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Časopis pro pěstování matematiky, roč. 106 (1981), Praha 

A NOTE ON TOLERANCE LATTICES OF FINITE CHAINS 

JOSEF NIEDERLE, Brno 

(Received November 13, 1978) 

In this paper, tolerance lattices of finite chains are characterized as free distributive 
lattices over a family of finite partial lattices. 

Notation. L(n + 1) is the distributive lattice of all (n + l)-tuples of natural numbers 
[x°, x1,..., xn] satisfying x° = 0, xf

 = x i _ 1 + 1 for i = 1,..., n. 

Remarks, i < j implies x j g x* + j — i. 
L(n + 1) is isomorphic to the tolerance lattice of an (n + l)-element chain (re

garded as a lattice) ([2]). 

Notation. Un is a partial lattice defined as follows: 
1° The underlying set of Un is the 2n-element set {09I9 al9..., an_i, bl9..., b„_i}, 
2° O A u = 0, u A / = u for all u e Un9 

3° at A a j = amm{iJ)9 bt A bj = bmin{iJ) for all i9j e{l,..., n - 1}, 
4° a( A bj = O for all i,J e {1,..., n — 1} satisfying i + j ^ n. 

In the following, the notation a0 = b0 = 09 an = bn = I will be used. It is clear 
that conditions 3° and 4° remain valid for all i, j e {0,1,..., n}. 

Proposition. L(n + 1) is generated by a partial sublattice isomorphic to Un. 

Proof. Denote a{ = [0,1,..., i, 0,..., 0], i.e. a\= fc for fc ^ i and a* = 0 
fork > i,andb f = [0, ...,0, 1,..., i],i.e.b*= Oforfc < n - iand b\ = k + i - n 
for fc = n - i. Then O = [0,..., 0], i.e. Ok = 0, and I = [0,1,..., n]. i.e. i* = fc. 
The set {0,7, al9..., «w_i, fci,..., fr„-i} satisfies l°--40, so it can be regarded as 
a partial sublattice of L(n + 1) isomorphic to Un. Let x = [x°, x1,..., xn] e L(n + 1). 

n n 

Put y = V(ak A bxk.k+n). Then y1 = V(at A Kk^k+n) ^ a? A bxi.i+n = i A 
* = i fe=i 

A x* = xl. As ak
l A bl

xk-k+n f* xf, y* ^ x1 must hold and therefore y( = x\ Hence 
y = x. Q.E.D. 
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Definition. A pair of indices [/, j ] is n-significant if i + j > n. A pair of indices 
is maximal n-significant in a set M of pairs of indices if it is a maximal element in 
the subset of all n-significant elements of M. 

Remark. Clearly, a homomorphic image of a partial lattice satisfying 2°— 4° 
satisfies 2°—4° as well. 

Lemma 1. Let a distributive lattice D contain a subset U = {a0 = b0 = 09 
an ~ bn = I, al9 ..., a„-i, bl9 ..., bM_i}, no£ necessarily a 2n-element set, the 
elements of which satisfy 2°-4°. Let d e D, d = V(aik A bjk). Then d = 
= V(flem A b/m), where {[£m>fm]}m w the set of all maximal n-significant elements 
of {[w*]}*-

Proof. If there is no n-significant element in {[^,Ik]}k, then {[em,fm]}m = 0 
and d = 0. V (#*„, A &/m) can be put equal to O in this case. If there is at least 

me0 

one n-significant element in {[*'*, A]}fc' ^ e n eyidently 

V(«em A bfm) = V(ait A bJk) = V(aip A b]p) v V(a,, A *>,,) = 
m k p q 

= 0 v V K A bjq) = V(a,m A 6/m) 
q m 

where [^,jp] are all n-nonsingificant pairs and [}q,jq] are all n-significant pairs 
in{[**,A]}*. Q.E.D. 

Lemma 2. Lef a distributive lattice D be generated by its subset U = [a0 = b0 = 
= 0, an = bn = 7, ai,..., an-i, bi, ..., b/,-i}, n0î  necessarily a 2n-element set9 

the elements of which satisfy 2°— 4°. Then every element de D can be represented 
in the form d = V(aik A bjk), where the indices ikform an increasing finite sequence 

k 

and the indices jk form a decreasing finite sequence, both of the same length, and 

h + Jk > nfor aM k-

Proof. By Lemma 1, every element de D can be represented in the form d = 
== V(^em

 A &/„,)> w r i e r e a ^ pairs of indices [em,fm] are maximal n-significant in 
m 

{[em,fm]}m. By ordering all binomials in this representation by indices e, the needed 
representation can be obtained. Q.E.D. 

Notation. The representation from Lemma 2 will be denoted by a tilde over V> 
i.e. V-

Proposition. In the case of L(n + 1), fhe representation mentioned in Lemma 2 
is unique. 

16 



Proof. Let d = V(aik A bjk) be such a representation. Then it holds 
k 

(*) dik + 0, d,k+1
 = dik, 

because 

d* = bjk > 0 , dik+l = V (ah A iyi) = V Mf1 < bA+1 = dik + 1 . 
J>fc l>k 

Conversely, let dl satisfy (*), i.e. dl 4= 0, di+1 ^ d(. Then there exists a fc such that 
i = ifc and b}k = d\ because a fc must exist such that i :g ik and b]k = dl, and If 
i < ik, then dl+1 = df + 1. Hence ik andjfc are uniquely determined by the coordi
nates of the element d. Q.E.D. 

Theorem. L(n + l) is a free distributive lattice over Un. 

Proof. Let D be a distributive lattice, cp a homomorphism of the partial lattice UH 

into D. Clearly, the only possible homomorphic extension of cp on the whole L(n + 1) 
is the mapping 

9 = ( V K A bjk) M> V(cpaik A cpbjk)). 
k k 

<p is a lattice homomorphism: 
Join: 

<?(VK A bjk) v V K , A bhl)) = p(V(^m A fc/m)) = \/(cpaem A <pb/m), 
k l m m 

where [em,fm] are exactly all maximal n-significant elements in {[ik, jk]}k u {[g,, h*]}*. 

? ( V K A 6A)) v <p(\/(ag, A 6,,)) = 

= Vfo-.* A V6yJ v V(<pagi A fl>fc4l) = W(cpaem A p& 7J , 
* I m 

where [em,fOT] are exactly all maximal n-significant elements in {[**,./*]}* u {[gf, Aj}j. 
Hence <p is join-preserving. 
Meet: 

<?(VK A 6yJ A V(flgl A bhl)) = 9(V(«em A bfm)) = V(<P^m A <?b/m) , 
k I m m 

where [em,/m] are exactly all maximal n-significant elements in {[min (ik, gt), 
min (jk, h,)]}kwl. 

$(V(atk A bjk)) A p(v"(««, A t»4l)) = 
it i 

= V((p"tk A (pbJk) A V(<?ai,1 A <pbkt) = V(<paem A v fc , J , 
k k m 

where [em,fm] are exactly all maximal n-significant elements in {[min (ik, gt), 
min (jk9 hl)J\k%l. Hence q> is meet-preserving. Q.E.D. 
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