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Časopis pro pěstování matematiky, roč. 110 (1985), Praha 

PERIODIC SOLUTIONS OF A CLASS OF ABSTRACT NONLINEAR 
EQUATIONS OF THE SECOND ORDER 

PAVEL KREJCI, Praha 

(Received January 3, 1983) 

INTRODUCTION 

The aim of this paper is to prove the existence of weak periodic solutions of the 
abstract differential equation 

(1) F(u) = cp(u) + h , 

where F(u) = u" + \j/(u') + siu, ur = du/dt, \jj and cp are nonlinear mappings of 
a Hilbert space H into itself with linear growth and si is a linear elliptic operator 
from Vcz H into V*. 

The results obtained here are applied to the jumping-nonlinearity problem for 
ordinaly and partial differential equations (many results for the linear case and 
further references in this field can be found in [l]). 

In the case of partial differential equations \j/ and cp are continuous real functions. 
The requirement of linear growth of \j/ is more restrictive than the assumptions made 
by Prodi, Prouse, Krylova and others (for the references see [2], see also [7]), but 
on the other hand here the assumptions concerning the function cp are more general, 
namely the values of lim cp(u)ju as u -> + oo and u -> — oo may be separated by two 
consecutive eigenvalues of the operator si. 

The present paper is divided into two parts. In the first on the equation 

(2) F(u) = h 

is investigated and it is shown by rather elementary means that F is a homeomorphism 
between suitable Bahach spaces X and Y (see Assumption 2). Let us remark that 
a little more general result can be obtained by using the Faedo-Galerkin method, 
especially the assumption of the approximation of if/ by Lipschitz continuous map
pings can be omitted. 

In the second part the existence of a solution of (1) for each right-hand side is 
proved by the fixed-point argument for the operator F"1 by means of the topological 
degree theory. 
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Assumptions 

1. Let H, Vbe two Hilbert spaces, V c H, V dense in H and let embedding V-> H 
be compact. Let us identify H with its dual in such a way that V _ H _ V* (for details 
see e.g. [3]). The scalar product and the norm in H is denoted by (•, *)H and || • |[H, 
respectively. 

Let s4: V -> V* be a linear operator such that the form 

((u, v)) = (srfu) (v), u, v e V 

is a scalar product on V. 
Let f: H -> H be a continuous mapping and b > 0 a real constant such that for 

every w e H, 

ij/(w) = bw + f(w). 

Let us assume thatfis monotone, (f(w),w)H _ 0 for every w e H, lim ]|f(w)||H/]|w||H = 
= 0 as || w]|H -> + oo and there exists a sequence of Lipschitz continuous mapings fn 

which converges uniformly to f in H. 

2. Let T > 0 and put Y = L2(0, T; H) with the scalar product 

(u,v) = (u(t),v(t))Hdt and the norm |u[ = j ||u(f)]|Hdt) 

u, v e Y. Let us define ~~u _ u" + J^U for each u e L2(0, T; V) such that u' e Y 
and u" e L2(0, T; V*). Put X = {u 6 L2(0, T; V) | u' e Y, Qu e Y, u(0) = u(T), 
u'(0) = u'(T)}. The norm of an element u e l is defined as ||u|| = |u'| + |_]u|. 

3. Let C _ H be a closed cone, i.e. a closed set with the properties C + C _ C, 
aC c C for each a = 0, Cn( — C) = {0}. This cone induces a semiordering ^ : 
v = w iff w — veC. Assume that it has the following properties: 

a) For every w e H there exist w+ = sup {w, 0} and w~ = sup { — w, 0} such that 
(w + ,w~) = 0, and the mapping w\->w+ is continuous from H into H. 

b) Denote # = {we Y| w(*)eC a.e.}. Put w+(t) = (w(t))+ for t e [ 0 , T]. We 
assume that (v+, v') = 0 for every v e X. 

4. Let a(s/) = {xfc}^°=1, 2k < Afc+1, Afc -• +oo as k -> +oo, be the spectrum of srf 
and let mk be the multiplicity of the eigenvalue lk. Let us denote by wl

k, k = 1, 2 , . . . , 
i = 1, . . . , mk, an eigenfunction of s/ corresponding to the eigenvalue Xk, sJwl = 
= Afcw'. Assume that wk e C or wl

k e — C only if k = 1. 

5. Let g: H -• H be a continuous mapping, lim ||g(w)[|H/|[w||H = 0 as ||w||H -> 
~> +oo, such that there exist real numbers JLL, v, (p(u) = }iu+ — vu~ + g(u). 

Lemma 1. Let the assumptions 1 and 2 be fulfilled. Then for ueX we have 

( • u , u) = - |u'|2 + ((u, u)) dt and (Qu, u') = 0. 
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Proof. Let Q: ] — T/2, T/2[ -» [0, + co[ be a C°°-function with compact support in 
] —T/2, T/2[. Let us define the sequence of "T-periodic mollifiers" 

вn(t) = n x É ? M - kт)). 

fc= - 0 0 

Uя(0 = £»(* - 5) Ч S ) d s • 
The lemma is valid for u„. The passage to the limit n ~> + oo completes the proof. 

Remarks 

1. Let the assumptions 1 and 2 be fulfilled. Then X is a Banach space and the em
bedding X -» Y is compact. The last assertion follows from the fact that X is con
tinuously embedded into Xx = {ue L2(0, T; V) j u' e Y} and from the "compactness 
lemma" of [3], 

2. For ue Y the mappings u r->/(u), /(u)(t) = f(u(t)) and u h-> g(u), g(u) (t) = 

= g(u(t)) are continuous operators from Yinto Y(see [4]). 

3. In the examples below, the methods of verification of the assumption 4 are 

explained in [5]. 

Examples 

1. Let G c {RN be a bounded domain with a smooth boundary, H = L2(G), ^, <p 
continuous real functions, C = {ue H | u(x) ^ 0 a.e.}, V = H0(G), ^ = —A. 
One proves the existence of a T-periodic solution to the boundary-value problem 
utt + Hut) - Au = <p(u) + h, u = 0 on 5G, for arbitrary h e Y = L2((0, T) x G), 
where lim i/̂ (u)/u = b as u -> + oo and lim (p(u)ju is equal to ju as u -> + GO and to v 
as u -• —oo. 

2. Analogous problem arises with V = H2(G) n H0(G), ^ = A2. 

3. Let */>, 4>, C be as above, H = L2(0, /), / > 0, <p(u) = cp(u) - u, J/U = 
= -d2ujdx2 + u,V = {ue Hx(0, /) | u(0) = u(/)}. Then the equation (1) represents 
the generalized periodic problem for the nonlinear telegraph equation 

utt + Hut) - uxx = <p(u) + h . 

4. Let H, *A, <P, <P, C be as in Example 3, V = {u e H2(0, /) | u(0) = u(/), ur(0) = 

d 4 u 
J& U = h U . 

dx 4 
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Then the equation (1) becomes the generalized periodic problem for the nonlinear 
beam equation 

"it + KUt) + "xxxx = <p(") + h . 

5. Let \\/, cp be continuous mappings from RN into RN, H = V = RN, C = 
= {ue RN | u = (u 1 , . . . , uN), u} = 0 for each i = 1, . . . , N } . Let A be a symmetric 
positive definite (N x N)-matrix A = {a^}, a{j > 0 for each i,j = 1, ...,N. One 
proves the existence of periodic solutions of the system of ordinary differential equa
tions 

u" + \l/(u') + A~lu = (p(u) + h . 

I. INVERSION THEOREM 

In this section we require the assumptions 1 and 2 to be satisfied. Our aim is to 
prove 

Theorem 1. F is a homeomorphism from X onto Y. 
Obviously, F is a continuous mapping and for every u,veX we have 

( \u' - v'\ = llb\F(u) - F(v)\, 
W \\n(u-v)\^\F(u)-F(v)\ + \f(u')-f(v')\. 

The assertion of Theorem 1 is a consequence of (3) and of the following two lemmas. 

Lemma 2. Let f: H -> H be Lipschitz continuous. Then F:X -> Y is a homeo
morphism. 

Proof. Let \\f(w) - f(z)\\H = L\\w - z\\H for every w,zeH. For s e [ 0 , 1], 
ueX put 

(4) Fs(u)= Du + bu' + s.f(u'), 

and c, = 1 + (L + \)\b, c2 = max {1, b + L} . 
The inequality 

(5) 1/-J« - HI = lI7^) - I»| = c2l« - "1 
holds for each u, veX. 

We know that F0 is a linear isomorphism between X and Y. Let us suppose that 
for some s e [0, 1] the mapping Fs is a homeomorphism from X onto Y. Then for 
arbitrary e > 0 the equation 

(6) /%+£(») = * 

is equivalent to 

u = F;\h-ef(u')). 
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The existence of a solution of (6) for arbitrary h e Y is therefore ensured by the 
Banach contraction principle, whenever we choose e < (Lc^)" *. Since £ is independent 
on s, the mapping Fs: X -> Yis onto for each s e [0, 1], and by (5) the proof is com
plete. u 

Lemma 3. Let {fn} be a sequence of continuous mappings from H into H which 
converges uniformly to f in H. Let h be an arbitrary element of Y and let un be the 
solution of 

nun + bu'n+fn(u'n) = h. 

Then un converge in X to the solution u of the equation 

Uu + bu' + f(u') = h . 

Proof. For n + m we have U(un - um) + b(u'n - u'm) + f(u'n) - f(u'm) = 
= f«) - fn«) - f(u'm) + / » « ) • Hence, {un} is a fundamental sequence in X. 
Let us denote by u the limit of un. We have [Ju + bu' + f(u') = h + • ( " — un) + 
+ b(u' — u )̂ + f(u') — fn(u^) for arbitrary n, and the proof follows immediately. 

II. JUMPING NONLINEARITY 

Throughout this section we make use of the assumptions 1 — 5. 
Denote by A0 the set of all (pt, v) e R2 such that the equation 

(7) •** + bu' = fiu+ — vu" 

has only the trivial T-periodic solution (i.e. u = 0), and 

Al =(]-a>,A1[
2u]A1,A2]

2u U l A - V i P h U {(^. ^)} • 
k = 2 k=2 

The following lemma is an easy consequence of Lemma 1. 

Lemma 4. Let ueX be a solution of (7). Then u = const., ueV9 and 

(8) s/u = \iu+ — vu" . 

Lemma 5. Let X $ a(sJ). Put Rk = \(sJ - X Id)_1 | |(H_H) = sup \(sJ - X Id)"1 u\. 
ueH 

|« | = 1 

Then 
(a)Rx = [dist(X,a(^))yl; 

nth 

(b) if |(JJ/ - A Id) - 1 ul = Rx . |»|, then u = ^ Z "»w*. w / l e r e "* 6 Rl» ^ ~ = 
J.6JTA » = 1 

= {fc| |A-A t | = dist(A,(x(^))}. 
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The proof of Lemma 5 is immediate if we represent u in the form of the series 
oo nth 

Z Z ukwk- The set X\ contains two points in the case X = i(Xk + Xk+l) and one 
k = l i = l 

point in the other cases. 

Lemma 6. At c A0. 

Proof. Let us consider two cases. 

a) (lj, v) lies in the interior of At. Put X = \{\i + v), x = %(fi — v). Let ueV 
be a solution of (8). Obviously u = u+ — u~, hence 

(9) {si - I Id) u = x(u+ + u") 

and Lemma 5 (a) yields 

| u | ^ | x | / d i s t ( ^ , (7 (^ ) ) | u | . 

Since \x\ < dist (X, 0"(J/)), necessarily u = 0. 

b) (^, v)e5A 1 . Set \x\ = dist (^, <r{si)). Assume /z = Ak + 1, v = Xk, fc > 1 (the 
other cases are analogous). Lemma 5 (b) implies 

Wk mjc + 1 

"+ + M" = 2 » J + Z Mi+iK+i • 
i = l i = l 

The fact that u is a solution of (9) implies 

mk 

u = M+ - it" = - £ u[w[ + £ "i+iwi+i • 
mfc mj{ + i 

E«-X + i 
i = l i = l 

řWfc 

Finally, we obtain u+ = i YJ uk+iwk+i>u = i Z ukwk> hence u + and u are eigen-
i = l i = l 

functions of the operator si. Using the assumption 4 we obtain u = 0. H 

Let us define the system of operators Fs: X -> Y as in (4). For h e Y put u5 = 
= F;1(h),sG [0,1]. Then 

F0-
1h-F;1h = sF0-

1(f(u;)). 

Making use of the a priori estimate \u's\ = (l/b) \h\, from the assumption 
i/(w)IU/ilwiU -> 0 as| |w[|H -> +oo we deduce that for each e > 0 there exists Kt 

such that 

(io) \Fzlh-F;lh\&*\h\+Kt. 

Lemma 7. Let {y., v) e A0. Then there exists m > 0 such that for every ueX the 
inequality 
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(11) \u - F0\nu+ - vu~)\ ^ 3 m|u| 

holds. 

Proof. Let us suppose that (11) does not hold. Then there exists a sequence {uj\, 
\uj\ = 1, lim \uj — F0

l(nuJ — vuj)\ = 0. Let us choose the sequence [uj] in such 
j-*co 

a way that F0
l(y,u+ — vuj) -> u0 in X and F0

l(fj.u+ — vuj) -> u0 in Y. Con
sequently Uj -> u0 in Y, |u0 | = 1 and u0 = F0

l(fiu0 — VUQ") is a nontrivial solution 
of (7), which contradicts the assumption (fi, v)e A0. u 

Let us define A2 as the set of all (ft, v) e A0 such that there exists a continuous curve 
(a(z), b(z)) c= A0, z e [ 0 , l ] , a, b e C([0, 1]), a(0) = /i, 6(0) = v, a(l) = b(l) = 
= A £ a(j /) . Obviously A,x c= .A2 and from Lemma 7 it follows that A2 and A0 are 
open' sets in R2. 

Theorem 2. Let (fi, v)e A2. Then the equation (1) has at least one solution ueX 
for every right-hand side he Y. 

Proof. Let (fi, v) e A2 and h e Y be given. For any r, se [0, 1] and u e Y we have 

\Fj\fiu+ - vu" + r(g(u) + h)) - F0\fiu
+ - vu~)\ ^ 

^ r\F0\g(u) + h)\ + \Fj\fiu+ - vu~ + r(g(u) + h)) -

- F0\iiu
+ - vu~ + r(g(u) + h))| . 

Using the assumption 5 and (10) we conclude that there exists a constant Km > 0 
such that 

(12) \Fj\fiu+ - vu~ + r(g(u) + h)) - Fo"1^ - vu")| ^ m\u\ + Km . 

Put R = Kjm. The inequalities (11) and (12) imply that 

(13) |u - F;>u+ - vu" + r(g(u) + h))| = m|u| 

for every u e Y, \u\ ^ i^. The operators FJl may be considered as compact mappings 
from Yinto Y. The property (13) enables us to define the topological degree of the 
mapping ui—>u — FJl(fiu+ — vu" + r(g(u) + h)) in Y with respect to the ball 
BR(0) = {u e Y| \u\ ^ R} and to the point 0 for every r,se [0, 1]. 

Let (a(z), b(z)) <= A2, z e [0, 1], be a curve such that a(0) = \i, b(0) = v ,a(l) = 
= b(l) = X $ a(s/). Jhen the homotopy property of the topological degree yields 

d(u - F;\(p(u) + h), BR(0), 0) = d(u - F;\fiu+ - vu-), BR(0), 0) = 

= d(u - F-\fiU+ - vu"), BR(0), 0) = d(u - XF0\u), BR(0), 0) . 

The mapping Id — XF0
 1 is linear, consequently its degree is odd. This ensures the 

existence of ue Ysuch that u = F;*((p(u) + h). Hence, ueX and u is a solution 
of (l). The theorem is proved. u 
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Corollary. Let k > 1. Then there exists s > 0 such that for arbitrary (//, v) e R2, 
kk — s < v < Xk9 Xk + s < [i < Xk + 1 + s and for each he Y there exists at least 
one solution Of(l). 

Remarks 

4. In special cases there is possible to describe the set A2 precisely. In the situation 
of Example 1 with N = 1 and Example 3 this problem was solved by Fucik (see e.g. 
[1]). He found a countable system {Sk}, k = 2 of continuous curves in ~\Xt, + oo[2, 

oo 

( 4 , kk) e Sk, such that A2 = (] - oo, Ax[
2 u ]Al5 + oo[2) \ (J Sk. 

k = 2 

5. In [6] it is proved that in the cases of Examples 2 (N = 1) and 4 there exists 
a system of curves with the same property as above, but it is not found explicitly. 
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