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časopis pro pěstování matematiky, roč. 102 (1977), Praha 

ON IDEMPOTENT FILTERS 

MIROSLAV KATĚTOV, Praha 

(Received May 27, 1977) 

In [3], the problem of the existence of idempotent filters was posed, i.e. filters ^ 
isomorphic to the product 2F • 9*. In what follows, a very simple existence proof is 
given, and a rather complicated construction is described. 

1.1. We use the standard terminology and notation, with slight modifications. 
An ordered pair consisting of x and y will be denoted by <x, j>. If M is a set, we put 
exp M = {X : X c M}, eM = {X : X c M, X is finite}. Letters k, m, n, p, q stand 
for natural numbers, letters 3, 5 (possibly with subscripts, etc.) for a natural number 
or for the ordinal co. Sequence (on a set M) means a finite or an infinite sequence 
(of elements of M). A finite sequence will be called a string or a word. The void 
string will be denoted by 0. The concatenation £ • rj of two sequences f, r\ is defined 
if ^ is finite; in addition, for formal reasons, we put £ • 0 = f for any sequence f . 
Given a set M, the set of all strings on M will be denoted by wM. 

1.2. Let M, S be classes. If a binary operation a : D -*• S, where D c M x M, 
is given, we introduce the following binary operations a' on expM and <r" on 
exp exp M. If X, Ye exp M, then (T'<X, Y> = {(T<X, y> : x e X, yeY}; \i X,<Ve 
e exp exp M, then *"<#, «r> = {U(<r'<{x},/x> : x G X ) : X e f , / e flr*}. 

1.3. The operations just introduced will be used below in two cases: (1) M is 
a class of sequences and (T<£, ?y> = £ • ?y is the concatenation; in this case, we shall 
often write X • 7 instead of (T'<X, Y> and ̂  © ^ instead of <r"<#\ <̂ >; (2) M is the 
universal class and a<x, )>> = <x, j>>; in this case the standard notation, X x Y, 
will be used for a\X, Y>, and a\X, 9} will be denoted by X ® <&. 

1.4. In the case (2) just mentioned, 3F ® ^ is a base of a filter (on A x B) whenever 
^* and <S are filters (on -4 and B, respectively). The filter generated by 3F ® 0 is the 
product of filters & and #, which will be denoted by ^ • # as usual (see e.g. [1], 
§7; a different notation was used in [2], where the multiplication of filters was 
introduced apparently for the first time). 
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1.5. If 3C, %f are collections of sets, A = \)X, B = \J%/ and there exists a bijective 
f: A -> B such that f[^] = ^ , then 9£ is said to be isomorphic to %/ (this includes, 
as a special case, the isomorphism of filters). 

2.1. Theorem. Let & be a filter on a set A. Assume that p : A x A -> A is bijective 
and & c n\<g • # ] . Then there exists exactly one filter &on A such that (l) ^ cz ^ , 
(2) ii\jF • #*] = &, (3) if^f is a filter on A, <$ cz jf, p\je -#?] = #, then & a jf. 

Proof. Put &0 = 9. If a is an ordinal, a > 0, put &a = ii[9fi • 9{\ if a = p + 1, 
^ a = U(^/? • /? < a) if a is a limit ordinal. It is easy to see that, for every ordinal 
a, &a is a filter and &a c <gp whenever a < /?. Hence, @a = ^ a + 1 for some a. Put 
^ = ^a. Then \i\& • #"] = J^. If Jf is as in (3), then we get ^ a c= tf for all a, 
hence ^ c ^ , 

2.2. Theorem. On every infinite set, there exists an idempotent filter. 

Proof. If A is infinite, put ^ = {A — X : X finite}. Let fi: A x A -• A be bijec
tive. Clearly ^ c \)\j3 • <&\ Now apply the theorem above. 

2.3. An explicit description of an idempotent filter is far more complicated than 
the existence proof. It is necessarily so, for an idempotent filter cannot be analytic 
(Souslin), cf. [3]. On the other hand, an explicit construction may provide more 
insight into properties of such filters. 

3.1. The class of all dense linearly ordered sets with a first and no last element 
will be denoted by 21. As a rule, letters A, B, C, possibly with subscripts, will stand 
for ordered sets in 21. A set of the form {t: t e A, a ^ t} or {t: t e A, a = t < b} 
will be called an interval of A. The set of all nonvoid intervals of A will be denoted 
by i(A). We put i0(A) = i(A) u {0}. 

3.2. A pair (B, C> e i(A) x i(A) will be called a decomposition of A if B u C = A 
and x < y whenever xeB, yeC. If <£, C> is a decomposition of A, we write 
B + C == A. 

3.3. A pair x = <T, v), where Tei(A), v c T is finite nonvoid, will be called 
a labeled interval of A. The set of all labeled intervals of A will be denoted by li(A). 
If x = <T, v} e li(A), we put |x| = T, Lx = v. 

3.4. If { = (xn : n < S) is a sequence on li(.4), we put |f| = U(|^«| - n < S), 
Lf = \J(Lx„ : n < 3), If = <|f |, L£>. If e.g. i = (*> y)> we also write x + y 
instead of If, etc. Clearly, if f e wli(4) and |f | e i(^), then If e li(_4). 
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3.5. If X c wli(^), we put LX = (Lf : £ e X}. If % c exp wli(Af), we put L% = 
= {LX:X€3r}. 

3.6. An idempotent filter may be constructed, roughly speaking, in the following 
way. Suppose there is defined, for every A e % a collection Jf(A) c exp wli(A) such 
that (1) if A is isomorphic to B, then X(A) is isomorphic to Jf(B), (2) Ljf(A) is 
a base of a filter, (3) if B + C = .A, then Jf(B) Q X(C) c X(A). It may be expected 
that if A, B, C are mutually isomorphic, then the filter generated by Lcf(A) is 
idempotent, since it is isomorphic to the product of filters generated by L3f(B), 
LJfT(C). 

4.1. We are going to construct certain collections with the properties mentioned 
in 3.6. We shall need a few auxiliary definitions and a number of simple facts con
cerning subsets of wli(A), etc. 

4.2. A sequence £ = (x„ : n < S) on li(A) will be called regular if (l) either 
£ = 0 or min A e |x0|, (2) the sets |xn| are disjoint, (3) \(xn : n ^ m)\ e i(A) for every 
m < 9. The set of all regular ^ e wli(Ai) will be denoted by rwli(̂ 4). 

4.3. Let <p, ^ be mappings of rwli(.A) into i0(A). Then we put if/ ^ q> iff t̂ (<!;) <= <p(£) 
for all % e rwli(.4), and we define q> A \fj by putting (<p A I/>) (£) = <p(£) n il/(£). 

4.4. For any q> : rwli(̂ 4) -*•io(-4), R((p) will denote the set of all sequences £, = 
«- (xB : n < 5) on li(A) such that |xn| = <p(xk : k < n) for every n < B. We put 
S(cp) = {£ : £ e % ) , « is finite, |{| = A}. 

4.5. A mapping <p : rwli(Al) -* i0(_4) will be called a transition rule (on A) if (l) 
min^e^f©), (2) for any <Jerwli(AL), |ĉ | = A implies <p(£) = 0, |{| # .4 implies 
<p(£) # 0, |£| n (̂<j;) = 0, |£| u <p(f) G i(>4). The set of all transition rules on A will 
be denoted by tr(>4). 

4.6. If <* = (xn : n < 3) is a regular sequence on li(Al) and 9 e tr(AL), then, clearly, 
there exists exactly one r\ = (yk : k < 6) e R(<p) such that (1) every yk is of the form 
I(xn : m < n < » , (2) if 1?' = (yk : k < 5') satisfies (l), then 8' ^ <5, j ; * = ^ for 
k < 5'. We shall s&y that i\ is the cp-reduction of £. The sequence ( such that £ = 
«- a • f, |a| = |IJ|, will be called the q>-remainder of £. If |if| = |{|, then the <p-reduc-
tion of £ will be called exact. 

4.7. A transition rule q> on A will be called regular if, for any £ € rwli(̂ 4) such 
that |(j| is a proper subset of |IJ| u <p(ti) where if is the ^-reduction of <J, we have 
9(0 •* <K̂ ) - |{|- The set of all regular <p e tr(̂ 4) will be denoted by rtr(>4). 
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4.8. Put <p0(£) = A - |£| for every £ e rwli(,4). Then <p0ertr(.A) (and even 
q>0 e ntr(_4), see 5.1 below). 

4.9. Let <p e rtr(,4), ZeR(q>). Then £ is regular; if £ • £ 6 rwli(Af), |£| c <p(£), 
|C| 4= <p(£), then £ is the <p-reduction of £ • £, hence <p(£ • £) = <p(£) — |C|. 

4.10. Let q> s rtr(AL), i/< e tr(A[), $ *£ <p, £ e JR(IA). Le* ^ and £ be, respectively, 
the (p-reduction and the cp-remainder of £. Then fhere occurs exactly one of the 
following cases: (l) J/ is exacf, £ = 0; (2) yy is not exact, £ is finite, |£| is a proper 
subset of (p(rj), <p(£) = <jp(f/) - |£|; (3) ^ is not exact, £ is infinite, J£| c <p(*f). / / £ 
is finite, then |£| u <p(£) = |if| u <?(*/). If £ e S(i^), fhen *y e 5(9), L£ = L^e LS(cp). 

Proof. Assume that ^ is not exact. Let £ = (xm,...). By definition (4.6), |(xm,... 
..., x„)| = (pty) for no n. Suppose |(xm,..., xn)\ 3 <?(;*/) for some n. Choose the last p 
such that (p(r\) — \(xn : m g n < p)\ 4- 0. Since q> is regular, we have <p(xn : n < p) = 
= (pty) — \(xn : n < p)\, hence, due to 1// <* <p, we get |xp| = i//(xn :n < p) c <pfy), 
\(xn : m ^ n < p + l)| c cp^), which is a contradiction. 

We have shown that every \(xm,..., xn)| is a proper subset of <p(r\). The rest of the 
proof may be omitted. 

4.11. Proposition, if (Pi,(p2e Tte(A), then (pt A cp2e rtr(Al). 

Proof. Put \j/ = cp1 -A q>2. Clearly, x// e tr(A). Let £ e rwli(Al), let ^ denote the ij/-
reduction of £ and let |£| c |j/| u (pty), |£| #= \ri\ u <?(*;). We are going to prove that 
i/f(£) = \j/fy) - |£|. Let ^i, i = 1, 2, be the <prreduction of ^ Clearly, ^i is also the 
^-reduction of £. By 4.10, we have 

(1) hi u <p{*i) = h i ̂  ?<0»i), 
hence 

(2) h| u 1%) c h i | u ^.<^i) . 

This implies 

(3) £ is a proper subset of |f/i| u <P*(*?*) • 

Since <jt>i are regular, we have 

(4) flu^-M^iO..), 
hence, by (l), 

(5) |«|u^o-H^^)-
This proves that |$| u ^(£) = M «-»#?)» hence $(£) = # 0 - |{|-
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4.12. Ifq>e rtr(_4), £ e S(q>), r\ e S(cp), Lf = Lr\, then £ = r\. 

Proof. Put <f = (xn : n < p), r\ = (yk:k < q). Clearly, |x0| = \y0\. Since L£ = 
= Lr\, we g<5t Lx0 = Ly0, x0 = y0. The proof proceeds by induction. 

'5.1. A regular transition rule <p on A will be called normal if every %e R((p) is 
finite. The set of all normal cp e xtx(A) will be denoted by ntr(y4). The collection of 
all S((p), cp e ntr(A), will be denoted by Sf(A). 

5.2. Proposition. If (pu (p2 e ntr(A), then cp1 A cp2 e ntr(AL). 

Proof. Put ij/ = (Pi A <p2. By 4.H, \l/ertv(A). Suppose that { = (xn : n < o)e 
e R(\//). For i = 1, 2, let rjt and C* be the <prreduction and the ^-remainder of £>, 
respectively. Since no r\ e R((pt) is infinite, 4.10 implies that, for i = 1, 2, tit is not 
exact, C* is infinite, |C*| c <?.(*/*)• We may assume ^ l c |*/2|. Let /? = (x0,..., xp), 
\P\ = |if2|. Then, for i = 1, 2, |fl| u <?<(/?) = |^ | u <p(r\) => |£|, hence |j5| u tfr(0) => 
z> |<j|, |(x0,..., xp, xp+ x)\ => |C|, which is a contradiction. 

5.3. Proposition. / / q> e ntr(A), then S(<p) 4= 0. 

Proof. Choose a mapping/of the set {f : <!; e rwli(A), |ĉ | =i= A} into li(A) such that 
/(cj)| = q>(£). Define a sequence C = (z,.) as follows: zn = /(z* : fc < n) provided 
(zk:k< n)\ * 4; if |(z0,..., zp)| = .A, then C = (zo> •••> *P)- Clearly, C e .R(<p), 
lence C is finite, |C| = A. 

5.4. Proposition. For any A e 21, LSf(A) (see 5.1, 3.5) is a fcase of a filter. 
This follows at once from 4.8, 5.3, 5.2, 4.10 (last assertion). 

5.5. If A e% then the filter on eA (see 1.1) generated by LSf(A) will be denoted 
by &(A). 

6.1. Let B + C = .4 e 21 (see 3.2). Let <p : rwli(JB) -» i0(J3) and, for every f e S(q>)9 

let xj/i: rwli(C) -»i0(C). For every £ = (x„ : n < p) e rwli(4) define T(C) as follows: 
(1) if B - |C| * 0, put T(£) = <p(£); (2) if {| 3 £ and, for some r\, C, we have |C| = 
= B, £ = .7 • C, put T(C) = ^,(C); (3) if |q 3 £ and B = |(xn: n < m)\ for no m, 
put T(£) = .4 - |<*|. Then T is a mapping of rwli(A) into i0(A), which will be denoted 
by (p * (^). 

6.2. Lef _B + C = AeM. Let <petr(B) arid, for every £eS((p), let ^e t r (C) . 
Put T = q> * (^). T/ien (1) r e tr(_4); (2) i/ <p, ^ are regular (normal), then so is t; 
(3) if lie S(cp)9 n e R(^), then f • r\ e R(x)9 (4) if C e R(x)9 |C| - -5 * 0, tften C = { ' if, 
wftere £ e S(<p), iy e K(^). 
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Proof. We omit the straightforward proof of (l) —(3) and prove (4) only. Put 
C = (z„ : n < $) and consider the last p such that \zp\ cz B. Then |(z0 , . . . , zp)\ = B, 
for otherwise we should have zp+1 = q>(zn : n ^ p)9 hence | z p + 1 | cz B. Put c; = 
= (z 0 , . . . , zp)9 r\ = (zp+i9 . . .) . 

6.3. Let <£, C> be a decomposition of AeS&. Then (1) Sf(B) © ST(C) (see 1.3) 
is equal to the collection of all S(T) where T = q> * (\f/^)9 c/>Gntr(£), i^^entr(C) 
/o r every £ e S(cp); (2) /y(B) O < (̂C) cz ^ ) . 

Proof. Let X e Sf(B) © Sf(C). Then there exists a transition rule c/> G ntr(B) and 
a mapping a : S(<p) -> ntr(C) such that X consists of all c; • rj where c; G S(<p), f/ e 
6 S(g£). Put ^ = gc;, T = c? * ( ^ ) . Then, by 6.2, X = S(T). Since, by 6.2, T G ntr(A), 
we have ^(J3) O Sf(C) cz ^(,4). 

6.4. For any collections V9 W9 Z of sets such that v u weZ whenever veV9weW9 

we denote by u the mapping u : V x W -+ Z defined by u(v9 w> = v u w. 

6.5. Proposition. Let <2?, C> he a decomposition of Ae 91. TTien u[LSf{B) ® 
® L^(C ) ] = L[/^(B) © y(C)\ 

Proof. I. Let X e «^(B) © «^(C). Let <p9 g9 ^ be as in the proof of 6.3. Then, 
clearly, LX = {L£ u Lr\ : £ e S(cp), Y\ G S(i/^)}. For every x e LS(<p) there is, by 4.12, 
exactly one £ e S(q>) such that Lc; = x; put c; = fx. Then LX = w{<x, y} :xe LS(cp), 
>> G LS(^/>/JC)}, hence LZ e u[L#>(B) ® L^(C ) ] . - II. If Z e u[LS?(B) ® L^(C ) ] , 
then, clearly, there is a cpentr(B) and a mapping g : LS(cp) -> L«9"(C) such that 
Z = { x u y : x e LS(cp), >> e g(x)} = {L£ u Lr\: £ e S((p)9 r\ e S(^)} where LStyz) = 
= g(L£). Hence Z = {L(£ • rj) : d; e S(q>)9 r\ G S(i^)} and therefore Z G L[S?(B) © 
© S?(C)~\. This proves the proposition. 

6.6. Let B + C == .4 e9l, TG rtr(A). Define T' as follows: for c; = (xB: n < p) G 
G rwli(AL) put T'(£) = T(£) i / B n <£) = 0, T'(C;) = B n T(£) i/-fl n T(£) * 0. Then 
(1) T' G rtr(A); (2) i/ £ e rwli(B), |{| * £, then T'(£) CZ J5; (3) every finite £ G JR(T') 

IS 0/ fhe /orm c; = rj • £ wfcere |*/| cz £, |C| <=• C; (4) i / c; = (xn : n < 3) G -R(T'), 

fften effher c; G .R(T) or, for some m, |xOT-i| cz JB, |x„,| cz C, (x0, ..., x m - i + x*., ...) G 
G # ( T ) ; (5) L S ( T ' ) cz L S ( T ) ; (6) // T W normal, then so is T', (7) %' = <p * ( ^ ) , / o r 
some <p G ntr(B), xj/^ e ntr(C). 

The proof is straightforward and may be omitted. 

6.7. Proposition. Let <£, C> be a decomposition of A G 21. Then for every T G 
G ntr(Al) rftere exists a set X e S?(B) © «9*(C) such that LX cz L S ( T ) . 

Proof. Let T' be as in 6.6. Put X = S(T') . Then, by 6.6, LX cz LS (T) . By 6.6, (7), 
we have S(T') G Sf(B) © Sf(C). 

417 



7.1. Proposition. If <B, C> is decomposition of Ae% then u[&(B) • ^"(C)] = 
« #"(-4), hence &(B) • #"(C) is isomorphic to &(A). 

Proof. I .3y definition (5.5), LS?(B) and L-S^C) generate the filters J*"(B) and 
#"(C), respectively. Hence L^(B) <g> LSf(C) generates &(B) • J^(C). By 6.5, 
ti[L^(B) ® L^(C)] = L[9>(B) 0 ^(C)]. By 6.3, L[&(B) Q «^(C)] cz L9>(A). 
Hence L[^(B) 0 ^(C)] generates u[P(B) • ^(C)], and u[f(B) • #"(C)] e ^ ) . 
II. By 6.7, for every PeL^(A) there exists a set Q e L[S?(B) Q Sf(C)] such that 
Q <= P. Hence, for every P e .^(,4) there exists a set Qew[L«9%B) ® L«^(C)] c 
c w[,F(B) • ^(C)] such that g c P . This implies &(A) c u[^(B) • ^(C)], which 
proves the proposition. 

7.2. Theorem. 77iere exists a mapping $F of the class 91 of all dense linearly 
ordered sets with a first and with no last element into the class of all filters such 
that (1) &(A) is a filter on sA9 (2) if <B, C> is a decomposition of A9 then /F(B) • 
• &(C) is isomorphic to !F(A)9 (3) if At is isomorphic (as an ordered set) to Al9 

then the filters ^(Ai)9 ^(A2) are isomorphic. If A e 21 has a decomposition <B, C> 
such that A9 B, C are mutually isomorphic9 then fF(A) is an idempotent filter. 

This follows at once from 7.L 
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