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5 TYPES OF CONFIGURATIONS OF 9 FLEXES 
AND 27 SEXTACTIC POINTS OF A CUBIC 

SAHIB RAM MANDAN, Kharagpur 

(Received August 9, 1978) 

The points of a non-singular plane cubic curve can always be represented by 
Weierstrass' elliptic (doubly periodic) p(u)-function with periods 2w, 2w' dependent 
on the elliptic integral 

jp 

áx áu such that — = - l(4p3 - g2p - g3)
1/2 or 

(4x3 - g2x - g3)
1/2 dp 

p'2 = (dp/du)2 = 4p3 - g2p - g3 , 

the well known differential equation. We shall work in the familiar OCS (Orthogonal 
Cartesian System) of coordinates to arrive at the following 7 interesting results. 

(i) Zwikker (pp. 82 — 92) puts z = p + ip' in the Gauss Plane to represent 
a cubic U in the Weierstrass' canonical form: y2 = 4x3 — g2x — g3 in OCS (x = p, 
y — P% t 0 deduce a good many properties of a cubic as in (ii)—(vii) below. 

See also Macrobert, pp. 194—198. 
(ii) Newton's Theorem states that any cubic U can always be reduced to the form 

y2 = ax2 + 3bx2 + 3cx + d (x = x0, y = xu x2 = 1) 

in OCS and further to that in (i) by taking new coordinates x' = x + bja, y' = y, 
which is equivalent to a translation. 

(iii) The most important projective properties of cubics are consequences of the 
so-called Addition Theorem of p-function which says that (see Copson, p. 373) 

i i i 
P("i) K"г) K"з) 
P'Ы P'Ы P'(«з) 

= 0 if i.! + u2 + u3 = 0 (mod 2w, 2w') 

oг 
1 1 1 
Zí z2 ZЪ 

Zl z2 ZЪ 

= 0 (z) = p(uj) + ip'(uj)\ j = 1, 2, 3) 

showing that the 3 points Zj of the cubic U with such 3 values of Uj are collinear. 
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This property proves very simply many interesting properties of any cubic, the 9 
flexes having the values of u equal to 0, ±2w/3, ±2w'/3, ±2w/3 ± 2w'/3 denoted 
as (m, ri) = (mw + m V)/3 (m, m' = 0, 2, 4) by Feld (1936). 

(iv) If a line a passes through a point L on a cubic U to meet it again in a pair 
of points A', A" and their joins to another point N on U meet it again in B', B" 
respectively, then the line b = B'B" passes through a fixed point M on U such 
that the pencil of lines (a) is projectively related to that of lines (b) that provides 
Salmoris invariant s = (p1 — P2)/(Pi ~~ Pz) a s the biratio of the 4 tangents to U 
from the ideal flex B on the y-axis x = 0, the ideal line being one of them as the 
stationary tangent there, where pt (i = 1, 2, 3) are the roots of the cubic 4x3 — g2x = 
= g3 as the abscissae of the meets of the 3 parallel tangents to U through B in (i). 

(v) The 4 kissing points of the 4 tangents from any flex (m, m') of the cubic U 
in (iii) are easily seen to be (n, ri) = (nw 4- n'w')/3(n, ri = 0, 1,..., 5) with m + 2n, 
m' -f 2n' = 0 or 6 or 12 so that one of them is (m, m') itself and the other 3 are its 
sextactic points of U, as the kissing points of 3 of the 27 conies, which lie on the har
monic polar (h.p.) of (m, m') for U. 

(vi) It is interesting to observe that the 9 sextactic points of any one of the 12 col-
linear triads of flexes form a P.C., and H.C. with this triad minus their 3 h.p.'s., as 
may be noticed by writing them down for the 3 triads: 

t: (4, 0), (0, 0), (2, 0); t': (4, 2), (0, 2), (2, 2); t": (4, 4), (0, 4), (2, 4) in the matrix 
form as the 3 P.C.'s: 

M: 
(1,0) (1,3) (4,3) 
(3, 0) (3, 3) (0, 3) 
(5, 0) (5, 3) (2, 3) 

M': 
(1,2) (1,5) (4,5) 
(3, 2) (3, 5) (0, 5) 
(5, 2) (5, 5) (2, 5) 

M": 
(1,4) (1,1) (4,iУ 
(3,4) (3,1) (0,1) 
(5, 4) (5,1) (2,1) 

respectively, as may be easily verified, so that (t, M), (tf, M'), (t", M") form 3 H.C.'s: 
H, H', H" ignoring the 9 h.p.'s of the 9 flexes while t, t', t" form an M.C. that provides 
3 more sets of 3 triads like (t, t', t") leading to 3 more triads of P.C.'s and the cor
responding H.C.'s. Thus the 9 flexes and the 27 sextactic points of any cubic form 
12 P.C9s and 12 H.C9s inscribed in it. 

Feld further observes that if the elements of the matrices M, M', M" be denoted 
as mij9 mf

ij9 m'lj (i,j = 1,2,3), respectively, the 18 triads of points mij9 m'ik, m"ih 

(h, k = 1, 2, 3; j 4= h + k #= j) are collinear so that the 9 flexes and the 27 sextactic 
points of any cubic lie by 3's on 84 lines to form a configuration (367, 843), including 
the 9 lines of triads of flexes (other than those of t, t', t") and their 9 h.p.'s, besides 
the 48 lines of the 3 H.C.'s: H, Hf, H". 

It is simply surprising that Feld just missed to observe the most interesting result 
that H, H', H" are mutually 12-fold perspective so that the join of any point of 
one to any point of an other passes through a point of the third giving rise to a new 
configuration (3616,1923), containing the 18 lines of the F.C. (Feld configuration) 
but not the 9 h.p.'s, formed of the 9 flexes and 27 sextactic points of any cubic. 
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Or, the 12 points of any one oj the 3 H.C.'s are c.p. of the other two as may be easily 
verified (c.p. = centres of perspectivity). 

Our configuration, in fact, consists of 4 triads of H.C.'s like H, H'9 H". 
(vii) Taking'the points Ah BJ9 Ck (ij,k= 1,2, ..., n) in Berman (1951) con

figuration (B.C.) Kn as points on the cubic U with parameters ui9 vj9 wk so that 
such triads are collinear iff i + j + k = 0 (mod n) and ut + Vj = wk = 0 
(mod2w, 2w'), we arrive at the B.C.: (3nn9 n\) inscribed in U as a generalisation 
ofP.C. andH.C. 
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