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Časopis pro pěstování matematiky, roč. 95 (1970), Praha 

INVARIANT THEORY UNDER RESTRICTED GROUPS 

E. M. IBRAHIM, Cairo 

(Received November 26, 1968) 

The relation that expresses Schur functions in terms of the characters of the 
orthogonal group is1) 

- • W = M + lr«J>] 
where rdftX is the coefficient of {A} in {8} {/x} the summation is taken w.r.t. all parti
tions (<5) into even parts only. 

The formula that expresses the orthogonal group characters in terms of S functions 
is1) 

n w - w + n - i r ^ M 
where FVMA is the coefficient of {A} in the product {v} {p} and (v) is a partition of p, 
summed for all partitions which in Frobenius' nomenclature are of one of the forms 

(r + 1\ /r + 1 s + 1\ fr + 1 s + 1 t + 1\ 

These partitions appear in the series 

1 - {2} + {31} - {412} - {32}~{422} + ... 

Schur functions are given in terms of the characters of the symplectic group by the 
relation2) 

III {A} « <A> + I r ^ O i ) 

where rfiftX is the coefficient of {A} in {ft} {ju} and {P} is summed for all partitions in 
which each part is repeated an even number of times i.e. 

1 + {I2} + {22} + {l4} + {32} + {2212} + {!«} + ... 

1 ) Littlewood [5]. 
2 ) Littlewood [5], 
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To express the group characters of the symplectic group in terms of S functions we 
have2) 

iv <A> = W+E(-i)p/2r^M 
where raflX is the coefficient of {X} in the product {jtf} {a}, (a) is a partition of p which 
in Frobenius' nomenclature is of one of the forms 

V/ + 1/ V / + 1 S + 1/ \r+l s + 1 t+l)' 

which appear in the series 1 - {l2} + {212} - {23} + {3221} + ... 
Just as the case of the full linear group of transformations the main problem is to 

express [JU] ® {X} or </x> ® {X} as the sum of simple characters. To evaluate these 
plethysms LITTLE WOOD expressed the characters [//), </*> in terms of 5 functions 
by II & IV then after expansion, he expressed the S functions back into orthogonal 
and symplectic group characters by I & HI. Use is made of the formula 

(A _ B) ® {X\ = A ® {X\ + £ ( - ! ) * rapx{A ® {a}) (B ® {/?*}) 

where (j8) is a partition of b, /?* is the conjugate partition & rafix is the coefficient 
of {A} in {a} {/?}. 

Later the author3) gave a proof to a theorem mentioned by MURNAGHAN, that, 
if (X) is a partition of an even integer m then 

Va <A> ® {fi} = ([A*] ® {/i})* . 

While if (X) is a partition of odd integer 

Vb <X> ® {fx} = ([A*] ® {/**})* 

which give the analyses of </l> ® {fi} when [A*] ® {//} and [i*] ® {^*} are known. 
Also it has been proved4) that 

vi [X] = <A> + rnflX^y 

where rmX is the coefficient of {X} in the product {*]} {jw}> {̂ } is summed for all 
partitions given by the series 

1 - {2} + {l2} + {22} - {212} - {23} ... 

and that £<A> = £[>*])* 
Later Littlewood5) proved that 

VII <A> = [A] + YrM - V*M 
3) Ibrahim [1]. 
4) Ibrahim [1]. 
5) Littlewood [6]. 
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Where F^A, TntlX are the coefficients of {A} in the product {£} {/*} or {rj} {/i} respec
tively where f is summed for all partitions into not more than two even parts & r\ for 
all partitions into exactly two odd parts. 

In this paper two new theorems are given: 

Theorem It The product of the symbolic expression for a concomitant of degree n 
in the coefficients of a ground form of type [A] under the restricted orthogonal 
group of transformations by the symbolic expression of a concomitant of degree n 
in the coefficients of a form of type [//] under the orthogonal group gives the sym
bolic expression of concomitants of degree n in the coefficients of a ground form 
of type [A + /i]. 

Proof. Let G & H be the symbolic expression of two forms of type [Al5..., Ar] & 
& [jU!,...,/zj respectively urfder the orthogonal group of transformations. If the 
same symbols are used in the two expressions then F = GH may be considered as 
the symbolic expression for a form of type [Ax + pu ..., Ar + /zr]. Let £ &£ be 
symbolic expression of concomitants of degree n in G and n in H. If the same symbols 
are used in each expression then £C will give the symbolic expression for a concomitant 
of degree n in F. The existence of this concomitant proves the theorem. 

In terms of S functions & group characters under the orthogonal group of transfor
mations, [A] ® {n} gives the concomitants of degree n in the coefficients of a ground 
form of type [A] & [n] ® {n} gives concomitants of degree n in the coefficients of 
a ground form of type [/*]. Then the principal parts of the products of individual 
terms in the expansion of ([A] ® {n}) ([[i] ® {n}) appear as terms in [A + fi] ® {n}. 

The theorem does not mean that frequency of occurrence of a partition in 
[Ax + fii9..., Ar + jwr] ® {n} is at least as great as the number of ways in which it 
appears as principal part of products of terms in ([A] ® {n}) ([fi] ® {n}). 

Example. 

[4] ® {2} = ({4} - {2}) ® {2} = {4} ® {2} - {4} {2} + {2} ® {l2} = 

= {8} + {62} + {4*} - {6} - {51} - {42} + {31} = 

= [8] + [62] + [6] + [42] + [42] + [4] + [22] + 2[2] + [0] . 

Also [2] ® {2} -= [4] + [22] + [2] + [0]. 
The principal parts of the product of terms in ([2] ® {2}) ([2] ® {2}) which are 

[8] + [62] + [6] + [4] + [4*] + [42] + [22] + [2] + [0] 

appears as terms in [4] ® {2}. 
A coefficient greater than one can be assumed when this coefficient appear in the 

individual terms of [A] ® {n} or [ft] ® {n}. 
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Theorem II. The product of the symbolic expression of a concomitant of degree n 
in the coefficients of a form of type <.A> under the symplectic group of transforma
tions by the symbolic expression of a concomitant of degree n in the coefficients of 
a form of type </J> gives the symbolic expression of a concomitant of degree n 
in the coefficients of a form of type <A + ft}. 

The proof follows as in theorem I. 

Example. 

<4> ® {2} = <8> + <62> + <51> + <4> + <42> + <32> + <22> + <12> + <0> 

<2> ® {2} = <4> + <22> + <12> + <0> . 

The principal parts of the product of terms in (<2> ® {2}) (<2> ® {2}) which are 
<8> + <62> + <51> + <4> + <42> + <32> + <22> + <12> + <0> appear as terms 
in <4> ® {2}. 

In fact other results could be deduced as those given under the full linear group of 
transformations6). 
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