a tensor field u on an open subset of Rn having the symmetries indicated above.
Alternately, we can view a section as a homogeneous tensor field f on an open
subset of N . Define the dilations δλ : Rn+2 → Rn+2 by δλ(x) = λx for λ ∈ R\{0}.
Then for U ⊂ Q open, there is a 1-1 correspondence between Er,s

U (w) and the set

of smooth sections f of
⊗r+s T ∗N on π−1(U) which have the symmetries above

and which satisfy

(2.2) δ∗λf = |λ|wf , X f = 0 .

Here the condition X f = 0 is interpreted to mean that the contraction of X into
every index of f vanishes.

We now work on Rn, viewed as a subset of Q, and use its usual coordinates and
the flat metric h. Define differential operators

d1 : Er,s → Er+1,s

d2 : Er,s → E
(∧r ⊗

∧s+1
)

δ1 : Er,s → E
(∧r−1 ⊗

∧s
)

δ2 : Er,s → Er,s−1

(2.3)
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by:

(d1u)i0i1...irj1...js
= ∂[i0ui1...ir ]j1...js

(d2u)i1...irj0...js
= ∂[j0u|i1...ir |j1...js]

(δ1u)i1...ir−1j1...js
= −∂kui1...ir−1kj1...js

(δ2u)i1...irj1...js−1
= −∂kui1...irj1...js−1k .

Here the |i1 . . . ir| indicates indices excluded from the skew-symmetrization. The
derivatives are coordinate derivatives on Rn and the contractions are with respect
to h. In making this definition, we momentarily ignore the weights and the struc-
ture as homogeneous bundles and view these simply as differential operators on
tensor fields.

For n ≥ 4, the deformation complex on Rn is:

0 → g → E1(2)
D0−→ E1,1

0 (2)
D1−→ E2,2

0 (2)
D2−→ E3,2

0 (2)

→ · · · → En−2,2
0 (2)

Dn−2

−→ En−1,1
0

Dn−1

−→ En−1(−2) → 0 ,
(2.4)

where
D0 = tf Sym d2

D1 = tf d1d2

Dr = tf d1 r = 2, 3, . . . , n− 3

Dn−2 = δ2d1

Dn−1 = δ2 .

Here tf denotes the trace-free part with respect to h and Sym denotes symmetriza-
tion over the two indices. When n = 4, the E2,2

0 (2) on the first line and the

En−2,2
0 (2) on the second line are the same space, so D2 = δ2d1 maps into E3,1

0

and the space E3,2
0 (2) does not occur. In higher dimensions, the spaces between

E2,2
0 (2) and En−1,1

0 are the Er,2
0 (2) for 3 ≤ r ≤ n− 2. The Dr are the expressions

on Rn of G-equivariant differential operators between the indicated homogeneous
vector bundles on G/P , or equivalently between the sheaves of their germs of local

sections. The space g is the locally constant sheaf. The bundle
∧1

(2) is isomor-
phic to the tangent bundle by raising the index, and in this realization the map
g → E1(2) is the infinitesimal G-action.

The deformation complex is a complex, i.e. the composition of two successive
operators vanishes. It can be thought of as analogous to the deRham complex;
it has the same length as the deRham complex. The operators D1 and Dn−2

are second order; all other Dr are first order. The deformation complex was con-
structed explicitly “by hand” by Gasqui-Goldschmidt in [11] on a general confor-
mally flat manifold. In the homogeneous case it is a particular case of a generalized
Bernstein-Gelfand-Gelfand complex (see [17] for the introduction of gBGG com-
plexes in the algebraic setting). In the 3-dimensional case the deformation complex
takes a special form:

(2.5) 0 → g → E1(2)
D0−→ E1,1

0 (2)
D1−→ E2,1

0
D2−→ E2(−2) → 0,
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where D0 is as above, D2 = δ2, and D1 = tf δ2d1d2 is third order.
The main fact that we will need about the deformation complex is that it is

exact on jets; i.e., if an infinite-order jet of a section of one of the bundles at a
point is annihilated by the corresponding operator as a jet, then it is in the image
of the previous operator acting on jets at that point. This fact is proved in [11]
and is also contained in the theory of the generalized BGG complexes.

This complex is called the deformation complex because its first terms de-
scribe the infinitesimal deformation of conformal structures. The first operator
D0 corresponds to the conformal Killing operator tf LV h, where L denotes the
Lie derivative and V a vector field, which is obtained by linearizing the action of
diffeomorphisms on conformal structures. Its kernel g consists of the infinitesimal
conformal transformations. For n ≥ 4, the operator D1 is the linearization of the
map which takes the Weyl tensor of a metric, and D2 is the linearization of the
Bianchi identity satisfied by such a Weyl tensor. For n = 3, D1 is the linearization
of the Cotton tensor, and D2 the linearization of the “Bianchi identity” satisfied
by a Cotton tensor of a metric.

We wish to give an alternate description of the deformation complex for n odd
in which the spaces and maps are defined on the ambient space. Other descriptions
and curved versions are contained in [5] and [3] (in much greater generality), and
in [13]. We begin by introducing the ambient versions of the spaces appearing in
the complex.

For 0 ≤ s ≤ r, denote by
∧̃

r,s the vector bundle of tensors of rank r + s on

Rn+2 having the Young symmetry (2.1) and by
∧̃r,s

0 the subbundle of those tensors

which are trace-free with respect to h̃. We write d̃1, d̃2, δ̃1, δ̃2 for the operators on

Rn+2 analogous to (2.3) and ∆̃ = h̃IJ∂2
IJ for the Laplacian with respect to h̃. ∆̃

acts on sections of
∧̃

r,s componentwise with respect to the standard basis. Recall
that X = xI∂I denotes the Euler field on Rn+2, whose components are thus given
by XI = xI .

Let π : Rn+2 \ {0} → Pn+1 be the projection. Let 0 ≤ s ≤ r and w ∈ C. For

V ⊂ Pn+1 open, define Ẽr,s
V (w) to be the space of sections f̃ of

∧̃
r,s on π−1(V)

which satisfy δ∗λf̃ = |λ|wf̃ for λ ∈ R \ {0}, and Ẽr,s
0,V(w) to be the subspace of

trace-free sections. The assignments V → Ẽr,s
V (w), Ẽr,s

0,V(w) define presheaves on

Pn+1 whose associated sheaves we denote by Ẽr,s(w), Ẽr,s
0 (w), resp. Observe that

pullback defines a natural action of O(h̃) on the total space of these sheaves and

±I acts by the identity, so that G = O(h̃)/{±I} also acts.

Recall that N is the null cone of h̃ and that π : N → Q. If U ⊂ Q is open, define

Hr,s
U (w) to be the space of infinite-order jets along π−1(U) of sections f̃ ∈ Ẽr,s

0,V(w)

for some V ⊂ Pn+1 open, U ⊂ V , which satisfy the following equations formally to
infinite order along π−1(U):

(2.6) ∆̃f̃ = 0 , δ̃1f̃ = 0 , X f̃ = 0 .

Here againX f̃ = 0 is interpreted to mean that the contraction ofX into any index

of f̃ vanishes. By the symmetries of f̃ , this is equivalent to XI1 f̃I1···IrJ1···Js
= 0.
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Similarly, δ̃1f̃ = 0 implies δ̃2f̃ = 0. The assignment U → Hr,s
U (w) defines a

presheaf on Q, whose associated sheaf we denote by Hr,s(w). Since the equations

(2.6) are invariant under O(h̃), the conformal group G acts on Hr,s(w) covering
the translations of G on Q = G/P . Thus Hr,s(w) is a “homogeneous sheaf” on
G/P in the same sense as in the definition of a homogeneous vector bundle.

The ambient realization for Er,s
0 (w) in the unobstructed cases is given by the

following theorem.

Theorem 2.1. Suppose n ≥ 3. Let 0 ≤ s ≤ r ≤ n and w ∈ C.

• If r > s = 0, assume that w 6= 2r − n.
• If s > 0, assume that w 6= r + 2s− n− 1, 2r + s− n.

If w + n/2 − r − s /∈ N, then

Er,s
0 (w) ∼= Hr,s(w)

G-equivariantly as sheaves on Q.

The disallowed values correspond to the existence of certain particular G-
invariant differential operators which act on Er,s

0 (w). In particular, if the dual
generalized Verma module associated to Er,s

0 (w) is irreducible as a (g, P )-module,
then Theorem 2.1 applies to Er,s

0 (w). It is important to note, as we will see,
that not all G-invariant differential operators obstruct the isomorphism asserted
by Theorem 2.1. Otherwise stated, Theorem 2.1 applies to many homogeneous
bundles Er,s

0 (w) for which the associated dual Verma modules are not irreducible
as (g, P )-modules.

The map in one direction in Theorem 2.1 is evident, and exists for all values of
w, r and s. For U ⊂ Q open, view elements of Er,s

0,U (w) as covariant tensor fields

f on π−1(U) ⊂ N satisfying (2.2) as described above. Let ι : N → Rn+2 denote

the inclusion. If f̃ ∈ Ẽr,s
0,V(w) for some V ⊂ Pn+1 open with U ⊂ V , and f̃ satisfies

(X f̃)|π−1(U) = 0, it is clear that f = ι∗f̃ satisfies (2.2). One checks easily that f
also satisfies the trace-free condition with respect to h so that f defines an element
of Er,s

0,U (w). Passing to jets along π−1(U) and restricting consideration to Hr,s(w)
gives a G-equivariant map

ι∗ : Hr,s(w) → Er,s
0 (w) .

The content of Theorem 2.1 is that under the stated restrictions on the parameters,
this map is a isomorphism. That is, each element of Er,s

0,U (w) has a unique extension

(ambient lift) as an element of Hr,s
U (w).

There are two main steps in the proof of Theorem 2.1. The first is called the

“initial lift”, and corresponds to defining on π−1(U) the components of f̃ transverse

to N to obtain a section of
∧̃r,s

0 |π−1(U) homogeneous of degree w. The ideas in
this step go back to Tracy Thomas for special cases of the symmetries including
differential forms; he called the process of defining the transverse components
“completeing” the tensor. This step is closely related to what are nowadays called
differential splittings, about which there is a substantial literature. This first step
leads to the excluded values of the parameters indicated in the bullets above.
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The second step involves “harmonic” extension of the completed tensor to higher
order off N in such a way as to make the equations (2.6) as well as the trace-free
condition hold to infinite order. The condition w + n/2 − r − s /∈ N arises in this
second step. Part of the difficulty of the proof, especially for more complicated
symmetries, is making sure that the steps can be carried out consistently so that
all the required conditions hold to all orders.

To give an idea how this works, we sketch the details for the scalar case r = s = 0
and the case r = 1, s = 0 of 1-forms. The scalar case is studied in detail in [6].
I am grateful to M. Eastwood for providing the argument below in the case of
1-forms.

In the case r = s = 0, Theorem 2.1 asserts that E(w) ∼= H(w) if w + n/2 /∈ N,
where E(w) denotes the sheaf of germs of densities of weight w on Q and H(w) de-
notes the sheaf of jets along N of homogeneous functions of degree w which satisfy

∆̃f̃ = 0 to infinite order. Set Q = h̃IJx
IxJ ; then this is the same as showing that

given f homogeneous of degree w on π−1(U) ⊂ N , there exists a unique infinite

order jet f̃ homogeneous of degree w satisfying ∆̃f̃ = O(Q∞) and f̃ |π−1(U) = f .
The initial lift step is vacuous in this case. For the harmonic extension step, the

Taylor expansion of f̃ is constructed inductively. A key observation is that

(2.7) [∆̃, Qk] = 2kQk−1(2X + n+ 2k) .

Suppose that f̃ (k) has been constructed which satisfies ∆̃f̃ (k) = O(Qk−1). Set

f̃ (k+1) = f̃ (k) +Qkη for η ∈ Ẽ(w − 2k) .

Then

∆̃f̃ (k+1) = ∆̃f̃ (k) + ∆̃(Qkη)

= ∆̃f̃ (k) + [∆̃, Qk]η +O(Qk)

= ∆̃f̃ (k) + 2kQk−1(2X + n+ 2k)η +O(Qk)

= ∆̃f̃ (k) + 2k(n+ 2w − 2k)ηQk−1 +O(Qk) .

So if n + 2w 6= 2k, η can be uniquely chosen so that ∆̃f̃ (k+1) = O(Qk). Thus if
w + n/2 /∈ N, then the induction can be carried out to all orders.

If n/2 +w = m ∈ N, then harmonic extension is obstructed by the conformally
invariant operator ∆m = (hij∂2

ij)
m on Rn.

Consider now the case r = 1, s = 0. Theorem 2.1 asserts that if w 6= 2− n and
w+n/2− 1 /∈ N, then E1(w) ∼= H1(w), where we have written H1(w) for H1,0(w).

Recall that f̃ ∈ H1(w) means that f̃ is a jet of a section of Ẽ1(w) satisfying the

equations (2.6) to infinite order. We write δ̃ for δ̃1 since δ̃2 vanishes in this case.
Given a 1-form f on π−1(U) which is homogeneous of degree w and satisfies

f(X) = 0, we can choose some f̃ which is a section in Ẽ1
V(w) for some V ⊃ U such

that ι∗f̃ = f . Such an f̃ is uniquely determined up to addition of ψdQ+Qφ with
ψ a function and φ a 1-form, both of homogeneity w− 2. We can certainly choose

f̃ to start with so that f̃(X) = O(Q2); in fact we could make f̃(X) = O(Q∞),
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but O(Q2) will suffice. Now try to determine ψ, φ to maintain this condition on

vanishing of f̃(X):

(f̃ + ψdQ +Qφ)(X) = O(Q2)

and also to make
δ̃(f̃ + ψdQ+Qφ) = O(Q) .

The first equation gives ψdQ(X) +Qφ(X) = O(Q2), so

2ψ + φ(X) = O(Q) .

The second equation gives

δ̃f̃ − 2(n+ w)ψ − 2φ(X) = O(Q) ,

so combining gives

δ̃f̃ − 2(n+ w − 2)ψ = O(Q) .

If n + w 6= 2, this uniquely determines ψ mod Q. Then (f̃ + ψdQ)|π−1(U) is the

initial lift. Rename f̃ + ψdQ to be a new f̃ .

Now all components of f̃ |π−1(U) have been determined. Write f̃ = f̃Idx
I ; then

each f̃I is a scalar function homogeneous of degree w − 1. Since w+ n/2− 1 /∈ N,

by the scalar case we can uniquely extend each f̃I harmonically to infinite order,

and this is equivalent to the condition that f̃ satisfies ∆̃f̃ = 0 to infinite order. In
particular, we conclude the uniqueness of an extension satisfying (2.6) to infinite
order. For existence, we claim that this harmonic extension automatically satisfies

δ̃f̃ = 0 and f̃(X) = 0 to infinite order. One first checks that the harmonic

extension recovers the conditions δ̃f̃ = O(Q) and f̃(X) = O(Q2) imposed above.

Then ∆̃ and δ̃ commute since they are constant coefficient operators on Rn+2, so

∆̃δ̃f̃ = 0 to infinite order. But δ̃f̃ has homogeneity w− 2 and w− 2 +n/2 /∈ N, so

uniqueness for the scalar case implies that δ̃f̃ = 0 to infinite order. The argument

that f̃(X) = O(Q∞) is similar. One has ∆̃(f̃(X)) = O(Q∞) since ∆̃f̃ = O(Q∞)

and δ̃f̃ = O(Q∞). Now f̃(X) is homogeneous of degree w. Since w+n/2− 1 /∈ N,
we can apply the usual statement of uniqueness in the scalar case unless w+n/2 =
1. If w + n/2 = 1, the argument in the scalar case proves uniqueness for densities

which are O(Q2). Thus f̃(X) = O(Q∞) holds in general.
For general r, s, the algebra of the initial lift and the consistency verification is

more complicated, but the basic idea is the same. When r > s = 0, the operator
δ1 is conformally invariant for w = 2r − n and obstructs the initial lift. If s > 0,
there are two invariant operators obstructing the initial lift, giving rise to the two
excluded values of w. For r > s > 0 the invariant operators are δ2, π

r−1,sδ1 for
w = r+2s−n−1, 2r+s−n, respectively, where πr−1,s is the Young projector onto∧r−1,s

. If r = s > 0, the obstructing invariant operators are δ2 for w = 3r−n− 1
and δ1δ2, an iterated divergence, for w = 3r − n.

Theorem 2.1 implies a corresponding isomorphism obtained by taking jets at a
point. Define J r,s(w) to be the space of infinite-order jets at [e0] ∈ Q of sections
of

∧r,s
(w), and J r,s

0 (w) to be the subspace of jets which are trace-free to infinite
order. The G-action on the sheaf Er,s

0 (w) induces a (g, P )-module structure on
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J r,s
0 (w) dual to a generalized Verma module. Define J̃ r,s(w) to be the space of

infinite order jets at e0 ∈ Rn+2 of sections of
∧̃

r,s which are homogeneous of degree

w, and by J̃ r,s
0 (w) the subspace of jets which are trace-free to infinite order. The

G-action on Ẽr,s(w) induces (g, P )-module structures on J̃ r,s(w), J̃ r,s
0 (w). Define

J̃ r,s
H (w) ⊂ J̃ r,s

0 (w) to be the submodule consisting of those jets for which the
equations (2.6) hold to infinite order at e0. It follows from Theorem 2.1 that if r,
s, w satisfy the restrictions of Theorem 2.1, then

J r,s
0 (w) ∼= J̃ r,s

H (w)

as (g, P )-modules. This statement can be regarded as a “jet isomorphism theo-
rem for J r,s

0 (w)” providing an ambient description of the dual generalized Verma

modules. Upon expressing a jet in J̃ r,s
H (w) as the list of tensors which are the

successive derivatives of the section, one can realize the P -action in the ambient
description in terms of reweighted tensor representations analogous to (1.3). See
[6] for further discussion.

Observe that r, s, w ∈ Z for all of the spaces Er,s
0 (w) which occur in the

deformation complex (2.4), (2.5). Therefore, if n is odd, then the condition w +
n/2 − r − s /∈ N in Theorem 2.1 is automatic for these spaces. One verifies easily
that for n odd, the bulleted conditions in Theorem 2.1 hold for all spaces which
occur in the deformation complex except for the next to last one, En−1,1

0 , for which
the second bulleted condition is violated. This corresponds to the fact that the
operator in the complex acting on this space is δ2, which is precisely the operator
obstructing the ambient lift on this space. Even though invariant operators act
on the other spaces in the deformation complex, namely the operators occuring
in the complex itself, the only one obstructing ambient lifts is the one acting on
En−1,1
0 . So Theorem 2.1 provides an ambient description of all of the other spaces

in the complex. It is not difficult to identify the differential operators on Rn+2

which correspond in this realization to the operators in the deformation complex.
One thus obtains:

Theorem 2.2. Let n be odd. The deformation complex with last two spaces re-

moved can be realized as:

0 → g → H1(2)
eD0−→ H1,1(2)

eD1−→ H2,2(2)
eD2−→ H3,2(2) → · · ·

= ∼= ∼= ∼= ∼=

0 → g → E1(2)
D0−→ E1,1

0 (2)
D1−→ E2,2

0 (2)
D2−→ E3,2

0 (2) → · · ·

· · · → Hn−3,2(2)
eDn−3

−→ Hn−2,2(2)

∼= ∼=

· · · → En−3,2
0 (2)

Dn−3

−→ En−2,2
0 (2)
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where the differential operators are:

D̃0 = Sym d̃2 (so (D̃0f̃)IJ = ∂(I f̃J))

D̃1 = d̃2d̃1

D̃r = d̃1 r = 2, 3, . . . , n− 3 .

When n = 3, the shortened complexes terminate with the spaces E1,1
0 (2), H1,1(2).

Observe that the operators D̃r in the lifted complex are simpler than their

downstairs counterparts: they do not involve the trace-free part. For example, D̃0

is the Killing operator, while D0 is the conformal Killing operator. The conditions

defining the Hr,s(w) imply that the images of the D̃r are already contained in
trace-free tensors.

As indicated above, the operator Dn−1 = δ2 obstructs ambient lifts of the next

space En−1,1
0 in the deformation complex. However, imDn−2 ⊂ kerDn−1, and a

section of En−1,1
0 which is in ker δ2 does have an ambient lift to Hn−1,1(0). This lift

is not unique. Nonetheless, by appropriately modifying the lifted space, one can
arrange a unique ambient lift. Thus it is possible to extend the above complexes
one more term to include an ambient realization of kerDn−1. For this term,
the analogue of the restriction operator inverse to the lift effectively involves a
differentiation and the operator lifting Dn−2 has order one less than Dn−2. When

n > 3, the operator lifting Dn−2 : En−2,2
0 (2) → kerDn−1 is d̃1 : Hn−2,2(2) →

Hn−1,2(2). When n = 3, the operator lifting D1 : E1,1
0 (2) → kerD2 is the second

order operator d̃2d̃1 : H1,1(2) → H2,2(2), the same operator which lifts D1 in higher
dimensions.

Theorem 2.1 also gives ambient realizations for other gBGG complexes; for
example the deRham complex and the complex which resolves the standard rep-
resentation Rn+2 of g.

Next we indicate how Theorem 1.4 can be proved using the ambient lift of
the deformation complex. In the previous section we constructed the map c :

M/CDiff0 → R̃ which evaluates the curvature tensors of the ambient metric and
outlined why it is P -equivariant. So what remains is to show that c is bijective
with polynomial inverse. The first step is a linearization argument as in the direct
proof mentioned in §1. One truncates all the jet spaces and the map c at finite
order to make everything finite-dimensional. Geodesic normal coordinates and
the “conformal normal form” mentioned previously provide a slice for the CDiff0

action, from which it follows that MN/CDiff0 is a smooth manifold, where MN

indicates the truncation of M at order N . Now either an algebraic induction
argument or the inverse function theorem can be used to reduce the conclusion to

proving that dc : TM/TO → T R̃ is a vector space isomorphism, where O is the
CDiff0-orbit of the flat metric h, TM and TO denote the tangent spaces at h, and

T R̃ is the tangent space to R̃ at 0.

The second step is to relate the spaces TM/TO and T R̃ to the spaces appearing
in the deformation complex.
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Lemma 2.3. TM/TO ∼= J 1,1
0 (2)/D0J 1(2).

Proof. The definitions give

TM =
{
s ∈ J 1,1(2) : s(0) = 0

}
,

TO =
{
LV h : V = O

(
‖x‖2

) }
⊕

{
Ω2h : Ω = O

(
‖x‖2

) }
.

Recall that D0 is the conformal Killing operator, and corresponds to V → tf LV h
when its argument is viewed as a vector field. Now, as in the construction of
geodesic normal coordinates, every 1-jet of an infinitesimal metric is in the range
of the Killing operator on jets of vector fields. This shows that all 1-jets in both
TM and J 1,1

0 (2) are contained in the respective denominator spaces. For higher
order jets, the term

{
Ω2h : Ω = O

(
‖x‖2

) }
cancels the trace components. �

Proposition 2.4. T R̃ ∼= ker d̃1 ⊂ J̃ 2,2
H (2).

Proof. The tangent space T R̃ is defined by the same relations (1)–(5) in Defini-

tion 1.3, except that the Q̃(s) term in (3) is replaced by 0. Thus each R̃IJKL,M1...Mr

is symmetric in M1 . . .Mr. We may identify jets R̃ at e0 of sections of
∧̃

2 ⊗
∧̃

2

with such lists of tensors by the requirement that

(2.8) ∂r
M1...Mr

R̃IJKL(e0) = R̃IJKL,M1...Mr
, r ≥ 0 .

Clearly conditions (1) and (4) are equivalent to the statement that R̃ is the jet

of a section of
∧̃2,2

0 . Differentiation of the relation XLR̃IJKL = 0 and evaluating

at e0 shows that condition (5) is equivalent to the statement that X R̃ = 0 to

infinite order. Condition (2) holds if and only if R̃ ∈ ker d̃2. Since these are all the

relations defining R̃, it follows that ker d̃2| eJ 2,2

H
(2) ⊂ T R̃. Note that ker d̃1 = ker d̃2

on sections of
∧̃

2,2 by the symmetries of curvature tensors.

Now J̃ 2,2
H (2) is defined by the conditions considered in the previous paragraph

together with the additional requirements that R̃ be homogeneous of degree 2 as

a jet and that ∆̃R̃ = 0 and δ̃1R̃ = 0 to infinite order. The homogeneity statement
is equivalent to

(2.9) R̃IJKL,M1...Mr0 = (−2 − r)R̃IJKL,M1...Mr
.

The symmetry of R̃(r+1) in the differentiation indices and relation (2) can be used
to express the left hand side as a sum of two terms in which the ’0’ index is before
the comma. Then applying (5) and then (2) again establishes (2.9). The relations

δ̃1R̃ = 0 and ∆̃R̃ = 0 follow similarly using (2) to move contracted derivative

indices before the comma and then applying (4). Thus T R̃ = ker d̃1| eJ 2,2

H
(2) under

the identification (2.8). �

Composing with the isomorphisms of Lemma 2.3 and Proposition 2.4, the jet
isomorphism theorem reduces to the statement that

dc : J 1,1
0 (2)/D0J

1(2) → ker d̃1 ⊂ J̃ 2,2
H (2)
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is an isomorphism. Suppose first that n ≥ 5. According to Theorem 2.1, the lift
of the deformation complex on jets contains

→ J̃ 1
H(2) → J̃ 1,1

H (2) → J̃ 2,2
H (2)

eD2−→

∼= ∼= ∼=

→ J 1(2)
D0−→ J 1,1

0 (2)
D1−→ J 2,2

0 (2)
D2−→

Since the deformation complex is exact on jets, D1 induces an isomorphism

J 1,1
0 (2)/D0J

1(2) ∼= kerD2
∼= ker D̃2 = ker d̃1 .

One can show that this map agrees with dc, and the result follows.
When n = 3, D1 maps into kerD2 ⊂ J 2,1

0 . But, as discussed after the statement

of Theorem 2.2, when n = 3 we have a modified lift of kerD2 to J̃ 2,2
H (2). The jet

isomorphism theorem follows in exactly the same manner.

3. Jet isomorphism, even dimensions

When n is even, the construction of the ambient metric is obstructed at order
n/2. So the map c evaluating the covariant derivatives of curvature of the ambient
metric is not defined beyond this order. This is a reflection of a difference in the
structure of M/CDiff0 as a P -space when n is even.

The same phenomenon occurs when constructing the ambient lift for Er,s
0 (w)

when w + n/2 − r − s ∈ N. In this section, an extension of the theory to these
cases will be outlined. The main ingredients are the following:

• A weakening of the homogeneity condition on the ambient lift
• The occurrence of logarithm terms in the solutions of the ambient equa-

tions
• Existence of an ambiguity (nonuniqueness) in the solutions
• An invariant smooth part for the solutions with log terms
• Jet isomorphism theorem for an enlarged space

We will first illustrate the ideas by discussing the ambient lift with log term and the
generalization of Theorem 2.1 for scalars in the obstructed case w+n/2 ∈ N. Then,
by analogy with the discussion in §1, we will formulate the jet isomorphism theorem
for conformal structures in even dimensions and will discuss the construction of
inhomogeneous ambient metrics containing log terms and the extension of the
map c to infinite order in the even dimensional case. This is all joint work with
K. Hirachi.

Recall that Theorem 2.1 asserts that if w + n/2 /∈ N, then E(w) ∼= H(w),
where H(w) is the sheaf of harmonic jets along N homogeneous of degree w.
But if w + n/2 = m ∈ N, then harmonic extension is obstructed at order m by
the conformally invariant operator ∆m. The following proposition shows that it
is always possible to find a harmonic extension by including a log term in the
expansion.



JET ISOMORPHISM FOR CONFORMAL GEOMETRY 409

Proposition 3.1. Suppose w + n/2 = m ∈ N. Let U ⊂ Q be open and let

f ∈ EU (w). There exists an infinite order jet along π−1(U) of a function f̃ on

Rn+2 of the form

(3.1) f̃ = s̃+ l̃ Qm log |Q|

with s̃, l̃ smooth, s̃ homogeneous of degree w, l̃ homogeneous of degree w − 2m,

such that ∆̃f̃ = 0 to infinite order and f̃ |π−1(U) = f . These conditions uniquely

determine l̃ to infinite order along π−1(U) and determine s̃ modulo QmHU (w −
2m).

Note that s̃ and l̃ Qm are each homogeneous of degree w. Thus f̃ is almost
homogeneous of degree w, but is not so because of the appearance of log |Q|. In

this sense the homogeneity condition on f̃ has been weakened. Of course, the

appearance of this log term also means that f̃ is no longer smooth.

A main feature of Proposition 3.1 is that the solution f̃ is no longer unique. One

constructs f̃ inductively by order as in the proof of the scalar case of Theorem 2.1

sketched in §2. The argument there constructed f̃ mod Qm. The inclusion of the
Qm log |Q| term enables the possibility of finding a harmonic extension at order
Qm. The coefficient of Qm log |Q| is uniquely determined but not the coefficient
of Qm, which can be prescribed arbitrarily on N . The solution is then uniquely
determined to all higher orders. The fact that the uniqueness is at best modulo

QmH(w−2m) is immediate from (2.7): [∆̃, Qm] = 0 on functions homogeneous of
degree w− 2m = −n/2−m. Note that Theorem 2.1 implies that H(−n/2−m) ∼=
E(−n/2−m) so that uniqueness moduloQmH(−n/2−m) is the same as saying that

the coefficient of Qm in the expansion of f̃ is undetermined. This nonuniqueness
is called the ambiguity in the solution.

It turns out that l̃ can be written entirely in terms of s̃, and the condition that

f̃ be harmonic can be written entirely in terms of s̃. Thus one can reformulate the
extension as a map taking values in a space of jets along N of smooth homoge-
neous functions of degree w, staying entirely in the smooth category. To see this,
straightforward calculation using (2.7) shows that

∆̃f̃ = ∆̃(s̃+ l̃ Qm log |Q|)

= (∆̃s̃+ 4ml̃Qm−1) + (∆̃l̃)Qm log |Q| .

So ∆̃f̃ = 0 to infinite order if and only if ∆̃l̃ = 0 and ∆̃s̃ = −4ml̃Qm−1 to infinite

order. Now iterating (2.7) shows that if l̃ is homogeneous of degree −n/2−m and

∆̃l̃ = 0, then

(3.2) cm∆̃m−1(Qm−1 l̃) = l̃, c−1
m = (−4)m−1(m− 1)!2 .

Thus applying cm∆̃m−1 to the second equation gives

cm∆̃ms̃ = −4ml̃ .
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This gives l̃ in terms of s̃. Substituting back, one can write both equations in
terms of s̃:

(3.3) ∆̃s̃ = cmQ
m−1∆̃ms̃ and ∆̃m+1s̃ = 0 .

This motivates the following definition.

Definition 3.2. Suppose w+n/2 = m ∈ N. Define HS(w) to be the sheaf on Q of
infinite order jets along N of smooth functions s̃ on Rn+2 which are homogeneous
of degree w and which satisfy (3.3) to infinite order along N , with cm as in (3.2).

The conditions (3.3) are clearly G-invariant, so HS(w) is a homogeneous sheaf

on Q = G/P . Also observe by applying cm∆̃m−1 that if c is any constant other
than cm, then any solution s̃ to the system obtained by replacing cm by c in (3.3)

which is homogeneous of degree w necessarily satisfies ∆̃ms̃ = 0, and therefore

∆̃s̃ = 0. The choice c = cm is the unique choice for which HS(w) 6= H(w).
Now the substitute ambient lift theorem for scalars in the obstructed cases takes

the form:

Theorem 3.3. Suppose w + n/2 = m ∈ N. There is a G-equivariant exact

sequence of sheaves:

(3.4) 0 → E(w − 2m) → HS(w) → E(w) → 0 .

The map HS(w) → E(w) is restriction to N . The map E(w − 2m) → HS(w) is
harmonic extension followed by multiplication by Qm; we saw in Proposition 3.1
that jets in QmH(w − 2m) are already harmonic, so certainly are contained in
HS(w). These maps are clearly G-equivariant. Since the sheaves E(w) are soft,
exactness of the sequence of sheaves is equivalent to exactness of the corresponding
sequences of sections on any open set. And this is just the uniqueness statement
of Proposition 3.1 reformulated in terms of HS(w) as explained above.

By choosing a (necessarily non-G-equivariant) splitting of (3.4), one can pa-
rametrize HS(w) as E(w)×E(w− 2m). The space E(w) corresponds to the initial
density and E(w− 2m) to the ambiguity in the lift. The space that has the ambi-
ent realization is not the initial space E(w) in which we were interested, but the
enlargement E(w)×E(w−2m) of this space by the ambiguity in the solution. The
space HS(w) realizing the ambient representation is an enlargement of the space of
smooth homogeneous harmonic jets, and consists of the smooth homogeneous jets

satisfying the system (3.3) rather than the equation ∆̃f̃ = 0. By taking jets at e0
of the solutions of this system, one obtains the substitute jet isomorphism theorem

for scalars in the obstructed cases analogous to the statement J (w) ∼= J̃H(w) in
the unobstructed cases.

It is easy to check that when n is even, all the spaces in the first half of the
deformation complex have w+n/2−r−s ∈ N, so their ambient lifts are obstructed
just as in the scalar case discussed above. There is a version of Theorem 3.3
for these spaces which is used in the proof of the jet isomorphism theorem for
conformal structures for n even as indicated below.

The jet isomorphism theorem for conformal structures in even dimensions in-
volves similar features as in the obstructed scalar case. This time the ambiguity is
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a symmetric 2-tensor which is trace-free with respect to the given metric. There
is a map from jets of metrics together with jets of the ambiguity to a space of am-
bient curvature tensors which induces a P -equivariant bijection from the quotient
by CDiff0. We formulate the result more precisely.

Define

M×M J 1,1
0 ≡ {(g,A) ∈ M×J 1,1 : gijAij = 0 to infinite order} .

Here J 1,1 denotes the space of jets of symmetric 2-tensors at 0 ∈ Rn (ignoring

the weight). The space M×M J 1,1
0 may be regarded as a fiber bundle over M by

projecting onto the first factor. Set

T̃ =

∞∏

r=0

∧2,2
Rn+2∗ ⊗

⊗r
Rn+2∗ ⊗ σ−r−2 .

Here
∧2,2

Rn+2∗ denotes the finite-dimensional vector space of covariant 4-tensors

in n + 2 dimensions with curvature tensor symmetries. Then T̃ has a natural

P -action. Recall that when n was odd, the space R̃ of lists of ambient curvature

tensors was a P -invariant subset of T̃ . The conformal jet isomorphism theorem
for n even is then the following.

Theorem 3.4. Let n ≥ 4 be even. There is a P -equivariant polynomial injection

c : (M×MJ 1,1
0 )/CDiff0 → T̃ , whose image R̃ is a submanifold of T̃ whose tangent

space T R̃ at 0 is the space of jets R̃ ∈ J̃ 2,2(2) which are solutions to the following

equations to infinite order at e0:

(1) R̃IJ[KL,M ] = 0

(2) X R̃ = 0

(3) t̃r R̃ = cn/2Q
n/2−1∆̃n/2−1 t̃r R̃

(4) ∆̃n/2 t̃r R̃ = 0.

Also, c−1 : R̃ → (M×M J 1,1
0 )/CDiff0 is polynomial. Here (t̃r R̃)IJ = h̃KLR̃IKJL

corresponds to the Ricci tensor, and J̃ 2,2(2) is identified with a P -submodule of T̃
via (2.8). The constant cn/2 is given in (3.2).

The formulation of Theorem 3.4 requires some explanation. First, the statement

that R̃ is a submanifold of T̃ is to be interpreted in terms of finite-order truncations
of these spaces; the full spaces are projective limits of their truncations. The
truncations are finite dimensional so these notions make sense in this context.
Next, we have not yet defined the CDiff-action on M ×M J 1,1

0 which gives rise
to the quotient by CDiff0 and the P -action on the quotient. There is a natural
action of CDiff, but as in Theorem 3.3, it is not a product action. This action has
the property that the projection M ×M J 1,1

0 → M is CDiff-equivariant, where

the action on M is that defined in §1. The CDiff-action on M×M J 1,1
0 will be

defined below.
When n was odd, the nonlinear space R̃ was identified explicitly; see Defini-

tion 1.3. For n even, Theorem 3.4 asserts instead that c is a bijection onto a

submanifold R̃ of T̃ and identifies explicitly the tangent space T R̃. This suffices
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for all the applications; the explicit form of the nonlinear terms is not needed. One

can be somewhat more explicit about the equations defining R̃. The equations

(1)–(3) and (5) in Definition 1.3 hold also for R̃ in even dimensions. Equation (4)
in Definition 1.3 is replaced by nonlinear versions of (3) and (4) above.

As shown by the proof of Proposition 2.4, for n odd T R̃ is defined by exactly
the same relations (1)–(4) above, except that (3) and (4) are replaced by the

single equation t̃r R̃ = 0. The relations (3) and (4) in Theorem 3.4 are completely
analogous to the equations (3.3) for the obstructed scalar problem; the Ricci tensor

t̃r R̃ plays the role of ∆̃s̃.
In the rest of this section we will describe the extension of the ambient metric

construction to all orders in even dimensions and the construction of the map c.
Recall that in odd dimensions an ambient metric is a smooth metric defined by the
conditions (1)–(3) of Definition 1.5. In even dimensions there is a formal obstruc-
tion at order n/2 to the existence of such a metric, analogous to the obstruction
to finding a smooth harmonic extension of a density in the scalar problem. It is
natural to try to continue the expansion by including log terms. In the scalar prob-
lem, Q was a G-invariant defining function for N and terms involving Qm log |Q|
contained a built-in G-invariance. But there is no canonical analogue of Q for the
nonlinear problem, so it is not clear what the argument of the logarithm should be
to obtain an invariant construction. Another distinction is that the nonlinearity
of the Ricci curvature operator will force the inclusion of powers of the logarithm
as well.

These considerations motivate the following definition. Let r denote an arbi-

trary smooth defining function for G ⊂ G̃ homogeneous of degree 2.

Definition 3.5. Let Alog denote the space of formal asymptotic expansions of

metrics of signature (p+ 1, q + 1) on G̃ of the form

(3.5) g̃ ∼ g̃(0) +
∑

N≥1

g̃(N)r(rn/2−1 log |r|)N ,

where g̃(N), N ≥ 0, are smooth symmetric 2-tensor fields on G̃ satisfying δ∗s g̃
(0) =

s2g̃(0) and δ∗s g̃
(N) = s(2−n)N g̃(N) for N ≥ 1, and such that ι∗g̃ = g0.

It is easy to see that the space Alog is independent of the choice of r; upon chang-
ing r, one obtains an expansion of the same form but with different coefficients.
Also, the space Alog is invariant under pullback by smooth homogeneous diffeo-

morphisms Φ of G̃ satisfying Φ|G = I.
Recall that ambient metrics in odd dimensions automatically had an additional

geometric property. We call metrics having this property straight:

Definition 3.6. A metric g̃ ∈ Alog is straight if for each p ∈ G̃, the dilation orbit
s → δsp is a geodesic for g̃. (Since g̃ is only defined as an asymptotic expansion,
this means that the geodesic equations hold to infinite order along G.)

The ambient metrics involving log terms in even dimensions are then defined
as follows. We call these inhomogeneous ambient metrics because the occurence
of the log terms means that the metrics are no longer homogeneous.
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Definition 3.7. Let n ≥ 4 be even. An inhomogeneous ambient metric for(
M, [g]

)
is a straight metric g̃ ∈ Alog satisfying Ric(g̃) = 0 formally to infinite

order.

The straightness condition is crucial in the inhomogeneous case because of the
following proposition.

Proposition 3.8. Let g̃ ∈ Alog be straight. Then g̃(T, T ) is a smooth defining

function for G homogeneous of degree 2.

Recall that in the flat case, the vector field X on R
n+2 plays the role of T and

satisfies h̃(X,X) = Q. Thus g̃(T, T ) is a generalization of Q. For general g̃ ∈ Alog,
g̃(T, T ) has an asymptotic expansion involving log |r|, but Proposition 3.8 asserts
that if g̃ is straight, then g̃(T, T ) is actually smooth. The proof of Proposition 3.8
is a straightforward analysis of the geodesic equations for the dilation orbits.

Let g̃ ∈ Alog be straight. Then g̃(T, T ) is a canonically determined smooth
defining function for G homogeneous of degree 2. We may therefore take r =
g̃(T, T ) in (3.5). The term g̃(0) appearing in the resulting expansion is then a
smooth metric uniquely determined by g̃ independently of any choices. We call
this metric g̃(0) the smooth part of g̃. Observe that g̃(0) is homogeneous of degree 2.
One checks that g̃(0) is also straight. If Φ is a smooth homogeneous diffeomorphism
satisfying Φ|G = I and g̃ ∈ Alog is straight, then (Φ∗g̃)(0) = Φ∗(g̃(0)).

We extend Definition 1.7 to the inhomogeneous case: a straight metric g̃ ∈ Alog

is said to be in normal form relative to a metric g in the conformal class if its
smooth part g̃(0) is in normal form relative to g. If g̃ ∈ Alog is straight, then there
is a smooth homogeneous diffeomorphism Φ uniquely determined to infinite order
at ρ = 0 such that Φ|G = I and such that Φ∗g̃ is in normal form relative to g.

The main theorem concerning the existence and uniqueness of inhomogeneous
ambient metrics is the following.

Theorem 3.9. Let n ≥ 4 be even. Up to pullback by a smooth homogeneous

diffeomorphism which restricts to the identity on G, the inhomogeneous ambient

metrics for
(
M, [g]

)
are parametrized by the choice of an arbitrary trace-free sym-

metric 2-tensor field (the ambiguity tensor) on M .

We describe more concretely the parametrization of inhomogeneous ambient
metrics in terms of the ambiguity tensor. Choose a representative metric g in
the conformal class; we normalize the diffeomorphism invariance by requiring that
g̃ be in normal form relative to g. Let g̃(0) be the smooth part of g̃ and let

G̃ ∼= R+ ×M × R be the decomposition induced by the choice of g. Consider
the component of g̃(0) obtained by restricting to vectors tangent to M in the

decomposition R+×M×R; by homogeneity this may be written g̃
(0)
ij = t2g

(0)
ij (x, ρ),

where g
(0)
ij (x, ρ) is a smooth 1-parameter family of metrics on M with g

(0)
ij (x, 0)

equal to the chosen metric gij(x). The ambiguity tensor of g̃ relative to g is:

Aij = tf
(
(∂ρ)

n/2g
(0)
ij |ρ=0

)
.
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Theorem 3.9 asserts that for each representative metric g and each choice of trace-
free symmetric 2-tensor A, there is a unique inhomogeneous ambient metric g̃ in
normal form relative to g with ambiguity tensor A.

The choice of g and A uniquely determine g̃ in normal form, and therefore also
the smooth part g̃(0). As in the scalar case, the inhomogeneous ambient metric
serves as an intermediate tool used to determine the smooth homogeneous metric
g̃(0). However, because of the nonlinearity we do not have a simple way of writing
directly the system of equations defining g̃(0).

The map c is now defined exactly as in the odd-dimensional case, using the
smooth part g̃(0) in place of g̃. Given (g,A) ∈ M×MJ 1,1

0 , choose tensors also de-
noted g and A in a neighborhood of 0 ∈ R

n with the prescribed Taylor expansions
and such that gijAij = 0 in the whole neighborhood. According to Theorem 3.9,
there is a unique inhomogeneous ambient metric g̃ in normal form relative to g with

ambiguity tensor A. Define the tensors R̃(r) to be the iterated covariant deriva-
tives of the curvature tensor of g̃(0) evaluated at t = 1, x = 0, ρ = 0. This gives a

map M×M J 1,1
0 → T̃ . Because these R̃(r) are the curvature tensors of a smooth,

homogeneous, straight metric, the relations (1)–(3) and (5) in Definition 1.3 hold
for these tensors. Since g̃(0) is not Ricci-flat, equation (4) in Definition 1.3 does
not hold. But a study of the linearized problem shows that relations (3) and (4)
in Theorem 3.4 hold for the linearized tensors.

The CDiff action on M×M J 1,1
0 is defined as follows. First consider metrics g

and ambiguity tensorsA defined on a manifoldM ; the CDiff action will be obtained
by passing to jets at the origin in Rn. Let g̃ be the inhomogeneous ambient metric
in normal form relative to g with ambiguity tensor A. If 0 < Ω ∈ C∞(M),
set ĝ = Ω2g. Now there is a smooth homogeneous diffeomorphism Φ satisfying
Φ|G = I, uniquely determined to infinite order at ρ = 0, such that Φ∗g̃ is in
normal form relative to ĝ. Since Φ∗g̃ is also an inhomogeneous ambient metric,

it uniquely determines an ambiguity tensor Â with the property that Φ∗g̃ is the
inhomogeneous ambient metric in normal form relative to ĝ with ambiguity tensor

Â. The correspondence (g,A,Ω) → Â gives a well-defined transformation law for
the ambiguity tensor under conformal change, described more explicitly in [14].

The jet of Â at a point depends only on the jets of (g,A,Ω) at that point. Now

for (ϕ,Ω) ∈ CDiff and (g,A) ∈ M×M J 1,1
0 , the CDiff action is defined by

(ϕ,Ω) · (g,A) =
(
(ϕ−1)∗ĝ, (ϕ−1)∗Â

)
.

One can identify the Jacobian along G of the diffeomorphism Φ above to derive

the transformation laws for the tensors R̃(r). From this it follows that the map

M ×M J 1,1
0 → T̃ passes to a map c : (M ×M J 1,1

0 )/CDiff0 → T̃ which is P -
equivariant, as claimed in Theorem 3.4.

The completion of the proof of Theorem 3.4 requires showing that

dc : T
(
(M×M J 1,1

0 )/CDiff0

)
→ T R̃

is a vector space isomorphism. This uses the same idea as for n odd: lift the
deformation complex. However, the algebra is substantially more complicated, as
there is an ambiguity for the lift of each term in the first half of the complex.
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It is possible to extend the parabolic invariant theory of [1] to characterize

scalar P -invariants of T R̃ for n even. Theorem 3.4 then enables one to transfer the
results to characterize scalar invariants of conformal structures in even dimensions
similarly to the arguments of [10] in odd dimensions. These results are described
in [14]; details will be forthcoming.
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