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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

HYPERGRAPHS AND INTERVALS, II 

LADISLAV NEBESKÝ, Praha 

(Received September 9, 1983) 

0. Similarly as in [2], by a hypergraph we mean an ordered pair (V, S) with the 
property that V is a finite nonempty set and $ is a set of nonempty subsets of V 
Let H = (V, &) be a hypergraph. Consider arbitrary A, B =" V; if at least one of the 
sets A r\B9 A — B and B — A is empty, we shall write A ~ B\ otherwise, we shall 
write A ~ B. We shall say that a set F ^ Vis free in H if F ~ E for every EeS. We 
denote by £(H) the set of all A .= Vwith the property that at least one of the following 
conditions (i) — (iv) is fulfilled: 

(i) A = V, 

(ii) |A | = 1, 

(iii) A e S9 

(iv) there exist A', A" e 1(H) such that A' <+> A" and A e {A' n A", A' u A", 
A' - A"). 

Denote n = |V |. By an arrangement on V we mean a sequence (vl9 ..., vn) of /i 
distinct elements of V. Consider an arbitrary arrangement a = (vl9 ..., v„) on V; 
a set A c Vis referred to as an interval set in a if there exist integers j and m such 
that 1 ^ j :g m ^ n and A = {vA; j = k g m}; we denote by Int (a) the set of all 
interval sets in a. We shall say that an arrangement a on Vis a projectoidic arrangement 
on H if $ £ Int (a); note that the property "to be projectoidic" has a connexion with 
the property "to be projective" in the sense of mathematical linguistics (see for 
example [1]). We denote by H(H) the set of all projectoidic arrangements on II. 
We shall say that H is a projectoid if H(H) #= 0. 

The following lemma has been proved in [2]: 

Lemma 0. Let H be a projectoid, let a be a projectoidic arrangement on H9 

and let A be an interval set in a. If A £ E(H), then there exists an interval set F in a 
with the properties that F * A and F is free in H. 

In [2] the following theorem has been derived from Lemma 0: 
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Theorem 0. / / H is a projectoid, then 

I{H)= 0 Int («) . 
<ze/7(H) 

In the present note we shall derive two more theorems from Lemma 0. 

1. If H = (V, S) is a hypergraph, then we shall write V(H) = V and S(H) = S. 
If H! and H2 are hypergraphs, then we denote by Hx u H2 the hypergraph (V(Hi) u 
u V(H2), $(H\) u S(H2)). We shall say that a hypergraph H is a classification if the 
following two conditions hold: 

(a) if EeS(H), then 1 < |F| < |V(H)|, and 

(b) if E', E" e S(H), then E' ~ E". 

It is clear that every classification is a projectoid. 

Let H and H' be projectoids with V(H) = V(H')- il n a s b e e n P r o v e d -n [2] that 
17(H) = n(H') if and only if 1(H) = I(H'). 

Theorem 1. Let H be a projectoid. Then there exist classifications Ht and H2 

such that V(Hj) = V(H) = V(H2), S(HX) n £(H2) = 0, and 1(H) = I(Ht u H2). 

Proof. Denote n = \V(H)\ and s = \l(H)\. According to (i) and (ii), s = n + 1. 
The case when s ^ 3 is obvious. Let s ^ 4. Assume that for every projectoid H' 
with |£(H')| < s, the statement of the theorem has been proved. We distinguish two 
cases: 

Case 1. Assume that there exists no free set F of H with the property that 1 < 
< |F| < n. Consider a projectoidic arrangment a = (vu...,vn) of H. It follows 
from Lemma 0 that every interval set in a belongs to 2(H). This means that 1(H) = 
= Int (a). Since s ^ A, n ^ 3. We denote by rc# or nb the maximum integer m such 
that m ^ n and m is even or odd, respectively. We define Hx and H2 as follows: 
V(HX) = V(H) = V(H2), 

S(H\) = {{vi> ^2}, {v3> »*}> •••> R * - i > *>,,#}} arid 

*(Hi) = {{^2, 03}> {v4, v5}, ..., {^b_1? v„b}} . 

It is clear that Hx and H2 are classifications, S(H^) n $(H2) = 0 and Z(H) = 
= Int (a) = l(Hi u H2). 

Case 2. Assume that there exists a free set F of H with the property that 1 < 
< |F| < n. The case when s = n + 1 is obvious. Let s _• n + 2. Then there exists 
A G -T(H) such that A is a free set of H and 1 < |A | < n. 

Subcase 2.1. Assume that there exists no subset E0 of A such that 1 < |F0 | < 
< |A | and F0 e S(H). Consider an arbitrary u e A. Without loss of generality we shall 
assume that {u} $ S(H). We denote by H* the hypergraph with V(H*) = V(H) - {u} 

287 



and 6\H*) = {£ - {u}; E e S(H)}. Denote A* = A - {u}. Clearly, H* is a projec-
toid, A* is a free set in H* and A* e I(H*). According to (ii), {u} e 1(H). Hence, 
|r(H*)| < s. According to the induction hypothesis there exist classifications H* 
and H* such that V(H*) = V(H*) = V(H*), S(H\) n S(H*2) = 0 and I(H*) = 
= !(H* u H2). For i = l ,2 we denote by Ht the hypergraph with V(H,) = V(H) 
and 

i(H) = {£'; £ ' e S(H*) and A* n £' = 0} u 

u {£" u {u}; £" G S(H*) and A* <= £"} . 

It is clear that Hx and H2 have the desired properties. 

Subcase 2.2. Assume that there exists a subset £ 0 of A such that 1 < |£0 | < |A | 
and E0e£(H). We denote by H1 and H2 the hypergraphs with V(Hl) = V(H), 
V(H2) = A, 

S(Hl) = {A} u {£' e S(H)\ £ ' - A 4= 0} and S(H2) = {£" G S(H); £" _ A } . 

It is obvious that H1 and H2 are projectoids, 1(H) = ^(H1) u I(H2), ^(H1)! < s 
and |-£(H2)| < s. This means that there exist classifications H\, H\, H\ and H2 such 
that for i = 1, 2, V(Hi) = V(H') = V(H2), S(H\) n S(Hl

2) = 0 and 2:(H') = 
= I(H\ u H 2 ) . According to (a), A $ S(H\) U S(H2

2). For j = 1, 2 we denote 
Hy = H) U H2. It is easy to see that Hx and H2 have the desired properties. Thus, 
the theorem is proved. 

2. Let H be a hypergraph. We shall say that an arrangement on V(H) is an anti-
projectoidic arrangement on H if for no £ G S(H) such that 1 < |£| < |V(H)|, £ is 
an interval set in a. 

Theorem 2. Let H be a projectoid, and let H* be a classification such that V(H) = 
= V(H*) and E(H) n $(H*) = 0. Then, there exists a projectoidic arrangement 
on H which is an antiprojectoidic arrangement on H*. 

Proof. Denote n = |V(H)|. For every a0 G H(H), we denote by d(a0) the number 
of £ G S(H*) with the property that £ G Int (a0). Consider a projectoidic arrangement 
a on H such that for every a' G n(H), d(a') _ d(a). We wish to prove that d(v) = 0. 
On the contrary, we shall assume that d(<x) _ 1. Then there exists £ G S(H*) such 
that £ G Int (a). Since £ £ 1(H), it follows from Lemma 0 that there exists an interval 
set F in a with the properties that F ^ £ and F is free in H. Obviously, there exist 
distinct vl9 ...,vne V(H) such that a = (vl9..., vn). Since F ^ £, without loss of 
generality we may assume that there exist integers h, i,j and k such that 1 = /i < 
<i<j<k = n,E = {vh9..., Vj} and F = {vi9 ..., vk}. We denote by ft the arrange
ment 

(vl9..., vt-l9 vk9 ...,vi9 vk+l, ...9vn) if k < n or 

(vl9...9 Vi-l9 vk9...9Vi) if k = n. 
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Since F is a free set of H, ft is a projectoidic arrangement on H. Obviously, E £ 
$ Int (13). Since d(p) = d(a), there exists E' e £(H*) such that E' e Int (j8) - Int (a). 
This implies that either (a) v,-!, vk e E\ or (b) n > k and v,-, vfc+1 e E'. Since H* is 
a classification, E ^ E'. Since E' e Int (j5), F c F'. Hence, F; G Int (a), which is 
a contradiction. This means that d(a) = 0, and the proof is complete. 
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