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ON ENDOMORPHISMS OF MULTIPLICATION
AND COMULTIPLICATION MODULES

H. Ansari-Toroghy and F. Farshadifar

Abstract. Let R be a ring with an identity (not necessarily commutative)
and let M be a left R-module. This paper deals with multiplication and
comultiplication left R-modules M having right EndR(M)-module structures.

1. Introduction

Throughout this paper R will denote a ring with an identity (not necessarily
commutative) and all modules are assumed to be left modules. Further “⊂” will
denote the strict inclusion and Z will denote the ring of integers.

Let M be a left R-module and let S := EndR(M) be the endomorphism ring of
M . Then M has a structure as a right S-module so that M is an R− S bimodule.
If f : M → M and g : M → M , then fg : M → M defined by m(fg) = (mf)g.
Also for a submodule N of M ,

IN :=
{
f ∈ S : Im(f) =Mf ⊆ N

}
and

IN :=
{
f ∈ S : N ⊆ Ker(f)

}
are respectively a left and a right ideal of S. Further a submodule N of M is
called ([3]) an open (resp. a closed) submodule of M if N = N◦, where N◦ =∑
f∈IN Im(f) (resp. N = N̄ , where N̄ = ∩f∈IN Ker(f)). A left R-module M is

said to self-generated (resp. self-cogenerated) if each submodule of M is open (resp.
is closed).

Let M be an R-module and let S = EndR(M). Recently a large body of
researches has been done about multiplication left R-module having right S-module
structures. An R-module M is said to be a multiplication R-module if for every
submodule N of M there exists a two-sided ideal I of R such that N = IM .

In [2], H. Ansari-Toroghy and F. Farshadifar introduced the concept of a comulti-
plication R-module and proved some results which are dual to those of multiplication
R-modules. An R-module M is said to be a comultiplication R-module if for every
submodule N of M there exists a two-sided ideal I of R such that N = (0 :M I).
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This paper deals with multiplication and comultiplication left R-modulesM having
right EndR(M)-modules structures. In section three of this paper, among the other
results, we have shown that every comultiplication R-module is co-Hopfian and
generalized Hopfian. Further if M is a comultiplication module satisfying ascending
chain condition on submodules N such that M/N is a comultiplication R-module,
then M satisfies Fitting’s Lemma. Also it is shown that if R is a commutative ring
and M is a multiplication R-module and S is a domain, then for every maximal
submodule P of M , IP is a maximal ideal of S.

2. Previous results

In this section we will provide the definitions and results which are necessary in
the next section.

Definition 2.1.
(a) M is said to be (see [9]) a multiplication R-module if for any submodule N

of M there exists a two-sided ideal I of R such that N = IM .
(b) M is said to be a comultiplication R-module if for any submodule N of M

there exists a two-sided ideal I of R such that N = (0 :M I). For example
if p is a prime number, then Z(p∞) is a comultiplication Z-module but Z
(as a Z-module) is not a comultiplication module (see [2]).

(c) Let N be a non-zero submodule ofM . Then N is said to be (see [1]) large or
essential (resp. small) if for every non-zero submodule L of M , N ∩ L 6= 0
(resp. L+N =M implies that L =M).

(d) M is said to be (see [7]) Hopfian (resp. generalized Hopfian (gH for short))
if every surjective endomorphism f of M is an isomorphism (resp. has
a small kernel).

(e) M is said to be (see [8]) co-Hopfian (resp. weakly co-Hopfian) if every
injective endomorphism f of M is an isomorphism (resp. an essential
homomorphism).

(f) An R-moduleM is said to satisfy Fitting’s Lemma if for each f ∈ EndR(M)
there exists an integer n ≥ 1 such that M = Ker(fn)

⊕
Im(fn) (see [5]).

(g) Let M be an R-module and let I be an ideal of R. Then IM is called to
be idempotent if I2M = IM .

3. Main results

Lemma 3.1. Let R be any ring. Every comultiplication R-module is co-Hopfian.

Proof. Let M be a comultiplication R-module and let f : M →M be a monomor-
phism. There exists a two-sided ideal I of R such that Im(f) = (0 :M I). Now let
m ∈M so that mf ∈ Im(f). Then for each a ∈ I, we have (am)f = a(mf) = 0. It
follows that am ∈ Ker(f) = 0. This implies that am = 0 so that m ∈ (0 :M I) =
Mf . Hence we have M ⊆Mf so that f is epic. It follows that M is a co-Hopfian
R-module. �
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The following examples shows that not every comultiplication (resp. Artinian)
R-module is an Artinian (resp. a comultiplication) R-module.

Example 3.2. Let p be a prime number. Then let R be the ring with underlying
group

R = EndZ
(
Z(p∞)

)
⊕ Z(p∞) ,

and with multiplication

(n1, q1) · (n2, q2) = (n1n2, n1q2 + n2q1) .
Osofsky has shown that R is a non-Artinian injective cogenerator (see [6, Exa.
24.34.1]). In fact R is a commutative ring. Hence R is a comultiplication R-module
by [6, Prop. 23.13].

Example 3.3. Let F be a field, and let M = ⊕ni=1Fi, where Fi = F for i =
1, 2, . . . , n. Clearly M is an Artinian non-comultiplication F -module.

Theorem 3.4. Let M be a comultiplication module satisfying ascending chain
condition on submodules N such that M/N is a comultiplication R-module. Then
M satisfies Fitting’s Lemma.

Proof. Let f ∈ EndR(M) and consider the sequence
Ker f ⊆ Ker f2 ⊆ · · · .

Since every submodule of a comultiplication R-module is a comultiplication
R-module by [2], for each n we have M/Ker fn ∼= Imfn implies that M/Ker fn
is a comultiplication R-module. Hence by hypothesis there exists a positive in-
teger n such that Ker(fn) = Ker(fn+h) for all h ≥ 1. Set fn1 = fn |M(fn).
Then fn1 ∈ EndR(M(fn)). Further we will show that fn1 is monic. To see this let
x ∈ Ker(fn1 ). Then x = y(fn) for some y ∈M and we have x(fn) = 0. It follows
that y(f2n) = 0 so that

y ∈ Ker(f2n) = Ker(fn) .
Hence we have x = 0. But (M)fn is a comultiplication R-module and every
comultiplication R-module is co-Hopfian by Lemma 3.1. So we conclude that fn1
is an automorphism. In particular, M(fn) ∩Ker(fn) = 0. Now let x ∈M . Since
fn1 is epimorphism, then there exists y ∈ M such that x(fn) = y(f2n). Hence
(x− y(fn))(fn) = 0. It follows that x− y(fn) ∈ Ker(fn). Now the result follows
from this because x = y(fn) + (x− y(fn)). �

Corollary 3.5. Let M be an indecomposable comultiplication module satisfying
ascending chain condition on submodules N such that M/N is a comultiplication
R-module. Let f ∈ EndR(M). Then the following are equivalent.

(i) f is a monomorphism.
(ii) f is an epimorphism.
(iii) f is an automorphism.
(iv) f is not nilpotent.
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Proof. (i)⇒(ii). This is clear by Lemma 3.1.
(iii)⇒(ii). This is clear.
(iii)⇒(iv). Assume that f is an automorphism. Then M =Mf . Hence,

M =Mf =M(f2) = · · · .
If f were nilpotent, then M would be zero.

(ii)⇒(i). Assume that f is an epimorphism. Then M =Mf . Hence
M =Mf =M(f2) = · · · .

By Theorem 3.4, there is a positive integer n such that
M = Ker(fn)⊕ Im(fn) .

Hence M = Ker(fn)⊕M , so Ker(fn) = 0. Thus, Ker(f) = 0.
(ii)⇒(iii). This follows from (ii)⇒(i).
(iv)⇒(iii). Suppose that f is not nilpotent. By Theorem 3.4, there exists a

positive integer n such that M = Mfn
⊕

Ker fn. Since M is indecomposable
R-module, it follows that Ker fn = 0 or Mfn = 0. Since f is not nilpotent, we
must have Ker fn = 0. This implies that f is monic. This in turn implies that f is
epic by Lemma 3.1. Hence the proof is completed. �

Example 3.6. Let A = K[x, y] be the polynomial ring over a field K in two
indeterminates x, y. Then A = A/(x2, y2) is a comultiplication A-module. But
A/Axy is not a comultiplication A-module (see [6, Exa. 24.4]). Therefore, not every
homomorphic image of a comultiplication module is a comultiplication module.

Remark 3.7. In the Corollary 3.5 the condition M satisfying ascending chain
condition on submodules N such that M/N is a comultiplication R-module can
not be omitted. For example M = Z(p∞) is an indecomposable comultiplication
Z-module but not satisfying ascending chain condition on submodules N such that
M/N is a comultiplication Z-module. Define f : Z(p∞)→ Z(p∞) by x→ px. Clearly
f is an epimorphism with Ker f = Z(1/p+ Z). Hence f is not a monomorphism.

Lemma 3.8. Let M be a comultiplication R-module and let N be an essential
submodule of M . If the right ideal IN of EndR(M) is non-zero, then it is small in
EndR(M).

Proof. Let J be any right ideal of S = EndR(M) such that IN + J = S. Then
1M = f + j for some f ∈ IN and j ∈ J . Since Ker(1M − f) ∩N = 0 and N is an
essential submodule of M , it follows that j is a monomorphism. Hence by Lemma
3.1, j is an automorphism so that J = S. Hence IN is a small right ideal of S. �

Proposition 3.9. Let M be a comultiplication R-module and let N be a submodule
of M such that M/N is a faithful R-module. Then M/N is a co-Hopfian R-module.

Proof. Let f : M/N →M/N be an R-monomorphism and (M/N)f = K/N , with
N ⊆ K ⊆ M . Since M is a comultiplication R-module there exists a two-sided
ideal I of R such that K = (0 :M I). Now

(I(M/N))f = I(M/N)f = I(K/N) = 0 .
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Since f is monic, it follows that I(M/N) = 0. This in turn implies that I ⊆
AnnR(M/N) = 0. Hence we have K =M so that f is an epimorphism. �

Lemma 3.10. Every comultiplication R-module is gH.

Proof. Let M be comultiplication R-module and let f : M → M be an epimor-
phism and assume that Ker(f) + K = M , where K is a submodule of M . So
Kf = Mf = M . Since M is a comultiplication module, there exists a two-sided
ideal J of R such that K = (0 :M J). Now

0 = 0f =
(
J(0 :M J)

)
f = J(Kf) = JM .

It follows that J ⊆ AnnR(M). Hence we have K = (0 :M J) =M . This shows that
Ker(f) is a small submodule of M . So the proof is completed. �

Proposition 3.11.
(a) Assume that whenever f, g ∈ EndR(M) with fg = 0 then we have gf = 0. If
M is a self-generated (resp. self-cogenerated) R-module, then M is Hopfian
(resp. co-Hopfian).

(b) Let M be a self-generated (resp. self-cogenerated) R-module and let S be
a left Noetherian (resp. right Artinian) ring. Then M is a Noetherian
S-module.

Proof. (a) Let S = EndR(M) and let g : M → M be an epimorphism. Let f
be any element of IKer(g). Then Mf ⊆ Ker(g), so M(fg) = (Mf)g = 0. Hence,
fg = 0. By our assumption, gf = 0. Since g is an epimorphism, we have

Mf = (Mg)f =M(gf) = 0 .
Thus, if M is self-generated,

Ker(g) =
∑

f∈IKer(g)

Im(f) = 0 .

Hence M is a Hopfian R-module. The proof is similar when M is a self-cogenerated
R-module.

(b) Let
N1 ⊆ N2 ⊆ N3 ⊆ · · ·

be an ascending chain of S-submodules of M . This induces the sequence
IN1 ⊆ IN2 ⊆ · · · ⊆ INk ⊆ · · · .

Now there exists a positive integer s such that for each 0 ≤ i, INs = INi+s . Since
M is a self-generated R-module, we have Ns =MINs =MINi+s = Ni+s for every
0 ≤ i. Thus M is a Noetherian S-module. For right Artinian case when M is a
self-cogenerator R-module, the proof is similar. So the proof is completed. �

Theorem 3.12. Let M be a multiplication R-module and let N be a submodule
of M .

(a) If R is a commutative ring, and I is an ideal of R such that IM is an
idempotent submodule of M , then IM is gH.
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(b) If R is a commutative ring and N is faithful, then N is weakly co-Hopfian.
(c) If M is a quasi-injective, N is gH.

Proof. (a) Let I be an ideal of R such that IM be an idempotent submodule ofM .
Let f : IM → IM be an epimorphism and assume that Ker(f) + L = IM , where
L is a submodule of IM . Then we have I

(
Ker(f)

)
+ IL = IM . Let Ker(f) = JM

for some ideal J of R. Since R is a commutative ring, we have
0 = I

(
Ker(f)

)
f = (IJM)f = J(IM)f = JIM = IJM = I

(
Ker(f)

)
.

Thus by the above arguments, IL = IM so that IM ⊆ L. It follows that IM = L
so that IM is a generalized Hopfian R-module.

(b) Let I be an ideal of R such that N = IM . Let f : N → N be an injective
homomorphism and assume that Nf ∩K = 0, where K is a submodule of N . Then
there exist ideals J1 and J2 of R such that Nf = J1M and K = J2M . Then we
have

0 = K ∩Nf = K ∩ (IM)f = (J2M) ∩ (IM)f = J2M ∩ J1M ⊇ J2J1M .

Hence J2J1M = 0. Now we have
(IJ2M)f = J2(IM)f = J2J1M = 0 .

Since f is monic, J2N = IJ2M = 0. Since N is a faithful R-module, we have
J2 = 0 so that K = 0. Hence Nf is essential in N . It implies that N is a weakly
co-Hopfian R-module as desired.

(c) Let f : N → N be an epimorphism and let Ker(f) +K = N , where K is
a submodule of N . Since M is quasi-injective, we can extend f to g : M →M . But
as M is a multiplication module, Kg ⊆ K, therefore Kf ⊆ K. On the other hand,
Kf = N since f is epimorphism. Therefore K = N . Hence N is a generalized
Hopfian R-module as desired. �

Proposition 3.13. Let R be a commutative ring and let M be a multiplication
R-module. Let S = EndR(M) be a domain. Then the following assertions hold.

(a) Each non-zero element of S is a monomorphism.
(b) If I and J are ideals of S such that I 6= J , then MI 6=MJ .

Proof. (a) Assume that 0 6= g ∈ S. Then there exist ideals I and J of R such that
Im(g) = JM and Ker(g) = IM . Now we have

0 =
(

Ker(g)
)
g = (IM)g = I(Mg) = IJM .

It implies that IJ ⊆ AnnR(M). Since S is a domain, AnnR(M) is a prime ideal of
R by [2, 2.3]. Hence I ⊆ AnnR(M) or J ⊆ AnnR(M) so that IM = 0 or JM = 0.
It turns out that Ker(g) = 0 as desired.

(b) Since R is a commutative ring, M is a multiplication S-module. Hence for
0 6= m ∈ M there exists an ideal K of S such that mS = MK. Now we assume
that MI = MJ . Since R is a commutative ring, S is a commutative ring by [4].
Hence

mI = mSI = (MK)I = (MI)K = (MJ)K = (MK)J = mSJ = mJ .
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Choose f ∈ I\J . Then since mf ∈ mI = mJ , there exists h ∈ J such that
mh = mf . Thus we have m(h − f) = 0. Further h − f 6= 0. So by using part
(a), we have m ∈ Ker(h − f) = 0. But this is a contradiction and the proof is
completed. �

Corollary 3.14. Let R be a commutative ring andM be a multiplication R-module.
Set S = EndR(M) and Im(J) =

∑
f∈J Im(f), where J is an ideal of S. If J is

a proper ideal of a domain S, then Im(J) is a proper submodule of M .
Proof. This is an immediate consequence of Proposition 3.13 (b). �

Theorem 3.15. Let R be a commutative ring and let M be a multiplication
R-module such that S = EndR(M) is a domain. Then for every maximal submodule
P of M , IP is a maximal ideal of S.
Proof. Since IdM ∈ S and IdM 6∈ IP , we have IP 6= S. Now assume that U is
an ideal of S such that IP ⊆ U ⊆ S. Then if MU = M , then by Corollary 3.14,
U = S. If MU = P , then U ⊆ IP , so U = IP . Hence IP is a maximal ideal of S
and the proof is completed. �

Example 3.16. Let R be a commutative ring and let P be a prime ideal of R. Set
M = R/P . Then M is a multiplication R-module and S = EndR(M) is a domain.
Hence by Theorem 3.15, for every maximal submodule N of M , IN is a maximal
ideal of S.
Acknowledgement. The authors would like to thank the referee for his invaluable
comments.
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