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NON-DEGENERATE HYPERSURFACES
OF A SEMI-RIEMANNIAN MANIFOLD

WITH A SEMI-SYMMETRIC METRIC CONNECTION

Ahmet Yücesan and Nihat Ayyildiz

Abstract. We derive the equations of Gauss and Weingarten for a non-degen-
erate hypersurface of a semi-Riemannian manifold admitting a semi-symmetric
metric connection, and give some corollaries of these equations. In addition,
we obtain the equations of Gauss curvature and Codazzi-Mainardi for this
non-degenerate hypersurface and give a relation between the Ricci and the
scalar curvatures of a semi-Riemannian manifold and of its a non-degenerate
hypersurface with respect to a semi-symmetric metric connection. Eventually,
we establish conformal equations of Gauss curvature and Codazzi-Mainardi.

1. Introduction

The idea of a semi-symmetric linear connection on a differentiable manifold was
introduced for the first time by Friedmann and Schouten [4] in 1924. In 1932, Hay-
den [5] introduced a semi-symmetric metric connection on a Riemannian manifold.
Yano [10], in 1970, proved the theorem: In order that a Riemannian manifold admits
a semi-symmetric metric connection whose curvature tensor vanishes, it is necessary
and sufficient that the Riemannian manifold be conformally flat. Some topics rela-
tive to this theorem were studied by Imai [7] in 1972. Imai [6] gave basic properties
of a hypersurface of a Riemannian manifold with the semi-symmetric metric connec-
tion and got the conformal equations of Gauss curvature and Codazzi-Mainardi.

In 1986, Duggal and Sharma [3] studied semi-symmetric metric connection in
a semi-Riemannian manifold. In this work, they gave some properties of Ricci
tensor, affine conformal motions, geodesics and group manifolds with respect to
a semi-symmetric metric connection.

In 2001, A. Konar and B. Biswas [8] considered a semi-symmetric metric connec-
tion on a Lorentz manifold. They showed that the perfect fluid spacetime with
a non-vanishing constant scalar curvature admits a semi-symmetric metric connec-
tion whose Ricci tensor vanishes and that it has vanishing speed vector.

In the present paper, we defined a semi-symmetric metric connection on a non-de-
generate hypersurface of a semi-Riemannian manifold similar to the hypersurface
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of a Riemannian manifold (see [9] for the terminologies of semi-Riemannian mani-
folds). And we gave the equations of Gauss and Weingarten for a non-degenerate
hypersurface of a semi-Riemannian manifold admitting a semi-symmetric metric
connection. After having stated these, we derived the equations of Gauss curvature
and Codazzi-Mainardi. We obtained a relation between the Ricci and the scalar
curvatures of a semi-Riemannian manifold and of its a non-degenerate hypersurface.
Then we had a condition under which the Ricci tensor of a non-degenerate hyper-
surface with respect to the semi-symmetric metric connection is symmetric. Finally,
we established the conformal equations of Gauss curvature and Codazzi-Mainardi
for this type of a hypersurface.

The semi-symmetric metric connection is one of the three basic types of metric
connections, as already described by E. Cartan in [2], and this connection is also
called a metric connection with vectorial torsion. Connections with vectorial torsion
on spin manifolds may also play a role in superstring theory (see [1]), but this
aspect was not discussed in the present paper.

2. Preliminaries

Let M̃ be an (n+ 1)-dimensional differentiable manifold of class C∞ and M an
n-dimensional differentiable manifold immersed in M̃ by a differentiable immersion

i : M → M̃ .

i(M), identical to M , is said to be a hypersurface of M̃ . The differential di of the
immersion i will be denoted by B so that a vector field X in M corresponds to
a vector field BX in M̃ . We now suppose that the manifold M̃ is a semi-Riemannian
manifold with the semi-Riemannian metric g̃ of index 0 ≤ ν ≤ n+ 1. Hence the
index of M̃ is the ν and we will denote with ind M̃ = ν. If the induced metric
tensor g = g̃|M defined by

g(X,Y ) = g̃(BX,BY ) , ∀X,Y ∈ χ(M)

is non-degenerate, the hypersurface M is called a non-degenerate hypersurface.
Also, M is a semi-Riemannian manifold with the induced semi-Riemannian metric
g (see [9]). If the semi-Riemannian manifolds M̃ and M are both orientable, we
can choose a unit vector field N defined along M such that

g̃(BX,N) = 0 , g̃(N,N) = ε =
{

+1 , for spacelike N

−1 , for timelike N

for ∀X ∈ χ(M), which is called the unit normal vector field to M , and it should
be noted that indM = ind M̃ if ε = 1, but indM = ind M̃ − 1 if ε = −1.

3. Semi-symmetric metric connection

Let M̃ be an (n + 1)-dimensional differentiable manifold of class C∞ and ∇̃
a linear connection in M̃ . Then the torsion tensor T̃ of ∇̃ is given by

T̃ (X̃, Ỹ ) = ∇̃
X̃
Ỹ − ∇̃

Ỹ
X̃ − [X̃, Ỹ ] , ∀ X̃, Ỹ ∈ χ(M̃)
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and is of type (1, 2). When the torsion tensor T̃ satisfies

T̃ (X̃, Ỹ ) = π̃(Ỹ )X̃ − π̃(X̃)Ỹ

for a 1-form π̃, the connection ∇̃ is said to be semi-symmetric (see [10]).
Let there be given a semi-Riemannian metric g̃ of index ν with 0 ≤ ν ≤ n+ 1 in

M̃ and ∇̃ satisfy
∇̃g̃ = 0 .

Such a linear connection is called a metric connection (see [9]).
We now suppose that the semi-Riemannian manifold M̃ admits a semi-symmetric

metric connection given by

(3.1) ∇̃
X̃
Ỹ =

◦
∇̃
X̃
Ỹ + π̃(Ỹ )X̃ − g̃(X̃, Ỹ )P̃

for arbitrary vector fields X̃ and Ỹ of M̃ , where
◦
∇̃ denotes the Levi-Civita connec-

tion with respect to the semi-Riemannian metric g̃, π̃ a 1-form and P̃ the vector
field defined by

g̃(P̃ , X̃) = π̃(X̃)
for an arbitrary vector field X̃ of M̃ (see [3]). Since M is a non-degenerate hyper-
surface, we have

χ(M̃) = χ(M)⊕ χ(M)⊥ .
Hence we can write

(3.2) P̃ = BP + λN ,

where P is a vector field and λ a function in M .
Denoting by

◦
∇ the Levi-Civita connection induced on the non-degenerate hyper-

surface from
◦
∇̃ with respect to the unit spacelike or timelike normal vector field

N , from [10] we have

(3.3)
◦
∇̃BXBY = B(

◦
∇XY ) +

◦
h(X,Y )N

for arbitrary vector fields X and Y of M , where
◦
h is the second fundamental form

of the non-degenerate hypersurface M . Denoting by ∇ the connection induced
on the non-degenerate hypersurface from ∇̃ with respect to the unit spacelike or
timelike normal vector field N , we have

(3.4) ∇̃BXBY = B(∇XY ) + h(X,Y )N

for arbitrary vector fields X and Y of M , where h is the second fundamental form
of the non-degenerate hypersurface M and we call (3.4) the equation of Gauss with
respect to the induced connection ∇.

From (3.1), we obtain

∇̃BXBY =
◦
∇̃BXBY + π̃(BY )BX − g̃(BX,BY )P̃ ,
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and hence, using (3.3) and (3.4), we have

B(∇XY ) + h(X,Y )N = B(
◦
∇XY ) +

◦
h(X,Y )N

+ π̃(BY )BX − g̃(BX,BY )P̃ .(3.5)

Substituting (3.2) into (3.5), we get

B(∇XY )+h(X,Y )N = B(
◦
∇XY +π(Y )X−g(X,Y )P )+{

◦
h(X,Y )−λg(X,Y )}N ,

from which

(3.6) ∇XY =
◦
∇XY + π(Y )X − g(X,Y )P ,

where π(X) = π̃(BX) and

(3.7) h(X,Y ) =
◦
h(X,Y )− λg(X,Y ) .

Taking account of (3.6), we find

∇X(g(Y, Z)) = (∇Xg)(Y,Z) +
◦
∇X(g(Y,Z)) ,

from which

(3.8) (∇Xg)(Y,Z) = 0 .

We also have from (3.6)

(3.9) T (X,Y ) = π(Y )X − π(X)Y .

From (3.8) and (3.9), we have the following theorem:

Theorem 3.1. The connection induced on a non-degenerate hypersurface of
a semi-Riemannian manifold with a semi-symmetric metric connection with respect
to the unit spacelike or timelike normal vector field is also a semi-symmetric metric
connection.

Now, the equation of Weingarten with respect to the Levi-Civita connection
◦
∇̃

is

(3.10)
◦
∇̃BXN = −B(

◦
ANX)

for any vector field X in M , where
◦
AN is a tensor field of type (1, 1) of M defined

by

g(
◦
ANX,Y ) = ε

◦
h(X,Y )

(see [9]). On the other hand, using (3.1), we get

∇̃BXN =
◦
∇̃BXN + ελBX

since
π̃(N) = g̃(P̃ , N) = g̃(BP + λN,N) = λg̃(N,N) = ελ .
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Thus using (3.10), we find the equation of Weingarten with respect to the semi-sym-
metric metric connection as

(3.11) ∇̃BXN = −B(
◦
AN − ελI)X , ε = ∓1 ,

where I is the unit tensor. Defining AN by

(3.12) AN =
◦
AN − ελI ,

then (3.11) can be written as

(3.13) ∇̃BXN = −B(ANX)

for any vector field X in M . Then, we have the following corollary:

Corollary 3.2. Let M be a non-degenerate hypersurface of a semi-Riemannian
manifold M̃ . Then

i) If M has a spacelike normal vector field, the shape operator AN with respect
to the semi-symmetric metric connection ∇̃ is

AN =
◦
AN − λI ,

ii) If M has a timelike normal vector field, the shape operator AN with respect
to the semi-symmetric metric connection ∇̃ is

AN =
◦
AN + λI .

Now, let E1, E2, . . . , Eν , Eν+1, . . . , En be principal vector fields corresponding

to unit spacelike or timelike normal vector field N with respect to
◦
∇̃. Then, by

using (3.12), we have

(3.14) AN (E
i
) =

◦
AN (Ei)− ελEi =

◦
kiEi − ελEi = (

◦
ki − ελ)Ei , 1 ≤ i ≤ n ,

where
◦
ki, 1 ≤ i ≤ n, are the principal curvatures corresponding to the unit spacelike

or timelike normal vector field N with respect to the Levi-Civita connection
◦
∇̃. If

we write

(3.15) k
i

=
◦
ki − ελ , 1 ≤ i ≤ n ,

we deduce that

(3.16) AN (Ei) = kiEi , 1 ≤ i ≤ n ,

where ki, 1 ≤ i ≤ n, are the principal curvatures corresponding to the normal
vector field N (spacelike or timelike) with respect to the semi-symmetric metric
connection ∇̃. Hence, it yields the following:

Corollary 3.3. Let M be a non-degenerate hypersurface of the semi-Riemannian
manifold M̃ . Then
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i) If M has a spacelike normal vector field, the principal curvatures corres-
ponding to unit spacelike normal N with respect to the semi-symmetric
metric connection ∇̃ are k

i
=
◦
k
i
− λ, 1 ≤ i ≤ n,

ii) If M has a timelike normal vector field, the principal curvatures correspon-
ding to unit timelike normal N with respect to the semi-symmetric metric
connection ∇̃ are ki =

◦
ki + λ, 1 ≤ i ≤ n.

The function 1
n

n∑
i=1

εi
◦
h(Ei, Ei) is the mean curvature of M with respect to

◦
∇

and 1
n

n∑
i=1

εih(Ei, Ei) is called the mean curvature of M with respect to ∇, where

εi =
{
−1 , for timelike Ei

+1 , for spacelike Ei

If
◦
h vanishes, then M is totally geodesic with respect to

◦
∇, and if

◦
h is proportional

to g, then M is totally umbilical with respect to
◦
∇ (see [9]). Similarly, if h vanishes,

then M is said to be totally geodesic with respect to ∇. If h is proportional to g,
then M is said to be totally umbilical with respect to ∇.

From (3.7), we have the following propositions:

Proposition 3.4. In order that the mean curvature of M with respect to
◦
∇

coincides with that of M with respect to ∇, it is necessary and sufficient that the
vector field P̃ is tangent to M .

Proposition 3.5. A non-degenerate hypersurface is totally umbilical with respect
to the Levi-Civita connection

◦
∇ if and only if it is totally umbilical with respect to

the semi-symmetric metric connection ∇.

4. Equations of Gauss curvature and Codazzi-Mainardi

We denote by
◦
R̃(X̃, Ỹ )Z̃ =

◦
∇̃
X̃

◦
∇̃
Ỹ
Z̃ −

◦
∇̃
Ỹ

◦
∇̃
X̃
Z̃ −

◦
∇̃[X̃,Ỹ ]Z̃

the curvature tensor of M̃ with respect to
◦
∇̃ and by

◦
R(X,Y )Z =

◦
∇X

◦
∇Y Z −

◦
∇Y

◦
∇XZ −

◦
∇[X,Y ]Z

that of M with respect to
◦
∇. Then the equation of Gauss curvature is given by

◦
R(X,Y, Z, U) =

◦
R̃(BX,BY,BZ,BU) + ε

{◦
h(X,U)

◦
h(Y,Z)−

◦
h(Y,U)

◦
h(X,Z)

}
,



NON-DEGENERATE HYPERSURFACES OF A SEMI-RIEMANNIAN MANIFOLD 83

where
◦
R̃(BX,BY,BZ,BU) = g̃

( ◦
R̃(BX,BY )BZ,BU

)
,

◦
R(X,Y, Z, U) = g

( ◦
R(X,Y )Z,U

)
,

and the equation of Codazzi-Mainardi is given by
◦
R̃(BX,BY,BZ,N) = ε

{
(
◦
∇X

◦
h)(Y, Z)− (

◦
∇Y

◦
h)(X,Z)

}
(see [9]).

Now, we shall find the equation of Gauss curvature and Codazzi-Mainardi with
respect to the semi-symmetric metric connection. The curvature tensor of the
semi-symmetric metric connection ∇̃ of M̃ is, by definition,

R̃(X̃, Ỹ )Z̃ = ∇̃
X̃
∇̃
Ỹ
Z̃ − ∇̃

Ỹ
∇̃
X̃
Z̃ − ∇̃[X̃,Ỹ ]Z̃ .

Putting X̃ = BX, Ỹ = BY , Z̃ = BZ, we get

R̃(BX,BY )BZ = ∇̃BX∇̃BYBZ − ∇̃BY ∇̃BXBZ − ∇̃B[X,Y ]BZ .

Thus, using (3.4) and (3.13), we have

R̃(BX,BY )BZ = B
(
R(X,Y )Z + h(X,Z)ANY − h(Y, Z)ANX

)
+
{

(∇Xh)(Y, Z)− (∇Y h)(X,Z)

+ h(π(Y )X − π(X)Y,Z)
}
N ,(4.1)

where
R(X,Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

is the curvature tensor of the semi-symmetric metric connection ∇. Putting now

R̃(X̃, Ỹ , Z̃, Ũ) = g̃
(
R̃(X̃, Ỹ )Z̃, Ũ

)
, R(X,Y, Z, U) = g

(
R(X,Y )Z,U

)
,

we obtain, from (4.1),

R̃(BX,BY,BZ,BU) = R(X,Y, Z, U)

+ ε
{
h(X,Z)h(Y, U)− h(Y, Z)h(X,U)

}
,(4.2)

and

R̃(BX,BY,BZ,N) = ε
{

(∇Xh)(Y,Z)− (∇Y h)(X,Z)

+ h(π(Y )X − π(X)Y,Z)
}
.(4.3)

Equations (4.2) and (4.3) are called respectively the equations of Gauss curvature
and Codazzi-Mainardi with respect to the semi-symmetric metric connection.
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5. The Ricci and scalar curvatures

We denote by R the Riemannian curvature tensor of a non-degenerate hypersur-
face M with respect to the semi-symmetric metric connection ∇ and by

◦
R that

of M with respect to the Levi-Civita connection
◦
∇. Then, by a straightforward

computation, we find

R(X,Y )Z =
◦
R(X,Y )Z − α(Y, Z)X + α(X,Z)Y

− g(Y,Z)γ(X) + g(X,Z)γ(Y ) ,(5.1)

where

α(Y,Z) = (
◦
∇Y π)Z − π(Y )π(Z) + 1

2g(Y, Z)π(P )(5.2)

and

γ(Y ) =
◦
∇Y P − π(Y )P + 1

2π(P )Y(5.3)

such that
g(γ(Y ), Z) = α(Y, Z) .

Theorem 5.1. The Ricci tensor of a non-degenerate hypersurface M with respect
to the semi-symmetric metric connection is symmetric if and only if π is closed.

Proof. The Ricci tensor of a non-degenerate hypersurface M with respect to
semi-symmetric metric connection is given by

Ric(X,Y ) =
n∑
i=1

εig(R(Ei , X)Y,Ei) .

Then, from (5.1) we get

Ric(Y,Z) =
◦

Ric(Y,Z)− (n− 2)α(Y,Z) + ag(Y, Z)

where
◦

Ric denotes the Ricci tensor of M with respect to the Levi-Civita connection
and a = trace of γ given by (5.3). Since

◦
Ric is symmetric, we obtain

Ric(Y, Z)− Ric(Z, Y ) = (n− 2){α(Z, Y )− α(Y, Z)}

= 2(n− 2)dπ(Y, Z) .(5.4)

Hence, from (5.4) we find that the Ricci tensor of M with respect to the semi-sym-
metric connection is symmetric if and only if dπ = 0, where d denotes exterior
differentiation. That is, π is closed. �

Theorem 5.2. Let M be a non-degenerate hypersurface of a semi-Riemannian
manifold M̃ . If R̃ic and Ric are the Ricci tensors of M̃ and M with respect to the
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semi-symmetric metric connection, respectively, then for ∀X,Y ∈ χ(M)

R̃ic(BX,BY ) = Ric(X,Y )− f h(X,Y )

+ ε
{ n∑
i=1

εik
2
i g(X,Ei)g(Y,Ei) + g̃

(
R̃(N,BX)BY,N

)}
(5.5)

where εi = g(Ei, Ei), εi = 1, if Ei is spacelike or εi = −1, if Ei is timelike, and
f = trace of AN .

Proof. Suppose that {BE1, . . . , BEν , BEν+1, . . . , BEn, N} is an orthonormal ba-
sis of χ(M̃), then the Ricci curvature of M̃ with respect to the semi-symmetric
metric connection is

(5.6) R̃ic(BX,BY ) =
n∑
i=1

εig̃(R̃(BEi, BX)BY,BEi) + εg̃
(
R̃(N,BX)BY,N

)
for all X,Y ∈ χ(M). By using the equation of Gauss curvature (4.2) and (3.16),
and considering the symmetry of shape operator we get

g(R̃(BEi, BX)BY,BEi) = g(R(Ei, X)Y,Ei)

+ εg(ANEi, Y )g(ANEi, X)− h(X,Y )g(ANEi, Ei) .(5.7)

Hence, inserting (5.7) into (5.6) yields to (5.5). �

Theorem 5.3. Let M be a non-degenerate hypersurface of a semi-Riemannian
manifold M̃ . If ρ̃ and ρ are the scalar curvatures of M̃ and M with respect to the
semi-symmetric metric connection, respectively, then

(5.8) ρ̃ = ρ− εf2 + f∗ + 2εR̃ic(N,N)

where f = trace of AN and f∗ = trace of A2
N .

Proof. Assume that {BE1, . . . , BEν , BEν+1, . . . , BEn, N} is an orthonormal basis
of χ(M̃), then the scalar curvature of M̃ with respect to the semi-symmetric metric
connection is

(5.9) ρ̃ =
n∑
i=1

εiR̃ic(Ei, Ei) + εR̃ic(N,N) .

As (5.5) is considered, we get

R̃ic(Ei, Ei) = Ric(Ei, Ei) + ε
{
g
(
R̃(N, ei)ei, N

)
+ 2εik2

i

}
Hence, we obtain

ρ̃ = ρ− εf2 + f∗ + 2εR̃ic(N,N) .

�
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6. The conformal equations of Gauss curvature and Codazzi-Mainardi

Denoting the conformal curvature tensors of type (0, 4) of the semi-symmetric
metric connections ∇̃ and ∇, respectively, by C̃ and C we have

C̃(X̃, Ỹ , Z̃, Ũ) = R̃(X̃, Ỹ , Z̃, Ũ) + g̃(X̃, Ũ)L̃(Ỹ , Z̃)− g̃(Ỹ , Ũ)L̃(X̃, Z̃)

+ g̃(Ỹ , Z̃)L̃(X̃, Ũ)− g̃(X̃, Z̃)L̃(Ỹ , Ũ) ,(6.1)

where

L̃(Ỹ , Z̃) = − 1
n− 1R̃ic(Ỹ , Z̃) + ρ̃

2n(n− 1) g̃(Ỹ , Z̃)

and R̃ic is the Ricci tensor and ρ̃ is the scalar curvature of M̃ with respect to the
connection ∇̃. Similarly, we get

C(X,Y, Z, U) = R(X,Y, Z, U) + g(X,U)L(Y, Z)− g(Y,U)L(X,Z)

+ g(Y, Z)L(X,U)− g(X,Z)L(Y, U) ,(6.2)

where
L(Y,Z) = − 1

n− 2 Ric(Y,Z) + ρ

2(n− 1)(n− 2)g(Y, Z)

and Ric is the Ricci tensor and ρ is the scalar curvature of M with respect to the
connection ∇. From (4.2), we have

(6.3) R̃ic(BY,BZ)− εR̃(N,BY,BZ,N) = Ric(Y, Z)− εfh(Y, Z) + h(ANY,Z) ,

where f = trace of AN . On the other hand, from (6.1), we find

C̃(N,BY,BZ,N) = R̃(N,BY,BZ,N) + ε
ρ̃

n(n− 1)g(Y,Z)

− 1
n− 1

{
εR̃ic(BY,BZ) + R̃ic(N,N)g(Y, Z)

}
.(6.4)

Substituting (6.4) into (6.3), we get

Ric(Y,Z) = n− 2
n− 1R̃ic(BY,BZ)− εC̃(N,BY,BZ,N)

−
{ 1
n− 1εR̃ic(N,N)− 1

n(n− 1) ρ̃
}
g(Y, Z)

+ εfh(Y, Z)− h(ANY,Z) .(6.5)

From (6.5) and (5.8), we have

L(Y,Z) = L̃(BY,BZ) + 1
n− 2

{
εC̃(N,BY,BZ,N)− εfh(Y, Z) + h(ANY,Z)

}
+ 1

2(n− 1)(n− 2)(εf2 − f∗)g(Y, Z) ,(6.6)
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where f∗ = trace of A2
N . Thus, from (6.1), we obtain

C̃(BX,BY,BZ,BU) = R̃(BX,BY,BZ,BU) + g(X,U)L̃(BY,BZ)

− g(Y, U)L̃(BX,BZ) + g(Y, Z)L̃(BX,BU)

− g(X,Z)L̃(BY,BU) .(6.7)

Using (6.2), (6.6), (6.7) and (4.2), we get

C(X,Y, Z, U) = C̃(BX,BY,BZ,BU) + ε
{
h(Y, Z)h(X,U)− h(X,Z)h(Y, U)

}
+ ε

n− 2
{
C̃(N,BY,BZ,N)g(X,U)− C̃(N,BX,BZ,N)g(Y,U)

+ C̃(N,BX,BU,N)g(Y, Z)− C̃(N,BY,BU,N)g(X,Z)
}

− 1
n− 2

{(
εfh(Y,Z)− h(ANY, Z)

)
g(X,U)−

(
εfh(X,Z)

− h(ANX,Z)
)
g(Y,U) +

(
εfh(X,U)− h(ANX,U)

)
g(Y,Z)

−
(
εfh(Y, U)− h(ANY,U)

)
g(X,Z)

}
+ (εf2 − f∗)

(n− 1)(n− 2)
{
g(Y,Z)g(X,U)− g(X,Z)g(Y, U)

}
.(6.8)

Equation (6.8) is the conformal equation of Gauss curvature. Hence, from (6.1), we
have

C̃(BX,BY,BZ,N) = R̃(BX,BY,BZ,N)

− 1
n− 1

{
g(Y, Z)R̃ic(BX,N)− g(X,Z)R̃ic(BY,N)

}
.(6.9)

Taking into consideration equation (4.3), we obtain

C̃(BX,BY,BZ,N) = ε
{

(∇h)(X,Y, Z)− (∇h)(Y,X,Z) + h(π(Y )X − π(X)Y, Z)
}

− 1
n− 1

{
g(Y, Z)R̃ic(BX,N)− g(X,Z)R̃ic(BY,N)

}
.(6.10)

Equation (6.10) is the conformal equation of Codazzi-Mainardi.
We suppose that the semi-Riemannian manifold M̃ is conformally flat (C̃ =

0) and that the (n > 3)-dimensional non-degenerate hypersurface M is totally
umbilical, then we have R̃ = 0 (see [3]) and we also have h = cg, since M is
totally umbilical with respect to ∇ by Proposition 3.5. Then from (6.8) we get the
following theorem:

Theorem 6.1. A totally umbilical non-degenerate hypersurface in a conformally
flat semi-Riemannian manifold with a semi-symmetric metric connection is confor-
mally flat.
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