Časopis pro pěstování matematiky

Josef Niederle

A note on tolerance lattices of finite chains

Časopis pro pěstování matematiky, Vol. 106 (1981), No. 1, 75--78
Persistent URL: http://dml.cz/dmlcz/108272

Terms of use:

© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

A NOTE ON TOLERANCE LATTICES OF FINITE CHAINS

Josef Niederle, Brno

(Received November 13, 1978)

In this paper, tolerance lattices of finite chains are characterized as free distributive lattices over a family of finite partial lattices.

Notation. $L(n+1)$ is the distributive lattice of all $(n+1)$-tuples of natural numbers $\left[x^{0}, x^{1}, \ldots, x^{n}\right]$ satisfying $x^{0}=0, x^{i} \leqq x^{i-1}+1$ for $i=1, \ldots, n$.

Remarks. $i<j$ implies $x^{j} \leqq x^{i}+j-i$.
$L(n+1)$ is isomorphic to the tolerance lattice of an $(n+1)$-element chain (regarded as a lattice) ([2]).

Notation. U_{n} is a partial lattice defined as follows:
1° The underlying set of U_{n} is the $2 n$-element set $\left\{O, I, a_{1}, \ldots, a_{n-1}, b_{1}, \ldots, b_{n-1}\right\}$,
$2^{\circ} O \wedge u=O, u \wedge I=u$ for all $u \in U_{n}$,
$3^{\circ} a_{i} \wedge a_{j}=a_{\min (i, j)}, b_{i} \wedge b_{j}=b_{\min (i, j)}$ for all $i, j \in\{1, \ldots, n-1\}$,
$4^{\circ} a_{i} \wedge b_{j}=O$ for all $i, j \in\{1, \ldots, n-1\}$ satisfying $i+j \leqq n$.
In the following, the notation $a_{0}=b_{0}=O, a_{n}=b_{n}=I$ will be used. It is clear that conditions 3° and 4° remain valid for all $i, j \in\{0,1, \ldots, n\}$.

Proposition. $L(n+1)$ is generated by a partial sublattice isomorphic to U_{n}.
Proof. Denote $a_{i}=[0,1, \ldots, i, 0, \ldots, 0]$, i.e. $a_{i}^{k}=k$ for $k \leqq i$ and $a_{i}^{k}=0$ for $k>i$, and $b_{i}=[0, \ldots, 0,1, \ldots, i]$, i.e. $b_{i}^{k}=0$ for $k<n-i$ and $b_{i}^{k}=k+i-n$ for $k \geqq n-i$. Then $O=[0, \ldots, 0]$, i.e. $O^{k}=0$, and $I=[0,1, \ldots, n]$. i.e. $I^{k}=k$. The set $\left\{0, I, a_{1}, \ldots, a_{n-1}, b_{1}, \ldots, b_{n-1}\right\}$ satisfies $1^{\circ}-4^{\circ}$, so it can be regarded as a partial sublattice of $L(n+1)$ isomorphic to U_{n}. Let $x=\left[x^{0}, x^{1}, \ldots, x^{n}\right] \in L(n+1)$. Put $\quad y=\bigvee_{k=1}^{n}\left(a_{k} \wedge b_{x^{k}-k+n}\right)$. Then $\quad y^{i}=\bigvee_{k=1}^{n}\left(a_{k}^{i} \wedge b_{x^{k}-k+n}^{i}\right) \geqq a_{i}^{i} \wedge b_{x^{i-i+n}}^{i}=i \wedge$ $\wedge x^{i}=x^{i}$. As $a_{k}^{i} \wedge b_{x^{k-k+n}}^{i} \leqq x^{i}, y^{i} \leqq x^{i}$ must hold and therefore $y^{i}=x^{i}$. Hence $y=x$. Q.E.D.

Definition. A pair of indices $[i, j]$ is n-significant if $i+j>n$. A pair of indices is maximal n-significant in a set M of pairs of indices if it is a maximal element in the subset of all n-significant elements of M.

Remark. Clearly, a homomorphic image of a partial lattice satisfying $2^{\circ}-4^{\circ}$ satisfies $2^{\circ}-4^{\circ}$ as well.

Lemma 1. Let a distributive lattice D contain a subset $U=\left\{a_{0}=b_{0}=O\right.$, $\left.a_{n}=b_{n}=I, a_{1}, \ldots, a_{n-1}, b_{1}, \ldots, b_{n-1}\right\}$, not necessarily $a 2 n$-element set, the elements of which satisfy $2^{\circ}-4^{\circ}$. Let $d \in D, d=\mathrm{V}\left(a_{i_{k}} \wedge b_{j_{k}}\right)$. Then $d=$ $=\vee\left(a_{e_{m}} \wedge b_{f_{m}}\right)$, where $\left\{\left[e_{m}, f_{m}\right]\right\}_{m}$ is the set of all maximal n-significant elements of $\left\{\left[i_{k}, j_{k}\right]\right\}_{k}$.

Proof. If there is no n-significant element in $\left\{\left[i_{k}, j_{k}\right]\right\}_{k}$, then $\left\{\left[e_{m}, f_{m}\right]\right\}_{m}=\emptyset$ and $d=0 . \bigvee_{m \in \emptyset}\left(a_{e_{m}} \wedge b_{f_{m}}\right)$ can be put equal to O in this case. If there is at least one n-significant element in $\left\{\left[i_{k}, j_{k}\right]\right\}_{k}$, then evidently

$$
\begin{aligned}
\bigvee_{m}^{\mathrm{V}}\left(a_{e_{m}} \wedge b_{f_{m}}\right) & \leqq \bigvee_{k}\left(a_{i_{k}} \wedge b_{j_{k}}\right)=\bigvee_{p}\left(a_{i_{p}} \wedge b_{j_{p}}\right) \vee \underset{q}{ } \bigvee_{q}\left(a_{i_{q}} \wedge b_{j_{q}}\right)= \\
& =0 \vee \bigvee_{q}\left(a_{i_{q}} \wedge b_{j_{q}}\right) \leqq \bigvee_{m}\left(a_{e_{m}} \wedge b_{f_{m}}\right)
\end{aligned}
$$

where $\left[i_{p}, j_{p}\right]$ are all n-nonsingificant pairs and $\left[i_{q}, j_{q}\right]$ are all n-significant pairs in $\left\{\left[i_{k}, j_{k}\right]\right\}_{k}$. Q.E.D.

Lemma 2. Let a distributive lattice D be generated by its subset $U=\left\{a_{0}=b_{0}=\right.$ $\left.=O, a_{n}=b_{n}=I, a_{1}, \ldots, a_{n-1}, b_{1}, \ldots, b_{n-1}\right\}$, not necessarily a $2 n$-element set, the elements of which satisfy $2^{\circ}-4^{\circ}$. Then every element $d \in D$ can be represented in the form $d=V_{k}\left(a_{i_{k}} \wedge b_{j_{k}}\right)$, where the indices i_{k} form an increasing finite sequence and the indices j_{k} form a decreasing finite sequence, both of the same length, and $i_{k}+j_{k}>n$ for all k.

Proof. By Lemma 1, every element $d \in D$ can be represented in the form $d=$ $=\mathrm{V}\left(a_{e_{m}} \wedge b_{f_{m}}\right)$, where all pairs of indices $\left[e_{m}, f_{m}\right]$ are maximal n-significant in $\left\{\left[e_{m}, f_{m}\right]\right\}_{m}$. By ordering all binomials in this representation by indices e, the needed representation can be obtained. Q.E.D.

Notation. The representation from Lemma 2 will be denoted by a tilde over V , i.e. $\tilde{\mathrm{V}}$.

Proposition. In the case of $L(n+1)$, the representation mentioned in Lemma 2 is unique.

Proof. Let $d=\underset{k}{\widetilde{V}}\left(a_{i_{k}} \wedge b_{j_{k}}\right)$ be such a representation. Then it holds

$$
\begin{equation*}
d^{i_{k}} \neq 0, \quad d^{i_{k}+1} \leqq d^{i_{k}} \tag{*}
\end{equation*}
$$

because

$$
d^{i_{k}}=b_{j_{k}}^{i_{k}}>0, \quad d^{i_{k}+1}=\bigvee_{l>k}\left(a_{i_{l}} \wedge b_{j_{l}}\right)=\bigvee_{l>k} b_{j_{l}}^{i_{k}+1}<b_{j_{k}}^{i_{k}+1}=d^{i_{k}}+1
$$

Conversely, let d^{i} satisfy (*), i.e. $d^{i} \neq 0, d^{i+1} \leqq d^{i}$. Then there exists a k such that $i=i_{k}$ and $b_{j_{k}}^{i}=d^{i}$, because a k must exist such that $i \leqq i_{k}$ and $b_{j_{k}}^{i}=d^{i}$, and if $i<i_{k}$, then $d^{i+1}=d^{i}+1$. Hence i_{k} and j_{k} are uniquely determined by the coordinates of the element d. Q.E.D.

Theorem. $L(n+1)$ is a free distributive lattice over U_{n}.
Proof. Let D be a distributive lattice, φ a homomorphism of the partial lattice U_{n} into D. Clearly, the only possible homomorphic extension of φ on the whole $L(n+1)$ is the mapping

$$
\bar{\varphi}=\left(\underset{k}{\widetilde{V}}\left(a_{i_{k}} \wedge b_{j_{k}}\right) \mapsto \underset{k}{ } \underset{\boldsymbol{V}}{ }\left(\varphi a_{i_{k}} \wedge \varphi b_{j_{k}}\right)\right)
$$

$\bar{\varphi}$ is a lattice homomorphism:
Join:

$$
\bar{\varphi}\left(\underset{k}{\tilde{V}}\left(a_{i_{k}} \wedge b_{j_{k}}\right) \vee \underset{i}{\tilde{V}}\left(a_{g_{l}} \wedge b_{h_{l}}\right)\right)=\bar{\varphi}\left(\underset{\boldsymbol{V}}{\tilde{V}}\left(a_{e_{m}} \wedge b_{f_{m}}\right)\right)=\underset{m}{\widetilde{V}}\left(\varphi a_{e_{m}} \wedge \varphi b_{f_{m}}\right)
$$

where $\left[e_{m}, f_{m}\right]$ are exactly all maximal n-significant elements in $\left\{\left[i_{k}, j_{k}\right]\right\}_{k} \cup\left\{\left[g_{l}, h_{l}\right]\right\}_{l}$.

$$
\begin{gathered}
\bar{\varphi}\left(\underset{k}{\widetilde{V}}\left(a_{i_{k}} \wedge b_{j_{k}}\right)\right) \vee \bar{\varphi}\left(\underset{\boldsymbol{V}}{\tilde{V}}\left(a_{g_{l}} \wedge b_{h_{l}}\right)\right)= \\
=\underset{\boldsymbol{V}}{\tilde{V}}\left(\varphi a_{i_{k}} \wedge \varphi b_{j_{k}}\right) \vee \underset{\boldsymbol{V}}{\tilde{V}}\left(\varphi a_{\boldsymbol{g}_{\imath}} \wedge \varphi b_{h_{l}}\right)=\underset{\boldsymbol{V}_{m}}{\tilde{m}}\left(\varphi a_{e_{m}} \wedge \varphi b_{f_{m}}\right),
\end{gathered}
$$

where $\left[e_{m}, f_{m}\right]$ are exactly all maximal n-significant elements in $\left\{\left[i_{k}, j_{k}\right]\right\}_{k} \cup\left\{\left[g_{l}, h_{l}\right]\right\}_{l}$. Hence $\bar{\varphi}$ is join-preserving.
Meet:

$$
\bar{\varphi}\left(\underset{k}{\tilde{V}}\left(a_{i_{k}} \wedge b_{j_{k}}\right) \wedge \underset{i}{\tilde{V}}\left(a_{g_{l}} \wedge b_{h_{1}}\right)\right)=\bar{\varphi}\left(\underset{m}{\tilde{V}}\left(a_{e_{m}} \wedge b_{f_{m}}\right)\right)=\underset{m}{\tilde{V}}\left(\varphi a_{e_{m}} \wedge \varphi b_{f_{m}}\right),
$$

where $\left[e_{m}, f_{m}\right]$ are exactly all maximal n-significant elements in $\left\{\left[\min \left(i_{k}, g_{t}\right)\right.\right.$, $\left.\left.\min \left(j_{k}, h_{l}\right)\right]\right\}_{k, l}$.

$$
\begin{aligned}
& \bar{\varphi}\left(\underset{k}{\widetilde{V}}\left(a_{i_{k}} \wedge b_{j_{k}}\right)\right) \wedge \bar{\varphi}\left(\underset{\boldsymbol{V}}{(}\left(a_{g_{l}} \wedge b_{h_{l}}\right)\right)= \\
& =\underset{\boldsymbol{k}}{\tilde{V}}\left(\varphi a_{i_{k}} \wedge \varphi b_{j_{k}}\right) \wedge \underset{\boldsymbol{k}}{\tilde{V}}\left(\varphi a_{\boldsymbol{g}_{\boldsymbol{l}}} \wedge \varphi b_{h_{\boldsymbol{i}}}\right)=\underset{\boldsymbol{V}}{\tilde{V}}\left(\varphi a_{e_{m}} \wedge \varphi b_{f_{m}}\right),
\end{aligned}
$$

where $\left[e_{m}, f_{m}\right]$ are exactly all maximal n-significant elements in $\left\{\left[\min \left(i_{k}, g_{l}\right)\right.\right.$, $\left.\left.\min \left(j_{k}, h_{l}\right)\right]\right\}_{k, l}$. Hence $\bar{\varphi}$ is meet-preserving. Q.E.D.

References

[1] G. Szász: Introduction to lattice theory. Akadémiai Kiadó Budapest, 1963.
[2] I. Chajda - J. Dalik - J. Niederle - V. Veselý - B. Zelinka: How to draw tolerance lattices of finite chains. Arch. Math. (Brno), 16 (1980), 161-165.

Author's address: 61500 Brno 15, Viniční 60.

