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Časopis pro pěstování matematiky, roč. 109 (1984), Praha 

ON QUASISTARS IN n-CUBES 

LADISLAV NEBESKÝ, Praha 

(Received May 16, 1983) 

If m _ 3 is an integer, then a graph (in the sense of [ l ] j which is homeomorphic 
to the star K(l, m) will be refered to as an m-quasistar. Let T be an m-quasistar 
(m —̂  3) of order p; obviously, Tis a tree and p ^ m + 1; we say that Tis balanced 
if p is even and there exists a 2-coloring of T with p\2 red vertices and p\2 green ones. 

The present note was inspired by I. Havel's paper [2]. Let m and n be integers, 
3 ^ m ^ n, and let Tbe a balanced m-quasistar of order 2". Havel conjectured that T 
can be embedded into the w-cube; he proved this conjecture for the case when 
m = 3. In the present note we shall prove this conjecture for the cases when m = 4 
and 5. Moreover, we shall give an alternative proof of the case m = 3. 

Let G be an n-cube, n ^ 1. Then there exist vertex-disjoint (n — l)-cubes G' and G" 
such that V(G) = V(G') u V(G"); we shall say that G can be partitioned into G' 
and G". Let u' e V(G'); the only vertex u" e V(G") with the property that M'M" G E(G) 
will be denoted by u'(G"). 

Let P be a nontrivial path. Then P is homeomorphic to K2. If M is a vertex of 
degree one in P, then P will be refered to as a M-path. Assume that P is a M-path. Then 
the only vertex of degree one in P which is different from u will be denoted by 
e(P, u). 

Lemma 1. Let G be an n-cube, n ^ 3, and let u1,u2,ii1,u2e V(G), ut 4= M2. 
Assume that ax and a2 are even positive integers such that ax + a2 = 2". Then 
there exist vertex-disjoint paths Pt and P2 in G with the property that for ie 
e {1, 2}, P; is a urpath of order a( such that e(Ph ut) 4= ut. 

Proof. The case of n = 3 is easy. Let n = n0 ^ 4; assume that for n = n0 — 1, 
the lemma was proved. Clearly, G can be partitioned into two vertex-disjoint (n — 1)-
cubes Gj and G2 in such a way that M- G V(GX) and M2 G V(G2). Without loss of 
generality we shall assume that ax ^ a2. If at = a2, then there exists a hamiltonian 
Mrpath in Gt such that u{ 4= e(Ph u() for i = 1, 2, and thus the lemma is proved. 

We shall assume that ax > a2. Then there exists a hamiltonian M-path P' in Gx 

such that u2(Gx) 4= e(P'9 ux). Denote w = e(P', ux). It follows from the induction 
assumption that there exist vertex-disjoint paths P" and P2 in G2 with the properties 
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that P" is a w(G2)-path of order ax - 2n~1Jli1 + e(P", w(G2)), P2 is a u2-path of 
order a2, and u2 4= e(P2. "2)- We denote by Px the path induced by the edges F(P') u 
u {ww(G2)} u E(P"). It is clear that the paths Px and P2 have the desired properties. 

Lemma 2. Let ke {1, 2, 3}, let G be an n-cube, where n i_ k, let u{, ...,uk be k 
distinct vettices of G, and Lt a1, ..., ak be even positive integers such that a1 + ... 
. . . + ak = 2". Then there exist vertex-disjoint paths Pt, ..., Pk in G such that P, 
is an Ufpath of order a{for each i e {1, ..., k}. 

Proof. The case of k = 1 is obvious. The case of k = 2 is obvious for n = 2, 
and follows immediately from Lemma 1 for n ^ 3. Let k = 3. The proof of the lemma 
is very easy for n = 3. Assume that rc = 4. It is clear that G contains four vertex-
disjoint (n — 2)-cubes Gx, G2, G3, G4 such that ut e V(Gt) for i = 1, 2, 3. Without 
loss of generality we may assume that V(GX) u V(G2) induces an (n — l)-cube in G, 
and that V(G4) u V(Gt) also induces an (n — l)-cube in G. If a1 + a2 ^ 2 n _ 1and 
#2 + a 3 = 2""1 , then the fact that a± + a2 + a3 = 2" implies that a2 = 0, which is 
a contradiction. Thus, without loss of generality we shall assume that a1 + a2 > 
> 2*"1. We denote by G' or G" the (n — l)-cube in G which is induced by V(GX) u 
u V(G2) or by V(G3) u V(G4), respectively. There exists a permutation n on {l, 2} 
such that aw(1) ^ aff(2). It is clear that an(2) ^ 2""1 — 2. It follows from Lemma 1 
that there exist vertex-disjoint paths P' and Pn(2) in G' such that P ' is a u^(1)-path 
of order 2""1 - an(2), u3(G') + e(P', u„(1)), and Pn(2) is a w7C(2)-path of order a^. 
Denote w = s(P', un(1)). It follows from the case k = 2 of the present lemma that 
there exist vertex-disjoint paths P" and P 3 in G" such that P" is a w(G")-path of order 
an(1) + a7t(2) — 2""1, and P 3 is a w3-path of order a3. We denote by Pn(1) the path 
induced by the edges E(P') u {ww(G")} u E(P"). It is clear that the paths Pl9 P2 , P 3 

have the desired properties, which completes the proof. 

Let m and n be integers such that 2 <^ m ^ n. We denote by R(m, n) the set of 
sequences ( r l 5 . . . , rm) of positive integers with the properties that rt + ... + rm = 
= 2" — 1 and that r̂  is odd for exactly one i e ( 1 , . . . , m}. 

Lemma 3. Let w _ 3, and let (r1, r2, r3)e R(3, n). Then there exist an even in
teger s ^ 0 and a permutation n on {l, 2, 3} such that rn(1) is even and (rn(2) — s, 
rn(3))eR(2,n-l). 

Proof. Without loss of generality we assume that rt i_ r2 _• r3. If rx + r2 ^ 
^ 2""1; then 2n - 1 = rx + r2 + r3 = 2""1 + 2n~2 and therefore rc = 2, which is 

a contradiction. We shall assume that rt + r2 ^ 2""1 + 1. 
Let first r! ^ 2 n _ 1 + 1. Then there exists a permutation n on {l, 2, 3} such that 

7r(2) = 1 and rn(1) is even. It is obvious that (rn(2) — (2 n _ 1 — rn(1)), rn(3)) belongs 
to R(2, n - 1). 

Let.now rt ^ 2""1. There exists a permutation n on {1, 2, 3} such that 7r(3) = 3 
andrn(1) is even. It is obvious that (rn(2) — (2n~1 — rn(1)), rn(3) belongs to R(2, n — 1). 
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Lemma 4. Let m e {4, 5}, Jet n ^ m, and let (rl9..., rm)e R(m, n). Assume 
that rx ^ .. . ^ r,„. Then there exist even integers s ^ 0 a/id t _ 0, and a permuta
tion n on {1, 2, 3} swc/z thaf r,.(1) is even, and 

{rn(2) ~ s, rn(2) - r, r4, ..., rm)eR(m - 1, n - 1). 

Proof. If rx + r2 + r3 _ 2 n _ 1 + 3, then the statement of the lemma follows 
easily. 

Let i\ + r2 + r3 = 2""1 + 2. Then 

2n - 1 = r, + ... + rm = m(2"-1 + 2)/3 . 

This implies that (6 — m) 2""1 < 2m + 3. Since n ^ m, we get that m <£ {4, 5}, 

which is a contradiction. Thus the lemma is proved. 

Theorem. Let m e {3, 4, 5} and let n be an integer such that n _ m. Then every 
balanced m-quasistar of order 2n can be embedded into the n-cube. 

Proof. Let T be a balanced m-quasistar of order 2", and let G be an n-cube. 
Clearly, G can be partitioned into two vertex-disjoint (n — l)-cubes, say G' and G". 

Obviously, n ^ 3. If n > 3, assume that the theorem holds for n — 1. We denote 
by w the vertex of degree m in T. Let wl9 ..., wm be distinct vertices of degree one in T. 
We denote by rf the distance between w and wt in Tfor 1 _ f _" m. It is easy to see 
that (r1 ? . . . , rm) belongs to R(m, n). It follows from Lemmas 3 and 4 that there exist 
even integers s and t and a permutation n on {l. ..., m} with the properties that 

s =" t = 0, 

r^j) is even, 

if m = 3, then t = 0 and (rw(2) — s, r7c(3)) belongs to K(2, /i — 1), 

if m = 4, then (rn(2) - s, r ^ - t, rn(4r), ..., r ^ j belongs to R(m - 1, n - 1). 

Let k be the integer defined as follows: if s = 0, then k = 1; if s > 0 and t = 0, 
then k = 2; and if f > 0, then k = 3. There exist distinct vertices uu vt, ..., wfc, vfc 

of T with the following properties: 

w.vf e E(T) and vf belongs to the wf — W^Q path in Tfor every i e {1, ..., k}; 

Wj = w ; 

if k _ 2, then the distance between w2 and w7r(2) is s; 

if k = 3, then the distance between w3 and w7t(3) is t. 

Let T' be the component of T— w ^ — ... — wfcvk which contains w. Then T is 
a tree of order 2n~1. If T is a path, then T' can be embedded into G'. Assume that T 
is not a path. Then m ^ 4. Since r^^ , s and f are even, T is a balanced (m — 1)-
quasistar. According to the induction assumption, T can be embedded into G'. 
Thus, we can assume that T is a subgraph of G'. 

It follows from Lemma 2 that there exist vertex-disjoint paths Pu ..., Pfc in G" 
with the following properties: 
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P! is a ii^Cj-path of order rff(1); 
if k = 2, then P2 is a w2(G")-path of order s; and 

if k = 3, then P3 is a u3(G")-path of order t. 

The subgraph of G induced by 

E(T) u £(P,) u ... u E(Pk) u {ulMl(G"), .̂ ., ukuk(G")} 

is isomorphic to T, which completes the proof. 
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