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Časopis pro pěstování matematiky, roč. 98 (1973), Praha 

ON CONVOLUTION OF k CONTINUOUS FUNCTIONS 

JIRI JARN-K, Praha 

(Received August 4, 1971) 

It was shown in [l] that there exist functions x(t), y(t) continuous in an interval J 
such that the convolution x * y = J0 x(t) y(t — T) dr does not possess the derivative 
at any interior point t e L The aim of the present note is to generalize this result to 
the case of k functions, k = 2. 

First we shall introduce two lemmas. Lemma 1 is obtained from Lemma 1 [1] in 
an easy way by mathematical induction. Lemma 2 is in a sense analogous to Lemma 2 
[1], although a differentiable oscillating function is used instead of a piecewise 
linear one. Again mathematical induction is used to prove the assertion for any 
integer k _ 2. In both cases the proofs are elementary and therefore they are omitted. 

Lemma 1. Let I = <0, f0>> t0 > 0 or I = <0, + oo). Let k _ 2 be an integer, 
xl9 x2,..., xk e C(l) (i.e. continuous functions on I), 

\Xi(t)\ = L f , \xt(t + h) - xt(t)\ = Kth 

for all t,t + hel, h > 0. Denote x * y = (x * y) (t) = J0 X(T) y(t — x) dr for any 
x,ye C(I)9 t e L Then 

lz*(0l -= |(*i *x2*...*xk) (t)\ ž L,L2 ...Lk 

tk-i 

\Zk(t + h) - zfc(r)| g L,L2 ... i ^ ^ ^ ^ + ^ ( y r ^ ] f t 

for a// t,t + hel,h > 0. 

Lemma 2. Lei* x(f) = xtf&(0 = | b cos 2nat. Then for any integer k = 2 and a// t 

x * x * ... * x = — — — cos 2nat + -fk(t, a) 
Ik times 22k \k - 1)! a 

w/iere |fk(f, a)| ^ cfe(f), i.e. fk is bounded for each k9t as a function of a. 
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The main result of the present note is 

Theorem 1. For any integer k ^ 2 there exists a function x(t) = x(t, k) e 
e C(<0, +00)) such that the convolution x * x * . . . * x (k times) does not possess the 
derivative for any t > 0. 

Proof. Let the integer k = 2 be fixed. Put 

xn(t) = &ncos2nant9 bn = 2" (k+1>n, an = b;<*+1> 

for all positive integers n, 

(i) • x(o = £x„(o. 

Since |x(f)| ^ i £ 2 (*+1)n
J the series (1) converges absolutely and uniformly on 

и-=l 

<0, +00). Hence 

x * x * ... * x = £ xPł * xP2 * ... * xp 
PІ=I 

i = l k 

The following inequalities are obvious: 

(2) \xn(t)\ = \bn , |x„(f + h) - xn(f)| = 7ianbnh 

for all t ^ 0, h > 0. 

For fixed t let us choose integers pn9 qn9 rn9 sn9 vn9 wn analogously to [1], i.e. 

pn even, \pn = tan < \pn + 1, 

qn odd, i^„ ^ fa„ < iq„ + 1 , 

r„ = • t, sM = — • t, t>„ = • t, wM = — • f, 
2a„ 2a„ 2an 2an 

so that 

(3) 
_3_ 

2a„ 

Denoting 2 = x * x * ... * x, zpuP2.^Pk =- x p i * xP2 * ... * xPk let us estimate the 
difference 

(4) 
z(sя) - z(rя) -„„...„(s,) - zя tt(rя) 

s. - r. 

yZPi,....Pk\Sn) ZPu...,Pk\rn) 

s» - r. 
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where the sum is taken over all fc-tuples of positive integers except n, n,..., n. To 
this purpose, let us estimate the expression 

Å =A. 
ZPi,...,Pk\Sn) Zpi PkVn) 

sn - rn 

(a) Let pk < n. Then according to Lemma 1 and (2) 

лš^ь P A.--. tV 1 (łV— 
7 c - 2 

(k - 2)! 
+ rca„Љ„ 

(* 

rГ1 \ 

1 
(ì+""»ľ^т)('+1>' -2*-\k-2)lKhp>--bp\l + na"k 

(b) Let pk> n. Then again according to Lemma 1 and (2), (3) 

1 A<±b,b„ ...bp

r±l±Al ^ < 
" 2" P' Pl Pk (k - 1)! • 3 - 3(fc - 1)! 

The following inequalities are needed in the sequel: 

(5) £bj<2bN, 

(6) 

bplbPl...bPkan(t + \) k - 1 

i = N 

Íajbj<2b-„«ri) 

I=l 

for any positive integer JV. 

In fact, it holds bj+1 = b$+1; hence bj+^bj = b) ^ bj ^ 2~-> and consequently 

i/'s^IM£)=4+l.^)s26-
£ .A -fr? s ,„- + ^v (*£)'-».- (i +$ (^J) -

=~ LDN — Á0N+І 

which proves inequalities (5), (6). 

Now let us estimate the sum of all A = APl ^ such that pk * n: According to 
(a), (b) and (5), (6) it holds 

00 / » ~ 1 00 \ 

ZAPUP> „.- i ( Z*+ Z A< 
- * * " Pi,...,i»k-i-i \j>k=i j * - » + i / 
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Pl Pk-í-i 

f(* + -ГłГ"f\ A »' v i. 1 

+ £»ÍL±І) f b \< 
3(fc-l)uÅм '"j = 

^ E &,A1---tV.{^(0 + s*(0*; t / ( t+1) + Q(>)} 
Pi,....Pk-i 

where >lk, Bk, Ck are some functions of t. (The equality a„ — b~ ( * + 1 ) = ^n+i *s u s e d 
00 

for the evaluation of the last term.) Finally, the inequality ]T bj f_ 2 (which is a special 

case of (5)) yields 
ZA<2k-*(A*(t) + Bk(t)b;'«^). 

Pk*n 

Evidently, the same estimate is obtained for the sums £ A where we assume suc-
Pj*n 

cessively j = 1, 2,.. . , k — 1. Summarizing all these estimates, we obtain obviously 
an estimate for the expression (4): 

z(sn) - z(rn) zn_tn(sn) - zn_tn(rn) 

sn - rn sn- rn 

^k.2k-\At(t) + Bk(i)b;k^k^). 

On the other hand, Lemma 2 together with (3) yields 

T 2bk
nt

k~1 bk„ , J] 2a„ *• „(sя) - г. в(rв) | _ Г 2Ь„t*-
s» - r. 

where |#fc(t, a„)| g £k(f) and the functions Dk9 Ek are independent of n. Comparing 
the two last relations, we obtain immediately 

z(sM) — z(rn) hm ~-~-̂  = + oo . 

. "-00 5« ~ r„ 

Quite analogously it may be shown that 

lim Z Ю ~ z(vn) _ _ lim 
n->oo w я — t;я 

00 

and the assertion of the theorem follows immediately (cf. Lemma 3 [l]). 
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In an analogous way as in [1] it is possible to prove 

Theorem 2. There is a set M cz Ck = C x C x . . . x C (k times), C = C(I) 
such that 

(a) C* — M is 0f rhe Is* category in Ck, 

(b) ifx = (x l5 x 2 , . . . , xk) e M, then the convolution xt * x2 * . . . * xk does not possess 
the derivative at any interior point tel. 

However, we prefer to introduce the proof of a similar theorem which is perhaps 
more interesting since it deals (for any integer k ^ 2) with the space C and not Ck. 
For the sake of brevity let us suppose J = <0, 1>. 

Theorem 3. Let V be a set of all functions x(t) e C = C(<0, 1 >) such that the con
volution z = x * x * . . . * x ( k times) does not possess the derivative at any t, 0 < 
< t < 1. Then the complement W = C — V is a set of the 1st category in C (with the 
usual uniform metric). 

Proof. For any positive integer n let G+, G~ be the sets of functions from C with 
the following property: 

To any teln = <l/w, 1 — l//t> there are number r, s, r < s such that 

(7) t - - = r g t = s = t + - , 
n n 

(8) -^ r-^ > n ( < — n respectively) . 

Put Mx = f) G+, M2 = f)Gn9 M = Mt n M2 . Obviously M c V and hence 
« = 1 n = l 

If c C - M. We shall show (for any positive integer n): 

(i) G+ as well as Gn are open sets, i.e. F+ = C — G+, Fn~ = C - G~ are closed 
sets; 

(ii) G+ as well as Gn are dense sets in C. 
00 

This will prove Theorem 3 since then W c C - M = U (Fn
+ u F~) where F+, Fn" 

n = l 

are nowhere dense in C. 

(i) Let xv(t) e F+ for all positive integers v, lim xv(f) = x(t) in C, i.e. uniformly. 
V-+00 

Then Lemma 4 [1] implies lim zv(t) = z(t), zv = xv * xv * .. . * xv (by mathematical 
V~>00 

induction). As x ^ G+ , there is tveln such that for all rv < sv satisfying 

(9) tv - - ^ rv ^ fv ^ sv S U + -
n n 
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it holds 

(10) - z*(5") ~ Zv(r") ^ n . 
sv rv 

We can choose a convergent subsequence from the sequence tv; let us assume at 
once lim tv = t e /„. For any r < s satisfying (7) let us define rv = r + tv — t, 

v-*oo 

5v = s + tv — t so that rv -• r, sv -> s and (10) holds. Hence also 

z(s) - z(r) = ] i m zv(sv) - zv(rv) ^ ^ 
S — r v-oo Sv "~" r v 

which proves (i). 

(ii) Let y e C, e > 0, n a positive integer. We shall show that there exists xe Gn, 
Q(X, y) < e, Q being the uniform metric in C. The function j ; can be approximated by 
a continuous piecewise linear function r\ so that g(y, rj) < \z. There is a constant A 
such that 

(ii) K0I = ^> K'i) - n(t2)\ = -4|*i - ' 2 | 

for 0 < f, < 1, i = 1,2. 

Put x = ,7 + xfl£, xflC(f) = ^e cos 27Tat (cf. Lemma 2). Evidently o(x, y) = Q(X, rj) + 
+ Q(y> >/) < £- Hence it is sufficient to prove x e Gn. 

It holds 

(12) z = x * x * ... * x = xfl8 * xae * .. . * xae + 

+ X ( . J*/*'" M * *«*•••**«• 
j = l \ j j j times (k~J) times 

Let t G /„. Put r = (2m + l)/2a, s = (2m + 6)/2a where m is an integer, 2m + 1 <i 
^ 2af ^ 2m + 3. Then obviously max (5 — t, t — r) ^ s — r = | a ; hence (7) 
holds for a large enough. Our aim is to estimate the expression (z(s) — z(r))l(s — r); 
let us first consider the analogous expression for any term of the sum on the right hand 
side of (12). Denoting 

Zj = rj * . . . * rj * xae * xae * ... * xae 
j times (k — j) times 

it holds according to Lemma 1 and (11) 

s-r \-\2j \(k-2)l ( fc - l ) !L 

The right hand side of the inequality is bounded independently of a (since (7) holds 
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for r, s). On the other hand, the first term on the right hand side of the identity (12), 
i.e. zG(0 = xae * xae * • • • * xae (& times) fulfils (again according to Lemma 1) 

z0(s) - z0(r) 2ektk~1 2a k , , 

where gfc(f, a) is bounded as a function of a for any k, f. It is evident that if a is chosen 
sufficiently large then (8) holds and hence xeG*. The proof of (ii) for the sets G~ 
being quite analogous, we may consider the proof of Theorem 3 complete. 

Remark. Let £eV (see Theorem 3). Take the set V(£) of all functions from C 
with the following property: If x feV(^), i = 1,2,..., fc, then the convolution 
Xj * x2 * ... * xk does not possess the derivative at any point 0 < t < 1. It would be 
interesting to obtain some information on the structure of the sets V(£) and their 
mutual relations. (If /5T-= (J V(£), then evidently V a 'V and hence the complement 

&v 
of if in C is of the 1st category.) 
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