Časopis pro pěstování matematiky

Harry I. Miller
An analogue of a result of Carathéodory

Časopis pro pěstování matematiky, Vol. 106 (1981), No. 1, 38--41
Persistent URL: http://dml.cz/dmlcz/108278

Terms of use:

© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

AN ANALOGUE OF A RESULT OF CARATHÉODORY*)

Harry I. Miller, Sarajevo
(Received August 8, 1978)

1. INTRODUCTION AND PRELIMINARIES

C. Carathéodory has shown [3] that there exists a Lebesgue measurable function f, $f: R \rightarrow R(R$ the set of real numbers) such that $m(\{x \in I ; f(x) \in J\})>0$ for each non-empty open interval I and each set J of positive Lebesgue measure. Here m denotes Lebesgue measure. S. Berman [2] has arrived at the same result using probabilistic methods.

The purpose of this note is to prove an analogue of the above mentioned result of Carathéodory by considering sets of the second Baire category rather than sets of positive Lebesgue measure. Specifically we will prove that there exists a Lebesgue measurable function $g, g: \mathrm{R} \rightarrow \mathrm{R}$ such that $\{x \in I ; g(x) \in J\}$ is a set of the second Baire category in R for each non-empty open interval I and each set J which is of the second category (in the sense of Baire) in R.

The current author [4], using techniques of A. AbiAN [1], has proved the following
Theorem A. Let P be a set, $\bar{P}=c(c$ an infinite cardinal). Suppose 2 is a collection of at most c subsets of P, each having c elements. Suppose further that \mathscr{B} is a collection of subsets of P such that if $B \subset P$ with $Q \cap B \neq \emptyset, \forall Q \in \mathscr{Q}$, then $B \in \mathscr{B}$. Then P can be written as the union of \mathfrak{l}-many disjoint sets in \mathscr{B} for each cardinal number $\mathfrak{f}, \mathfrak{f} \leqq$.

Here, and later in our work, we identify every cardinal f with the set of all ordinals preceding \mathfrak{f} (i.e. all ordinals having cardinal number less than \mathfrak{f}). Thus \mathfrak{f} is a wellordered set.

The following corollary, an application of Theorem A, will be useful later in our work.

Corollary. Let P be a set of the second Baire category in R , the real line. Let c be the cardinal of the continuum and let be any positive cardinal such that $\mathfrak{f} \leqq \mathrm{c}$.

[^0]Then P can be expressed as a union of \mathfrak{f}-many pairwise disjoint subsets B_{j} of P, where B_{j} is of the second Baire category in R for every $j<k$.

For the proof of this corollary see [4].

2. RESULTS

The following lemma will be essential to the construction of the function g mentioned in the introduction.

Lemma. Let $\left\{I_{n}\right\}_{n=1}^{\infty}$ denote the collection of non-empty open intervals with rational endpoints. Then there exists a sequence $\left\{D_{n}\right\}_{n=1}^{\infty}$ of subsets of R with the following properties:

1) D_{n} is of the second Baire category for each n.
2) $m\left(D_{n}\right)=0$ for each n.
3) $D_{n} \subset I_{n}$ for each n.
4) $D_{n} \cap D_{m}=\emptyset$ if $n \neq m$.
5) $\left(R \backslash \bigcup_{i=1}^{n} D_{i}\right) \cap J$ is of the second Baire category $\forall J$, a non-empty open interval, and $\forall n$.

Proof. The sequence $\left\{D_{n}\right\}_{n=1}^{\infty}$ will be constructed inductively. First we construct D_{1}. Suppose $I_{1}=\left(a_{1}, b_{1}\right), a_{1}<b_{1}, a_{1}$ and b_{1} rational numbers. There exists a set $D_{1}^{1} \subset I_{1}$ such that

$$
m\left(D_{1}^{1}\right)=0,
$$

D_{1}^{1} is of the second Baire category in R,
$I_{1} \backslash D_{1}^{1}$ is of the first Baire category in R.
(See [5], page 4.) Notice that D_{1}^{1} fails to satisfy property 5). We will use Theorem A to partition D_{1}^{1} into the union of two sets D_{2}^{1} and D_{3}^{1} each satisfying the five given properties. To see this let

$$
\begin{gathered}
\mathscr{B}=\left\{B ; B \subset D_{1}^{1} \text { and } B \cap J \text { is of the second category } \forall J,\right. \\
\text { a non-empty open sub-interval of } \left.I_{1}\right\}
\end{gathered}
$$

and

$$
\mathscr{Q}=\left\{\left(R \backslash \bigcup_{i=1}^{\infty} F_{i}\right) \cap J \cap D_{1}^{1}, \text { where each } F_{i}\right. \text { is closed and }
$$

nowhere dense and J is an open non-empty sub-interval of $\left.I_{1}\right\}$.
Then $\overline{\bar{D}}_{1}^{1}=\mathrm{c}$ (the cardinal of the continuum), $\overline{\bar{Q}} \leqq \mathrm{c}$ and $\overline{\bar{Q}}=\mathrm{c}$ for every $Q \in \mathscr{Q}$ (as each Q is of the second category due to the properties of D_{1}^{1}). Further, if $B \subset D_{1}^{1}$ and $B \cap Q \neq \emptyset$ for every $Q \in \mathscr{Q}$ then $B \in \mathscr{B}$. To see this suppose that $B \cap J$ is of the
first category for some J (a non-empty open sub-interval of I_{1}). Then $B \cap J=\bigcup_{i=1}^{\infty} X_{i}$ (with each X_{i} nowhere dense) or $B \cap J \subset \bigcup_{i=1}^{\infty} \mathrm{Cl}\left(X_{i}\right)$, which implies $(B \cap J) \cap$ $\cap\left(\mathrm{R} \backslash \bigcup_{i=1}^{\infty} F_{i}\right)=\emptyset$, where $F_{i}=\mathrm{Cl}\left(X_{i}\right)$ is closed and nowhere dense. This contradicts the fact that $B \cap Q \neq \emptyset$ for every $Q \in \mathcal{Q}$.

Therefore, by Theorem A with $\mathfrak{f}=2$ we obtain $D_{1}^{1}=D_{2}^{1} \cup D_{3}^{1}$ with $D_{2}^{1} \cap D_{3}^{1}=\emptyset$, and $D_{2}^{1}, D_{3}^{1} \in \mathscr{B}$ (i.e. D_{2}^{1} and D_{3}^{1} each have second category intersection with each non-empty open sub-interval of I_{1}).

Take $D_{1}=D_{2}^{1}$. Then clearly D_{1} satisfies 1), 2), 3), and 5). Suppose now that $D_{1}, D_{2}, \ldots, D_{n}(n \geqq 1)$ satisfy properties 1$\left.\left.), 2\right), 3\right), 4$), and 5$)$. We proceed to construct D_{n+1}. If $I_{n+1}=\left(a_{n+1}, b_{n+1}\right)$, where $a_{n+1}<b_{n+1}$ and a_{n+1}, b_{n+1} are rational numbers, then there exists a set $D_{1}^{n+1} \subset I_{n+1}$ such that

$$
\begin{aligned}
& m\left(D_{1}^{n+1}\right)=0 \\
& D_{1}^{n+1} \text { is of the second Baire category in } \mathrm{R}, \\
& I_{n+1} \backslash D_{1}^{n+1} \text { is of the first Baire category in } \mathrm{R} .
\end{aligned}
$$

The set $\left(D_{1}^{n+1} \cap J\right) \cap\left(\mathrm{R} \backslash \bigcup_{i=1}^{n} D_{i}\right)$ is of the second Baire category for each non-empty open sub-interval J of I_{n+1}, since $\left(R \backslash \bigcup_{i=1}^{n} D_{i}\right) \cap J$ and $\left(J \backslash D_{1}^{n+1}\right) \cap\left(R \backslash \bigcup_{i=1}^{n} D_{i}\right)$ are respectively of the second and first Baire category for each non-empty open subinterval J of I_{n+1}.

```
    Set \(D_{2}^{n+1}=D_{1}^{n+1} \cap\left(\mathrm{R} \backslash \bigcup_{i=1}^{n} D_{i}\right)\), then we have
    \(m\left(D_{2}^{n+1}\right)=0\),
    \(D_{2}^{n+1} \subset I_{n+1}\),
    \(D_{2}^{n+1} \cap D_{i}=\emptyset, i \in\{1,2, \ldots, n\}\),
    \(D_{2}^{n+1} \cap J\) is of the second Baire category for each non-empty open sub-interval \(J\)
of \(I_{n+1}\).
```

By the argument (using Theorem A) in the $n=1$ part of the proof, D_{2}^{n+1} can be partitioned into the disjoint union of two sets.
D_{3}^{n+1} and D_{4}^{n+1}, such that
$D_{i}^{n+1} \cap J$ is of the second Baire category for each non-empty open sub-interval J of I_{n+1}, where $i=3,4$.

Set $D_{n+1}=D_{3}^{n+1}$, then $m\left(D_{n+1}\right)=0, D_{n+1}$ is of the second Baire category, $D_{n+1} \subset I_{n+1}$, and $D_{n+1} \cap D_{i}=\emptyset$ for every $i \in\{1,2, \ldots, n\}$.

Furthermore, if J is a non-empty open interval, then

$$
\left(R \backslash \bigcup_{i=1}^{n+1} D_{i}\right) \cap J=\left(R \backslash \bigcup_{i=1}^{n} D_{i}\right) \cap\left(R \backslash D_{n+1}\right) \cap J \supset
$$

$$
\begin{gathered}
\supset\left(\mathrm{R} \backslash \bigcup_{i=1}^{n} D_{i}\right) \cap\left\{\left(\mathrm{R} \backslash I_{n+1}\right) \cup D_{4}^{n+1}\right\} \cap J= \\
=\left(D_{4}^{n+1} \cap J\right) \cup\left\{\left(\mathrm{R} \backslash \bigcup_{i=1}^{n} D_{i}\right) \cap\left(\mathrm{R} \backslash I_{n+1}\right) \cap J\right\},
\end{gathered}
$$

is a set of the second Baire category. Therefore the sets $D_{1}, D_{2}, \ldots, D_{n}, D_{n+1}$ satisfy properties 1), 2), 3), 4), and 5) and the proof of the lemma is complete.

We now proceed to the proof of the existence of a function g with the properties mentioned in our introduction.

Theorem. There exists a Lebesgue measurable function $g, g: R \rightarrow R$ such that $\{x \in I ; g(x) \in J\}$ is a set of the second Baire category in R for each non-empty open interval I and each set J which is of the second Baire category in R .

Proof. There exists a sequence of sets $\left\{D_{n}\right\}_{n=1}^{\infty}$ satisfying the five properties mentioned in the last lemma. By Corollary in the introduction we can express D_{n} as $D_{n}=\bigcup_{j<c} D_{n, j}$, where each set $D_{n, j}$ is of the second Baire category in R and such that the sets $\left\{D_{n, j}\right\}_{j<c}$ are pairwise disjoint. Here c denotes the cardinal of the continuum. Let $\left\{a_{j}\right\}_{j<c}$ be an enumeration (i.e. a well-ordering) of R. Define $g(x)=a_{j}$ for each $x \in \bigcup_{n=1}^{\infty} D_{n, j}$ and $g(x)=0$ for each $x \notin \bigcup_{n=1}^{\infty} D_{n}$. Then g satisfies the requirements of our theorem, in fact $\{x \in I ; g(x)=y\}$ is a set of the second Baire category in R for each real number y and each non-empty open interval I. The function g is clearly measurable as each set D_{n} has Lebesgue measure zero.

References

[1] Abian, A.: Partition of nondenumerable closed sets of reals, Czech. Math. J., 26 (101), (1976), 207-210.
[2] Berman, S.: Local times and sample function properties of stationary Gaussian processes, Trans. Amer. Soc., 137 (1969), 277-299.
[3] Carathéodory, C.: Theory of Functions, Vol. 2, $2^{\text {nd }}$ English ed. Chelsea, New York, 1960.
[4] Miller, H. I.: A general partition theorem for sets of reals, Akademija Nauka i Umjetnosti Bosne i Hercegovine (Sarajevo), LXVI (19), (1980), 87-89.
[5] Oxtoby, J.: Measure and Category, Springer-Verlag, New York, Heidelberg, Berlin, 1971.

Author's address: University of Sarajevo, Department of Mathematics, Sarajevo, 71000, Yugoslavia.

[^0]: *) This research was supported by the Republican Council for Scientific Work of Bosna and Hercegovina.

