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časopis pro pěstování matematiky, roč. 102 (1977), Praha 

COMPACT ELEMENTS OF THE LATTICE OF CONGRUENCES 
IN AN ALGEBRA 

JlTKA SEVECKOVA, BlTlO 

(Received June 16, 1976) 

In [5] I, a basic information about partitions in a set and congruences in an 
algebra can be found. Here, only necessary concepts will be introduced. A partition A 
in a set G is a system of pairwise disjoint nonempty subsets of G. These subsets will 
be called blocks of the partition A, its union \JA the domain of A. Of course, A is a 
partition on the set \JA. Partitions in G are in a 1-1-correspondence with the symmetric 
and transitive binary relations (ST-relations) in G, analogously as partitions on G 
correspond to equivalence relations in G. For this reason, we shall sometimes not 
distinguish partitions and ST-relations. If (G, F) is a partial algebra then the ST-
relations in the set G which are stable with respect to F are called congruences 
in (G, F). For the sake of completeness we give the definition of a stable binary 
relation A in a partial algebra (G, F): Let feFbe n-ary (n ^ l) and a{Abi (i = 
= 1,2,..., n), let/(a l 5..., an) and/(bi,..., bn) exist. Then/(a1 ?..., an) Af(bu ..., bn). 

The theory of partitions in a set and of congruences in an algebra has been an 
object of systematic study only recently even though the concepts appeared in the 
literature not less than forty years ago [2, 3, 4, 5, 7]. Nonetheless, the congruences 
"in" actually acted latently much earlier, already in the classical group theory, e.g. 
in connection with the Schreier-Zassenhaus theorem in which congruences on sub
groups are considered and not only those on the whole group. It was in this domain 
where "in" approach yielded formal as wel as matter-of-fact means for generalizing 
this theorem to algebras [7]. 

The sets R(G) of all binary relations in a set G, P(G) of all partitions in G and 
Jf(G, F) of all congruences in a partial algebra (G, F) are complete lattices under 
set inclusion. In all these cases the infimum of a system of relations — elements of the 
corresponding lattice — is equal to their set-intersection [4, 5]. Also the lattices n(G) 
of all partitions on a set G and ^(G, F) of all congruences on a partial algebra (G, F) 
are complete, the latter being a closed sublattice of the former which is not true in 
the situation "in". 11(G) is a closed sublattice of P(G). The lattices 17(G) and #(G, F), 
are algebraic. In Section 1, we shall prove the same property for the lattices R(G) 
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P(G) and Jf (G, F) (1.3, 1.4, 1.6, 1.13). It is shown that the compact elements of 
tf{G, F) are precisely the upper .^-modifications (see Def. 1.5) of compact elements 
of P(G) (or of R(G)) and the compact elements of P(G) and R(G) are exactly the finite 
relations in G (1.3, 1.4, 1.6, 1A4). 

In Section 2, we construct the upper Jf-modification WA of a binary relation A 
in a partial algebra (G, F) (2.7). The construction is similar to that of the upper 
^-modification GA of a relation A given in [6] 5.3, 5.4. It is identical with it if we 
replace the algebra (G, F) in the construction of GA by its subalgebra (U 5* A» F) 
(2A4). For this purpose we.need to know the set U^AJ this is established in 2.11. 

1. PROPERTIES OF LATTICES R(G), P(G) AND Jf(G, F) 

1.1. ([5] I 1.2). Let (G, F) be an algebra, and {An} c X(G, F). Then VxAa = 
a 

= yPBp, where Bfi stands for the congruence Aai v ^ . . . v^A a n for an arbitrary 
p 

finite choice Aai,..., Aan in {Aa}. 
In general, the theorem does not hold for partial algebras. 

1.2 ([5] I 1.2.0). Let (G, F) be an algebra and {Aa} an up-directed subset of 
X(G, F). Then M#Aa = \ M « = \JAa. 

a a a 

Proof. The first equality is proved in [5]. The other is obvious. 

1.3. Theorem. The set R(G) of all binary relations in a set G is an algebraic 
lattice with respect to inclusion. The compact elements of R(G) are exactly the 

finite relations in G. 

Proof. Evidently, R(G) is a complete lattice. Infima are intersections and suprema 
are unions. 

Let Te R(G), T = {x1 ? . . . , xw} and let n be a positive integer. Suppose that a system 
{Ta : a e / } satisfies \J Ta ^ T For each xte T there exists atel with xteTa. 

ael 

(i = l , . . . , n ) . Thus U T a f 2 T. 
i = l 

Let Te R(G) be an infinite relation. Define Tx = {x} for each xeT Then T = U Tx 

and T $ U Tx for all Tt <= Tand Tx 4= T xeT 

xeTi 

Finally, let Te R(G). Then T = U {*} and {x} is compact in R(G) for all x e T . 
xeT 

1.4. Theorem. The lattice P(G) of all partitions in a set G is algebraic. A partition 
is compact in P(G) if and only if it contains only finitely many blocks, each of them 
being a finite set. 
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Proof. P(G) is a complete lattice by [2], First, we shall prove that a partition 
A = {A1} with one finite block A1 = {xi9..., xn} is compact in P(G). If 21 = 
= {Ad : 8 e 4} <= P(G) and V21 = -4 then a certain block B1 e V2I contains A1. 
Given x,-, Xj e A1 there exist elements yl9 ..., j m _ ! of G and indices O\, ,_5m of A 

with x ^ y i — ym-1^*/-
Denote 2TU = {^ k : fc = 1, . . . , m} and S-. -= (J 21, y. Then V®i ^ -4 and » ! 

is a finite subsystem of 21. If the partition A consists of finite blocks A1
9...9A

k(ka posi
tive integer) we construct a (finite) system 23, <= 21 for every ^4f (1 = t ^ k) in the 

k 

described manner; then V® = A for © = U 2?r and S is a finite subsystem of 2t. 
t = i 

Next, we shall prove that a partition A 1) with at least one infinite block or 2) with 
infinite many blocks fails to be compact. 

1) Let A1 be infinite, A1 e A9 x9 y e A1. Denote by Ax>y the partition in G which 
we obtain from A taking the block {x9 y} instead of A1 (the other blocks of A remain 
unchanged). The join of the system 21 of all partitions AXtV (x9 y e A1) equals A. 
The blocks of the join of an arbitrary finite subsystem 21 j of 21 are all blocks of the 
partition A except A1 and in addition some blocks which together cover only a finite 
part of A1. Thus V ^ > A. 

2) Let A = {A3 : 5 e A}9 card A = K0. Define one-block partitions A3 = {As}> 
3 e A. Then \/{Ad : S e A} = A. It is evident that none of the finite subsystems of 
{Ab : b e A} has supremum _ A . 

It remains to prove that an arbitrary element of P(G) is the join of compact ones. 
Given A e P(G), A1 e A and x9 y e A1 we construct a one-block partition Axy = 
= {{x9 y}}. All these partitions are compact elements of P(G) and its supremum is 
equal to A. The theorem is proved. 

1.5. Definition. Let Lbe a partially ordered set, 0 4= K £ Land a e L. An element 
b e K is said to be an upper K-modification of a if b is the least element of K con
taining a. 

1.6. Theorem. Let (G, F) be an algebra. Then J f (G, F) is an algebraic lattice. 
The upper X-modifications of compact elements of P(G) are compact in Jf(G9 F). 

1.7. Remark. In 1.14 we shall prove that all compact elements of Jf (G, F) are of 
the above mentioned form. 

Proof. Let Tbe a compact element of P(G) and K the upper Jf-modification of T. 
Let {Ka:ael} £ X(G9F) and \jxKa = K.By 1.1, VPLfi = W*-« , where L? 

ael peJ ael 

runs through the Jf-suprema of all finite subsets of {Ka : a el}. We have VJ> Lfi = 
fieJ 

= VJT &a = K = T. There exists a finite subset Jx of J with Vp Lfi = T. Therefore 
ael fieJi 
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V;r Lp^^pLp^ T and thus V;r Lp = K. For each /? e Ji there exists a finite 
peJi fieJi fieJi 

subset I(P) of I such that Lfi is a Jf-supremum of the system {K*} (<5 e/(/?)). Let It 

be the join of all sets 1(0) with ft running over Jv Then Ix is finite and V*Ky J> 
^ VJT ^ i~ K. Consequently, K is a compact element of Jf(G, F). ye / l 

PeJi 

The lattice JT(G, F) is complete by [5] 11.1. It remains to prove that it is compactly 
generated. An arbitrary congruence K is a partition, hence it is V P of a set of compact 
elements of P(G), say 93. For B e 93 let A be the upper Jf-modification of B; let 91 
be the set of these modifications A. Evidently K = Vp® ^ VP$l £ W ^ t -§ &• 
Thus K = V ^ -

1.8. In what follows we shall need some known concepts definitions of which will 
be introduced now for convenience of the reader (see e.g. [ l ] , [6]). 

The closure operation on a partially ordered set Lis a mapping X : L ~> L with the 
following properties: l) a g Xa (a e L), 2) a g b => Xa ^ Ab, 3) AAa = Aa (a e L), 
4) /10 = 0 (provided 0 exists). The set of all compact elements of L will be denoted 
by L*. The closure operation X of L will be called algebraic if every ae L* satisfies 
the following condition: If a :g Xx then there exists x' e L* with x' ^ x and a ^ Xx'. 

1.9 ([6] 4.7). 4̂ closure operation X of an algebraic lattice L is algebraic if and 
only if it fulfils \/LS e XL for every directed subset S of XL. 

1.10. Definition. Let G be a set. Then X1 : R(G) -> P(G) is defined as follows: 
XX(A) is the upper P-modification of A e R(G). If (G, F) is an algebra we define the 
mappings X2 : P(G) -> Jf (G, F) and X3 : R(G) -» tf(G, F) analogously. 

1.11. Theorem. The maps Xt (i = 1,2,3) from Definition 1.10 are algebraic 
closure operations. 

Proof. It is clear that Xt (i = 1, 2, 3) is a closure operation. Further, by 1.9, it is 
enough to fulfil the condition \)S& e P(G) (as for Xt) or \J% e J f (G, F) (as for X2 

and X3),foi an arbitrary directed subset 91 of P(G) (as for Xt) or of Jf(G,F) (as for X2 

and X3), respectively. 
Xx: Let 91 = {Aa : a e I} be a directed subset of P(G). It suffices to prove that \JAa 

a. 

is symmetric and transitive. The first property is evident, the other follows from the fact 
that for x, y e G we have x(U^l) y if and only if xAy for some A e 91 (since 91 is 
directed). The assertions for X2 and X3 follow from 1.2. 

1.12 ([6] 4.3). If X is an algebraic closure operation of an algebraic lattice L 
then XL is again an algebraic lattice, and it holds X(L*) = (XL)*. 

1.13. Now, the property to be algebraic for P(G) (G a set) and JtT(G, F) ((G, F) 
an algebra) follows by virtue of 1.11 and 1.12. In fact, P(G) = Xt R(G) and Xt is 
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algebraic by 1.11. Thus by 1.12, P(G) is algebraic. Analogously for X(G,F) with 
aid of X2 or X3. 

In the following theorem the characterization of Jf (G, F)* will be completed. 
Simultaneously, we discover the structure of P(G)*. 

1.14. Theorem. Let G be a set. Compact elements of the lattice P(G) are exactly 
the upper P-modifications of compact elements of R(G) (i.e. of finite subsets of 
G x G). Analogously for Jf(G, F) if (G, F) is an algebra. 

Also, compact elements of P(G) (G a set) are exactly the finite partitions whose 
blocks are finite sets and if(G, F) is an algebra then compact elements of jf(G, F) 
are exactly the upper X-modifications of compact elements of P(G). 

Proof. According to 1.12, the first assertion follows from the fact that Xx and X3 

are algebraic (1.11) and that the compact elements of R(G) are precisely the finite 
subsets of G x G (1.3). 

To obtain the other description of compact elements of P(G) it suffices to verify 
that the upper P-modification B of a finite relation A in G is finite again. It holds 
A s C x C , where C = \JA u U ^ " \ so that B s C x C (as C x C is a partition 
in G) and C x C is finite. 

The last assertion follows from 1A2 since X2 is algebraic (1.11). 

2. DETERMINATION OF THE UPPER Jf-MODIFICATION 
OF AN ARBITRARY BINARY RELATION IN A PARTIAL ALGEBRA 

The aim of this section is the determination of the upper Jf-modification WA of 
an arbitrary relation A in a partial algebra (G, F). The construction is similar to that 
of the upper ^-modification 0A of A given in [6] 5.3 and 5.4. It is identical with it if 
we replace the algebra (G, F) in the construction of 0A by its subalgebra ({J¥A, F) 
(2.14). Therefore we need to know the set U ¥A; this is established in 2.11. 

2.1. Definition. (See [6] 2 and 5) Let (G, F) be a partial algebra and X a non
empty set. For every pair of positive integers i, n (i 51 n) we define the n-ary opera
tion eH'\xl9..., xn) on G by 

en,l(a1,...,an)=ai for all au...,aneG. 

Further, we put F* = F u {eM}B,,. 
If w -= w(xt,..., xn) is a word over X generated by F* and if we substitute k 

(0 g k S n) of its variables (e.g. xn-k+l9..., xn) by fixed elements an~k+1,..., an 

of G then the resulting symbol 

w(x1,...,xn„k,an_k+1,...,an)==:p(x1,...,xn-.k) 
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defines an (n — k)-ary operation in G. It will be called an algebraic function in 
(G, F). For k = n — 1, p(x) is a unary operation which is said to be a unary 
algebraic function. 

2.2. The symmetric-transitive hull AT of a binary relation A in a set G is, 
oo 

evidently, AT = \J Bn, where B = AKJ A~l. 
n=l 

2.3. Definition. [6] Let (G, F) be a partial algebra and A e R(G). We define the 
following relations in G: AH, AF

9 Au as follows: 
AH is the set of all (u, v) e G x G to which there exist a word w(xl9 ...,xn) generated 

by F* and elements (at, b)eA (i = 1, ..., n) such that u = w(al9 ..., an)9 v = 
= w(bl9...9bn). 

AF and Au is obtained by replacing the term "word" in the above definition of AH 

by "an algebraic function" and "a unary algebraic function", respectively. 

Remark. If A =|= 0 then AF is a reflexive relation. (If a e G and a1Ab1 then a = 
= e2>2(al9a)AFe2>2(bl9a) = a.) 

2.4. Proposition. [6] If S denotes any of the symbols T9 H9 F and U then the 
map X : R(G) -> R(G)9 defined by XA = As, is a closure operation in R(G). 

2.5. Denote 

A0 = A, A1 = A0, A2 = A1, A$ = A2, . . . , A2i = A2i-i , 

-421-1 = ^ - 2 (i = l , 2 , . . . ) . 

Evidently, it holds A0 £ At £ A2 £ ... . 
Denote 

A' = \JAn. * 
ii = 0 

2.6. Definition. Let (G, F) be a partial algebra and A e R(G). Then WA and 0A, 
denote the upper Jf-modification and the upper ^-modification of A, respectively. 

2.7. Theorem. If (G, F) is a partial algebra and A e R(G) then WA = A'. 

Proof. By induction, let us prove A' £ WA. Evidently A e WA. Now, we shall 
show A2i_1 c WA=>A2i9 A2i+1 _= WA. The first inclusion is evident because of 
A2i = A2f_! .= WA. Let A2i _= WA and (u,v)eA2i+1 = A2i. There exist a word 
w(xl9..., xn) generated by F* and elements (aj9 b3)e A2i (j = 1, . . . , n) such that 
u = w(al9..., an), v = w(bl9..., bn). Hence the congruence WA contains (u, v) = 
= (w(al9 ..., an), w(bl9..., bn)) because of (aj9 bj)eWA (j = 1, . . . , n). So A! £ wA. 

309 



The equality will follow if we prove that A' is a congruence. A' is symmetric since 
every (u, v)eA' belongs to A2i ( = -4j f-i) for some i and this is symmetric. By 
a similar argument, A' is transitive. Analogously, A' is stable since A2i+l ( = A2i) -
— for all i — is stable. 

2.8 ([6] 5.3). Let (G, F) be a partial algebra and A e R(G). Then 0A is the 
union of the sequence of relations A c AF £ AFT £ AFTF .= ... . 

2.9. Proposition. Let A be a congruence in a partial algebra (G, F). Then (\JA, F) 
is a subalgebra of (G, F) and A is a congruence on (\JA, F). 

Proof. Evidently, A is a partition on the set \JA. Let (a{, ..., an)e D(f, G) n 
n (\JA)n.*) It is aiAai (i = 1, ..., n) hencef(a1? .... an) Af(at, ..., an) and therefore 

f(au .... an)e\JA. 

2.10. Definition [2] 2.3. Let A be a binary relation in a set G and B c G. The 
intersection of the relation A and the subset B is the relation B [~] A = {(a, b) e A: 
a,beB). 

2.11. Theorem. Let (G, F) be a partial algebra and A e R(G). Then \JWA is the 
subalgebra <\)A u U-4_1> **) 0f (G, F) generated by the set \JA u U^" 1 -

Proof. From the symmetry of WA it follows that \JA u \JA~X £ WA 

and consequently <U^ u U^~*> --- U^A by 2.9. Conversely, the intersection 
<U^4 u U ^ - 1 > PI ¥A i s a congruence containing A, hence <U-4 u U ^ _ 1 > VI WA 3 
2 ^ . The reverse inclusion is evident so that U(<U^ u U-4_1> VI WA) = ( J^V 
Thus {jWA = <U-4 u U-4_1> n U ^ A = <U-4 u U ^ _ 1 X 

2.12 [6] 5.5 and 5.4. Let (G, F) be an algebra and A e R(G). Then AUT = AFT 

and AUT = AUTU. Consequently, 0A = AUT if A * 0. 

2.13. Let (G, F) be a partial algebra, (B, F) a subalgebra of (G, F) and A £ £ x B. 
We need to distinguish the least congruence in (G, F) containing A from the least 
congruence in (B, F) containing A. We shall denote the latter by WA(B) and the former 
by WA(G). Similarly, we distinguish &A(B) from SA(G) and ^5 ( B ) from AS{G) for 
S = H, F and U. 

2.14. Theorem. Let (G, F) be a partial algebra, AeR(G), and B = \JWA(G) 
( = <U^4 u U r 1 ) ) . Then WA(G) = 0A(B) = A u AF(B) u Af(fl)T u AFWTF™ u . . . . 
If(G, F) is an algebra then WA(G) = 0A(B) = A^7. 

P roof follows from 2.8, 2.9 and 2.12. 

*) By D(f, G) the set of all (at,..., an) e Gn is denoted for which f(av ..., an) exists. 
**) \JA = {y e G: 3x e G, yAx], -5] III Df. 3.5. 
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2.15. Corollary. Let (G, F) be an algebra, AeR(G) and B = (\JA u U-4~\>. 
Then (w, v)e !PX if and only if there exist a sequence u = z0, z t , . . . , zn = v of 

elements of B9 elements (ai9 b^e A (i = 1, . . . , n) and unary algebraic functions 

Pi(x), •••'ft.M in (B>F) such that Piad = z--i» .Pi(6*) = z* o r ^(fr0 = z*-i» 
.?.(«<) = z/> * = 1, . .-, n . 

2.16. Denotation. If A = {(a, b)} Is a one-element relation we put Wah instead 

2.17. Corollary (see [6] 5.5). Let (G, F) be an algebra, A = {(a, b)} a one-element 

relation in G and B = \JWA. Then (u9 v) e *Fab,if and only if there exist a sequence 

u = z0, zl9 . . . , zn = v of elements of B and unary algebraic functions Pi(x), . . . 

. . . , pn(x) such that zi.i = pt(a)9 zx = p{b) or zi_i = pt(b)9 zt = p{a). 

This is a special case of 2.15. 
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