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A CLASS OF ONE-DIMENSIONAL DEGENERATE 
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JOHN A. NOHEL, Madison 

Dedicated to Professor Jaroslav Kurzweil on the occasion of his sixtieth birthday 

(Received July 10, 1985) 

1. INTRODUCTION 

In this paper we use self similar solutions to study the one-dimensional degenerate 
Cauchy problem 

vt = ^(tf)** > xeR, t > 0 , 

v(x, 0) = g(x) 

for the constitutive function (j)(v) = max (v9 0). We assume that the initial data g 
are smooth on R \ {0} with at most exponential growth at infinity and satisfy 

(g) x g(x) = 09 x * 0 , g(0) = 0 , 

and the inequality is strict near x = 0. The principal issue is the regularity of the 
free boundary near t = 0. 

Problems of this type arise as convexifications of diffusion equations with non-
monotone constitutive functions as has been discussed in [HN 1, H ] . The behavior 
of solutions for (P) is similar to those of the one phase Stefan problem in which 
g(x) = — 1 for x < 0, and g has a jump discontinuity at x = 0. However, (P) and 
the Stefan problem exhibit different regularity properties of the free boundary 
near t = 0. 

Existence and uniqueness of weak solutions of (P) can be proved using nonlinear 
semigroup theory [BCPa, E]. Indeed, Benilan, Crandall, and Pierre [BCPi] have 
obtained optimal existence and uniqueness results for the porous medium equation 
(i.e. problem (P) with <j>(v) = max (vm, 0), m > 1) in Rn. However, their results do 
not apply directly to the case m = 1. Details of the proofs in the present context 
are given in Vazquez [VI] and the results (Theorems 3.1, 3.2) are stated in Section 3. 
Using standard approximation arguments and the comparison method discussed 
in [VI] (see Section 3) one establishes the existence of a continuous monotone 
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decreasing free boundary t -> s(t)9 s(0) = 0 and v(s(t)+

91) = 0. Moreover, the pair 
(v9 s) satisfies the free boundary problem 

vt = vXX9 x > s(t)9 t > 0, 

v(x9 0) = g(x), x > 0, 

(P) v(s(t)+

9t) = 09 

g(s(t))s'(t) = vx(s(t)+

9t)9 t>09 

s(0) = 0. 

Conversely, the solution, t; of (P) extended by v(x91) = g(x) for x < s(t) is a weak 
solution of (P). 

In the special case of (P), (g) with the function g satisfying the additional assump
tion: g'(0+)9 g'(0~) =t= 0, we have shown by solving a singular integral equation 
[HN2, 3] that the problem (P) has a unique solution (v9 s). Moreover, 

(1.1) s(t)=>-KJt + 0(f+1<2) (t->0+)9 

for any 0 < a < 1/2, where K is the uniquely defined monotone function of p : = 
: = g'(0+)lgf(0~) determined implicity by the equation 

(1.2) p = ^ + ^ e к ! ' 4 Г e - ' ! 
åy. 

For t = e > 0 the free boundary is smooth. It should be observed that a formal 
expansion of the ODE g(s(t)) s'(t) -= vx(s(t)+

91) yields 

(p.)s(t)s'(t) = (P+) + ..., 

so that 
s ( 0 = - V(2-P') + •••> 

where .. . denote terms of higher degree powers of t. However, if p = 1, then (1.2) 
implies K = .9034 .. . 4= y/2. The reason for this apparent inconsistency is that all 
derivatives of v become singular at (x91) at (0, 0) and in particular, vx is discontinuous 
at (0, 0). By contrast, for the one phase Stefan problem [FP 1, 2; KN; S] the solution 
is smooth on the set {(x, t) : x = s(t)9 t e [0, T]}. 

The purpose of this note is to discuss the regularity and qualitative behavior for 
small t of the free boundary of (P) for more general initial data g. Of particular 
interest is the model datum 

/TV. ( \ \P+X7 > x = ° > 
( D ) * W = | - - - | x h x < 0 , 

where p±9 y > 0 are given constants, for which the integral equation method of 
[HN2, 3] breaks down if y 4= 1, i.e. if the datum g is not piecewise linear. It will be 
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shown in Section 2 that (P) with the model initial datum (D) can be solved explicitly 
for aU y > 0 using self similar solutions, and the free boundary is determined 
explicitly for all t = 0 by proving the following result. 

Proposition 1.1. For the model datum (D) problem (P) has the unique self similar 
solution 

<*,.)-.«чђ), x > s(t), t > 0 

where \j/{') is the unique solution of the ordinary differential equation 

(i.3) • 2 r(Z) + « V(i) - y <KS) = o > 5 > - K 

subject to the initial conditions 

(1.4) <H-*) = 0, >'(-«) = ( P _ ) ^ , 

and K is related to p+ via the condition 

(1.5) lim r 1 -A(^) = P + . 
S-+ + 00 

The free boundary is s(t) = —K^Jt, t = 0. Moreover, given p = p+jp- > 0, 
K > 0 is f/ze unique solution of the equation 

where D . y . ^ * ) is fhe parabolic cylinder function of index ( — y — 1) [B, p. 119]. 
It is readily verified that (1.6) reduces to (1.2) if y = 1. The regularity of the free 

boundary for problem (P) with initial data (g) more general data than (D) can then 
be discussed using the above explicit solutions as comparison functions. This will 
be done briefly in Section 3 using ideas of Vazquez [VI, 2]. The principal result is 

Theorem 1.2. Let v be the solution of (P), where the smooth datum g satisfies 
assumptions (g), x g(x) > Ofor x near zero, and there exists y > 0 such that 

~limg(x)\x\-y = a > 0 
(1.7) *-°" 

' lim G(x)x~ ( y + 1 ) = b > 0 , 
* - > 0 + 

where G(x) = g(£) df, x = 0. Let p := b(y + l)/a. Then 

(1.8) s ( 0 = - ^ ( 1 + 0(1)) ( t - 0 + ) , 

where K = K(P) > 0 is fhe uniquely defined inverse of the function p defined by 
equation (1.6); for t = e > 0 the free boundary is smooth for as long as it exists. 
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As already remarked in the special case y = 1 the integral equation approach 
yields the stronger result (1.1). The proof of Theorem 1.2 is sketched in Section 3. 

Proposition 1.1 and the comparison method used in the proof of Theorem 1.2 
can be used to discuss the regularity of the free boundary near t = 0 for initial data 
more general than those satisfying (V7). For example, if, in place of (D), 

(\ o\ / \ Wa> x = ° 
<'-9> 9{x) = \-\xr, *<o, 
where a, a > 0, /? = 0, and a > /?, then there exist constants cu c2 > 0 which depend 
on a, (3 such that 
(1.10) . c l f l

1 / ( ' + 1 V = -s(t) = c2*1 / ( ' + 1 V , 

where X = (a 4- l)/2{/? + 1), for t = 0 sufficiently small. On the other hand, if 
jS>a in (1 .9 ) , 

l im _ Z ^ L _ = (2(j8 - a))1/2 . 

If ff = a in (1.9), X = \ and the situation is covered by Proposition 1.1. 
The constitutive function </>(v) = max (v, 0) in (P) is piecewise linear. However, 

self similar solutions of (P, D) exist for more general constitutive functions (/>,but 
they cannot in general be found explicitly. We expect to investigate the regularity 
of the free boundary near t = 0 for such problems in future work. This question is 
not discussed in [BMPe] where other qualitative aspects of several such problems 
are investigated. 

This research was sponsored by ARO Contract No. DAAG29-80-C-0041. Valuable 
discussions during the preparation of this paper with colleagues and friends including 
R. Askey, M. G. Crandall, K. Hollig, and J. L. Vazquez are gratefully acknowledged. 

2. SELF SIMILAR SOLUTIONS 

In this section we consider the Cauchy problem (P) for the model datum (D). 
Let v = v(x, t;y, p+, p_) be the solution of (P), (D), and define the transformation 
v -> Tv by 

(2.1) Tv(x, t) = fiv(Xx, X2t) , 

where/*,X > 0 are constants. Ttransforms solutions into solutions and in particular, 
it is clear that (p_) v(x, t;y,p, 1), where p = p+\p_, is a solution of (P), (D). 
Denoting v(x, t, y; p, l) := v(x, t; y, p), uniqueness (Theorem 3.2) implies that 

(2.2) v(x, t; y, p+, p_) = (p_) v(x, t; y, p) . 

Since Tv(x, 0; y, p) = v(x, 0; y, p) if and only if piXy = 1, uniqueness of solutions 

297 



of (P), (D) further implies that 

(2.3) v(x, t; y, p) = (X~?) v(Xx, X2t; y, p) 

for any X > 0. Fixing the point (x, t) and choosing X = t~1/2 in (2.3) implies that v 
is the self similar solution 

(2.4) v(x, t; y, p) : = ty/2i/t(xr1/2) 

of the Cauchy problem (P), (D) for any y > 0. By the comparison method (Section 
3) the free boundary s of (P), (D) is monotone decreasing and s'(t) < 0 for t > 0, 
s(0) = 0. Moreover, by the equivalence of problems (P), (D) and (P), (D) the free 
boundary s = {(x, t) : xt~i/2 = —K,t>0}, where K > 0 is the constant uniquely 
determined in Proposition 1.1, and by Proposition 3.3 

v(x, t;y, p) > 0 , x > s(t) , t = 0 . 

Proof of Proposition 1.1. Substituting v defined by (2.4) in (P) one sees that i/t 
must satisfy the linear differential equation (1.3), and conditions (1.4) and (1.5). 

Equation (1.3) can be solved explicitly. Put x = £/>/2 and w(£) = i/̂ (x). Then (1.3) 
becomes 

(2.5) w"(x) + x w'(x) - y w(x) = 0 . 

Setting w(x) : = y(x) exp (— x2/4) we obtain 

(2.6) / ' ( x ) _ ( i + 7 + ^ ) J ; ( x ) = 0 . 

This differential equation has the general solution [B, p. 116—117] 

y(x) = bx D_y_i(x) + b2 Dy(ix) ( - o o < x < o o , y > 0), 

where Dv(*) is the parabolic cylinder function of index v. Thus the general solution 
of (1.3) is 

(2.7) *({) = [^,_,(^) + tj0,(|)]e*p(^) 

for — oo < £ < oo and y > 0. To impose the initial conditions (1.4) we need the 
formulae [B, p. 119] 

2\~i ;., / ; P \ /- £2 

Then the initial conditions (1.4) yield the pair of equations 

298 

-? 



(2.8) 
b'D->(-$ + >*(-%-

Because (2.6) is of self-adjoint form the Wronskian of Dy(*), £>_y-i(
#) is constant, 

W(D.y.1(-), Dy(-)) = -iexp [ ( L ± i ) * ] . 

Thus 

(2.9) 

M K ) J Í ^ Ч I Һ Ш 
І^«P[(Ł±І)-J] 

(p-"""'D-(-å)"p(îг) 
iV2exp[( l i )« i ] 

».м = -

(2H) 

and (2.7) with bl9 b2 given by (2.9) is the solution of (1.3) satisfying the initial con
ditions (1.4). To compute the limit in (1.5) we use [B, p. 122]: 

(2.10) Dv(z) = zvexp/'-^)[l-fO(jz|^)] as |z|-> oo , 

which is valid for — 3rc/4 < arg z < 3TU/4. Thus for £ e R9 y > 0, 

c-'-'(^)-exp(-?)(^r , p+o( | r2 , ]- {-+M' 
HM=<)&Hf)[l+o(linh <—• 

Substitution of (2.11) and (2.9) into the general solution (2.7) yields 

(2.12) HQ - H«) exp (J2E) ( X J [ 1 + 0(1)] , { -> + co . 

From formula (2.9) we see that 

(2..3) Mt)e,p(f)_^.C.,.,(-i)exp(£). 
Imposing the asymptotic condition (1.5) and using (2.12), (2.13) we finally obtain 
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which is equation (1.6). 
To complete the proof of the Proposition we have to show that given any p > 0, 

(1.6) is uniquely solvable for K. This is a consequence of uniqueness (Theorem 3.2). 
However, it can also be seen directly as follows. From [BO, p. 573] 

D ( K\- V* y ^ / K V ' , 
"'•'V V2j 2(v+1)/ar/1+iy=o(2«)!W2y 

(2-15) 

.> * - / ^ \ 2 » + l 

2>I2Г 

_./* y q2n+i (JL\2"+1 

/l + y\ --o (2- + 1)! W2/ ' 

is an analytic function of K, — oo < K < oo, y > — 1; a0 = a± = 1, 

a n + 2 = (v + i ) a n + ^ ( n - l ) a „ _ 2 , and I)-y-t(0) = , ( y + 1 ) / 2 ^ + y / 2 ) • 

The coefficients av are positive, D_y_1(--?c/>/2) is a positive, strictly increasing func
tion of K for 0 5̂  fc < oo, and by (1.6) so is p(*c). Moreover p(0) = 0. This completes 
the proof of Proposition 1.1. 

We conclude this section by establishing two useful asymptotic estimates. From 
(2.15) and (1.6) 

(2.16) P(K) <* - ^ (—\+1(K -> 0+) . 

Moreover, [BO, p. 574] 

M - 7 K T ^ H T > ^ > ' 
and therefore, from (1.6) 

3. EXISTENCE UNIQUENESS AND COMPARISON OF SOLUTIONS OF (P) 

In this section we state general existence and uniqueness results for (P), briefly 
discuss the comparison method, and sketch the proof of Theorem 1.2. 

Consider the Cauchy problem (P) in QT = R x [0, T) where T > 0, and assume 
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that the datum g e L™oc(R) and satisfies 

(3.1) g(x) S cexp(hx2), xeR , 

for some constants c, h > 0. Define g~(x) := max( —a(x), 0). For existence of 
solutions of (P) one has the following result proved in Vazquez [VI]. 

Theorem 3.1. There exists T = T(g) = (47th)"1 and a function veC([0, T] : 
Llioc(^) n LToc(6r)) wtft the following properties: 

(i) v{-, t)-*g in L\0C(R) as t -> 0 + . 
(ii) vt - cj>(v)xx = 0 in &(QT\ 

(iii) For every tx < T there exists constants ht ^ h and cL > 0 such that 

(3.2) — g~(x) g v(x, t) g cx exp( — /?1x
2) 

for every 0 < t ^ tt and a.e. for x e R. 
Uniqueness of solutions of (P) can be established in a larger class of functions 

which includes the class of solutions in Theorem 3.1; the proof is given Vazquez [VI]. 

Theorem 3.2. Let w, v e C([0, T]; L\oc(R) n L?oc(QT)) satisfy the following pro
perties: 

(i) ut - <j)(u)xx = vt - (j)(v)xx in &(QT)\ 
(ii) u(-, 0 - »(•, 0 -> 0 in L ^ f l ) as t -• 0 + ; 

(iii) f0r every ^ :g T there exist constants ct > 0, ht > 0 such that 

(3.3) u(x, t), v(x, t) ^ cx exp (h!*2) a.e. in R x (0, f x) . 

(iv) u~(x9t),v-(x9t)eLZc(QT). 
Then u(x91) = v(x, t) a.e. in QT. 

AS a consequence of Theorems 3.1 and 3.2 the Cauchy problem (P) has a unique 
solution in QT for some T > 0 if the datum g satisfies (3.1). If the datum g has expo
nential growth as |x| -> oo, the solution v of (P) will become infinite in finite time. 
This is evident because nonnegative solutions of the heat equation vt = vxx have this 
property for exponentially growing data. On the other hand, if the datum g has at 
most polynomial growth at infinity, then by Theorem 3.1 the solution v of (P) exists 
on 0 g t < oo. 

Next, we turn to the comparison method in the form it is needed in the proof of 
Theorem 1.2, see Vazquez [VI]. To state it we define 

G(x)= T g(Z)d£9 xeR, 
J - 0 0 

V(x, t)=\ v(^,t)di, xeR, t^O. 
J — oo 

Proposition 3.3. Let vuv2 be two solutions of(P) corresponding to data gi, g2 
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respectively, each satisfying assumptions (g), and gl9 g2 e L*(R). If Gt(x) ^ G2(x) 
for every x e R9 then V\(x,1) ^ V2(x, t) for every xs R9 t > 0. 

Remark. Proposition 3.3 holds for solutions v of (P) whenever <f> is a continuous 
nondecreasing function: R -+ R, and <£(0) = 0. Observe that V satisfies the P.D.E. 
Vt = <t>(Vx)x and Proposition 3.3 is the maximum principle for this equation. 

Sketch of Proof of Theorem 1.2. We assume that assumptions (g) are satisfied. 
Since the interest is in the regularity of the free boundary near t = 0, we assume 
without loss of generality that g has at most polynomial growth at infinity. Then the 
Cauchy problem (P), (g) exhibits a unique free boundary x = s(t) defined on 0 < 
< t < oo, s(0) = 0, 5 G C*(0, oo), and s'(t) < 0 for t > 0. In what follows we denote 
by G(x) the primitive JS g(£) d£. An essential ingredient in the proof is the following 
refinement of Proposition 3.3. An analogous result for the porous medium equation 
has been proved by Vazquez [V2]; the proof is similar. 

Lemma 3.4. Let vl9 v2 be two solutions cf(P) corresponding to initial data gl9 g2 

respectively, satisfying assumptions (g). Let si9 s2 be the corresponding free 
boundaries, sx(0) = s2(0)= 0. Assume that 

(3.4) 0 > 9l(x) = g2(x) 

for small x < 0, and that 

(3.5) Gx(x) = G2(x) 

for every x on some interval (0, a), a > 0, Gx(a) > 0 and Gx =|= G2 on (0, a). Then 

(3.6) Sl(t) Z s2(t) 

for t > 0 sufficiently small. 
To complete the proof of Theorem 1.2 we apply Lemma 3.4. Let vx = v, the solu

tion of (P), (g) where the initial datum g satisfies assumptions (g) and (1.7). Let v2 

be the self similar solution of Proposition 1.1 corresponding to the model datum (D) 
with p+ = b(y + 1) + e, p__ = a - e, where 0 < e < a. Then G2(x) = G^x) for 
small x = 0, Gt =|= G2, and 0 > g2(x) ^ gi(x) for x < 0. By Lemma 3.4 s2(t) ^ 
^ s^t) for small t = 0. Thus identifying st with s and using the result of Proposition 
1.1, 

liminí(-s(t)r^) ^ K(^L±A±l) 
<-o+ \ a— e / 

for every 0 < e < a. Since K is a continuous function of p+jp-, we let e -> 0 + to 
obtain 

(3.7) lim inf (~s(t) T1/2) = K (ML±jr\ . 
*->o+ \ a ) 

By a similar argument, letting vt be the self similar solution of (P), (D) with p+ and p_ 

302 



defined as above, and letting v2 be the solution of (P), (D) we obtain 

(3.8) lim sup (-s(f) T1 /2) ^ K f^l±3i . 
*-o + \ a J 

The result (1.8) is a consequence of (3.7), (3.8). This completes the sketch of the proof. 
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