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OF THE FIRST AND SECOND TYPES 
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Summary. The paper is devoted to the relation between the classes G)i9 ©2 of graphs with 
non-isomorphic vertex neighbourhoods of the first and second types; the main theorem of the 
paper implies that each of the classes ©x — ©2, @2 — @lf ©x n @2 is infinite. 
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INTRODUCTION 

Let G =- (V(G), E(G)) be a finite undirected graph without loops and multiple 
edges, u e V(G) its vertex. The neighbourhood of u (defined in the obvious sense, i.e., 
as the induced subgraph on the set of all vertices which are adjacent to u in G) will 
be referred to as the neighbourhood of the first type of u and denoted by Nx(u, G). 
We say that an edge vw e E(G) is adjacent to u if v =f= u =# w and either v or w is 
adjacent to w. According to [3], [5], [2] we define the "line-version" of Nt(u, G) 
as follows: The neighbourhood of the second type of u (denoted by N2(u, G)) is 
the edge-induced subgraph (see e.g. [1], [6]) on the set of all edges which are adjacent 
to u. (More precisely: the edge set of N2(u, G) contains all the edges vw e E(G) for 
which min {Q(V, U), Q(W, U)} = 1, Q(X9 y) denoting the distance of vertices x, y). 

J. Sedlacek [3], [5] introduced the following classes <5lf ©2 of asymmetrical 
graphs: ©, contains all graphs G such that for every pair of distinct vertices u,v e V(G) 
the neighbourhoods of the Mh type Nt(u, G), Nt(v, G) are non-isomorphic, i = 1, 2. 

In [3] it is shown that for every integer n ^ 6 there exists a graph Gn e ©x with n 
vertices; the corresponding graph G6 (with the minimum number of vertices) is 
shown in Fig. 1. The analogous question for the class ©2 is solved in [2]: A graph 
Gn e ©2 with n vetices exists if and only if n ^ 7; the corresponding minimal graph 
G7 with 7 vertices is shown in Fig. 2. 

As shown in [5], the graph in Fig. 1 belongs, in fact, to ©x — ©2, and hence 
©i - ©2 # 0; analogously, the graph in Fig. 2 belongs to ©2 — © ls and hence 
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©2 — ©i + 0- Further, an example is given in [5] of a graph with 8 vertices which 
belongs to ©x n ©2; hence © t n ©2 4= 0. In the present paper we shall show that 
each of the classes ©x — ©2, ©2 — <5lf © t n ©2 is infinite, and we shall find the 
minimal member in the last of them. 

Fig. 1 Fig. 2 

MAIN THEOREM 

Theorem. Let n be an integer. Then there exists a graph Gn with n vertices which 
belongs to the class 

a) ©j — ©2 if and only if n = 6, 
b) ©2 — ©! z/ and only if n = 7, 
c) ©x n ©2 if and only if n = 7. 

Corollary. Each of the classes ®t — ©2, ©2 — © l 5 © t n ©2 is infinite. 
We shall first prove some auxiliary assertions. We say that a vertex u e V(G) is 

universal if it is adjacent to all the other vertices of G. 

Lemma 1. Let n _ 6 be an integer; suppose that Gn is a connected graph having n 
vertices ul9 ..., un9 and that none of them is universal. Let us construct the graph 
Gn+1 with n + 1 vertices by adding a new vertex un+1 to Gn and making it univer
sal in Gn+1. Then 

a) 0,6(5, 
b)G„є©2 oGn+le&2. 

Proof. 1. Let i = 1 or i = 2 and Gn e © ;̂ suppose Gn+ x $ ©f, i.e., for some distinct 
vertices ua9 ufi e V(Gn+1) there exists an isomorphism/: Ni(uX9 Gn+1) -> Nt(ufi9 Gn+1). 
Since un+1 is universal in Ni(uj9 Gn+1) for 1 ^ j = n while Nt(un+l9 Gn+1) cs Gn 

has no universal vertex, necessarily a g n and jS ̂  n (--- denotes isomorphism). 
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Hence either f(un+1) = w„+1 and then the partial mapping f\V(Ni(Mof,Gn)) *s a n is°-
morphism Ni(ua9Gn) onto Ni(u09Gn)9 which is impossible, or f(un+1) is another 
universal vertex uy in Ni(up9Gn+1)9 and in this case interchanging the universal 
vertices uy9 un+1 we again obtain a contradiction. 

2. If, conversely, Gn 4 ©» for i = 1 or i = 2, then we have an isomorphism 
f:Nt(ua9Gn) -> Ni(ufi9Gn); defining /(wn+1) = wn+1 we obtain an isomorphism 
f:Ni(ua9 Gn+1) -> Nt(u09 Gn+1) and hence Gn+1 $ ®f. 

Lemma 2. Let n ^ 6 be an integer; suppose that Gn is a graph with n vertices 
ul9 ...9un such that the only universal vertex in Gn is un and that the minimum 
degree of Gn is at least 2. Let us construct the graph Gn+1 with n + 1 vertices by 
adding a new vertex un+1 to Gn and joining it to un by an edge. Then 

a) Gne®1oGn+1€®l9 

b) Gne<52oGn+1e®2. 

Proof, a) 1. Let Gn e ® t. Evidently Nx(uh Gn) = -V î*,, Gn+1) for 1 = i ^ n - 1; 
moreover, un is the only vertex of degree n in Gn+1 and ww+1 is the only vertex of 
degree 1 in Gn+1. Hence Gn+1 e ©1# 

2. Suppose conversely that Gn $ &l9 i.e., some distinct vertices wa, ufi e V(Gn) have 
isomorphic neighbourhoods. Since un is the only universal vertex in Gn, necessarily 
a 4= n 4= P; hence 

#i(w«, Gn+1) = Nx(ua9 Gn) * N,(up, Gn) = Nx(up, Gn+1) 

and therefore Gn+1^(51. 
b) 1. Let Gn e ©2 and suppose that Gn+1 $ ©2, i.e., there exists an isomorphism 

f: N2(ua, Gn+1) -+ N2(up, Gn+1) for some ua,upe V(Gn+1), ua 4= u^. First observe 
that the neighbourhoods of wf for i 4= n have n vertices while N2(un, Gn+1) has n — 1 
vertices; hence a 4= n 4= /?. Further, evidently N^w^+j, Gn+1) cs. K^-i. If a = 
= n + 1 then N2(ufi, Gn+1) ca Klfn~1 and 1 ^ /? ^ n — 1; considering neigh
bourhoods of the neighbouring vertices of up we obtain a contradiction. Hence 
a 4= n + 1; similarly /} 4. n -h 1 and therefore 1 ^ a, j8 g n — 1. The vertex ww+1 

has degree 1 both in N2(ua, Gn+1) and in N2(up, Gn+1); hence either/(wrt+1) = wn+1 

and then the partial mapping /jr^Ha.Gn)) *s a n isomorphism N2(ua9 Gn) onto 
N2(ufi9 Gn)9 which is impossible, or /(ww+1) is another vertex uy of degree 1 in 
N2(up9 Gn) and in this case by interchanging the vertices wn+1, uy we again obtain 
a contradiction. 

2. Suppose conversely that Gn $ ©2, i.e., we have an isomorphism/: N2(ua9 Gn) -» 
-* N2(up9 Gn) for some wa, ŵ  e V(Gn)9 a 4= /?. Necessarily a 4= n 4= j8 since w., is 
universal in N2(ui9 Gn) for 1 ^ 1 ^ n — 1 while N2(un9 Gn) has no universal vertex. 
Further, wn is the only vertex of degree n — 1 both in N2(ua9 Gn) and in N2(ufi, Gn)9 

and hence /(wn) = wn. Therefore, if we define /(wn+1) = wn+1, we obtain an iso
morphism 1V2(wa, Gn+1) onto N2(ufi, Gn+1)9 i.e. Gn+1 $ ©2. 
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Lemma 3. Let n = 6 be an integer; suppose that Gn is a graph with n vertices 
ul9..., un such that the only universal vertex in Gn is un-x and the only vertex of 
degree 1 in Gn is un. Let us construct the graph Gn+1 with n + 1 vertices by adding 
a new vertex un+1 to Gn and joining it to un by an edge. Then 

a) G n G © 1 o G n + 1 e © 1 , 
b) Gne©2<->Gn+1e©2. 

Proof, a) 1. If Gn e <5l9 then, since Nt(ui9 Gn) = Nt(ui9 Gn+1) for 1 g * g u - 1, 
Ni(un+u G/i+i) 1s the graph which consists of an isolated vertex and N^u^ Gn+1) 
consists of two isolated vertices, evidently Gn+1 e ©x. 

2. If, conversely, Gn £ ©1? then there exist vertices ua, ufi9 a =j= /?, such that 
Ni(ua9 Gn) c* N±(ufi9 Gn). Evidently 1 = a, j? = n - 1 and hence N^u,, Gn+1) = 
= Nt(ua9 Gn) * Nt(ufi9 Gn) = Nt(ufi9 Gn+1), i.e. Gn+1 £ ©,. 

b) 1. If Gne ©2, then evidently Gn+1 e ©2, since N2(ui9 Gn+1) = N2(uf, Gn) for 
1 :g i rg n, x =# n — 1, and these neighbourhoods have n — 1 vertices and are 
connected, while N2(wn_t, Gn+1) is disconnected and N2(wn+1, Gn+1) has exactly 
two vertices. 

2. If, conversely, Gn £ ©2, then N2(wa, G„) <_: N2(up, Gn) for some a =|= /?. One can 
easily observe that necessarily a 4= n — 1 4= /? and hence evidently Gn+1 £ ©2. 

Proof of the theorem. The assertion concerning the non-existence of the graph 
Gn e © t — ©2 with n vertices for n ^ 5 is contained in [3], the non-existence of the 
graph Gn on n vertices which belongs either to ©2 — ©x or to ©i n ©2 follows for 
n ^ 6 from [2], Theorem 2.1. 

a) For n ^. 6 define the graph Gn e ©x — ©2 by using the following construction: 
— for n = 6 see the graph G6 in Fig. 1; 
— having obtained Gn, construct Gn+1 using 

Lemma 1 for n = 0 (mod 3), 
Lemma 2 for n = 1 (mod 3), 
Lemma 3 for n = 2 (mod 3). 

b) For n ^ 7 define the graph Gn e ©2 — ©x by using the following construction: 
— for n = 7 see the graph G7 in Fig. 2; 
— having obtained Gn, construct Gn+1 using 

Lemma 1 for n = 1 (mod 3), 
Lemma 2 for n = 2 (mod 3), 
Lemma 3 for n = 0 (mod 3). 

c) For n ^ 7 define the graph Gn e © t n ©2 by using the following construction: 
— for n = 7 see the graph G7 in Fig. 3; one can easily observe that G7 e ©j n ©2; 
— having obtained Gn, construct Gn+1 using 

Lemma 1 for n = 1 (mod 3), 
Lemma 2 for n = 2 (mod 3), 
Lemma 3 for n = 0 (mod 3). 
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Fig. 3 
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Souhrn 

GRAFY S NEIZOMORFNÍMI OKOLÍMI UZLŮ 1. A 2. DRUHU 

ZDENĚK RYJÁČEK 

V článku se zkoumá vzájemný vztah tříd ® 1 , © 2 grafů s neizomorfními okolími uzlů prvního, 
resp. druhého druhu; z hlavní věty článku jako důsledek vyplývá, že každá z tříd @2 — © 2 , 
® 2 — ®v ©j П @2 je nekonečná. 

Резюме 

ГРАФЫ С НЕИЗОМОРФНЫМИ ОКРУЖЕНИЯМИ ВЕРШИН ПЕРВОГО 
И ВТОРОГО ТИПОВ 

ZDENĚK RYJÁČEK 

В статье изучается взаимоотношение классов © 1 э @2 графов с неизоморфными окруже
ниями вершин первого и второго типа. Из главной теоремы в качестве следствия вытекает, 
что каждый из классов ©j — @2, © 2 — @ lt ®1 г. ®2 бесконечен. 
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