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Časoplt pro pěstování matematiky, roč. 94 (1969). Praha 

ON THE NUMBER OF COMPLETE SUBGRAPHS 
AND CIRCUITS CONTAINED IN GRAPHS 

P. ERD6S, Budapest 

(Received January 10, 1968) 

Dedicated to V. JARNIK on the 
occasion of his 70-th birthday. 

Denote by <&(n; k) a graph of n vertices and k edges. Put for n = r (mod p — 1) 

m ( n ' P ) = 2 ^ T ) ( " 2 ~ r 2 ) + (2)' ° = n = p-1 

and denote by Kp the complete graph of p vertices. A well known theorem of TURAN 
[6] states that every @(n; m(n9 p) + 1) contains a Kp and that this result is best 
possible. Thus in particular every &(2n; n2 -f 1) contains a triangle. Denote by 
fn(p; I) the largest integer so that every @(n; m(n, p) + /) contains at least fn(p; I) 
distinct Kp$. RADEMACHER proved that/„(3; 1) = [n/2] and I proved [1] that there 
exists a constant 0 < c < \ so that for every 

(i) l<cn, /n(3;0 = / |У| 

and I conjectured that (1) holds for every / < [w/2]. We are very far from being able 
to determine fn(p; I) in general, the problem is unsolved even for p = 3 (though W. 
BROWN has certain plausible unpublished conjectures). NORDHAUS and STEWART [4] 
conjectured that 

l i m m i n ^ ) = ? , 0</<(/"vr-i 
n=oo i i/n 9 ~V2/ L 4 J 

I proved that for / = o(n2) 

(-) L(3;/) = (l + o ( l ) ) / j . 

I do not give the proof of (2) in this paper. 
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Theorem 1. Let n > n0(p). Then 

(3) L(p;i) = nT^4]. 
*=OLP - -J 

The special case 

fa„(4; 1) = n2 

was stated without proof in [1]. It is possible that the condition n > n0(p) can be 
omitted and that (3) holds for every n. 

Instead of Theorem 1 we prove the following more general 

Theorem 2. Let n > n0(p) (lx < spn, ep > 0) be a sufficiently small constant. Then 

*=o LP - 3J 

In the case p = 3 the proof of Theorem 1 is much simpler than that of Theorem 2, 
[2], but for the general case I have no simpler proof for Theorem 1 than for Theorem 2. 

Our principal tool for the proof of Theorems 1 and 2 will be 

Theorem 3. Let n > n0(p)9 l2 < n/200p4. Let there be given a &(n; m(n9 p) — l2) 
which contains a Kp. Then it has an edge which is contained in np'2l(10p)6p K/s 
of our graph. 

By Turans theorem every <&(n; m(n, p) + 1) contains a Kp. Thus Theorem 3 
implies the following corollary of independent interest. 

Theorem 3'. Every &(n; m(n, p) + 1) has an edge which is contained in 
np"2/(10p)6pK;s of our graph. 

For p = 3 all our Theorems are known [1]. In fact I can show that every &(n; 
[n2/4] + 1) has an edge which is contained in at least (n/6) + 0(1) triangles and 
that n/6 is best possible. For p > 3. I have not succeeded in determining the best 
possible constant in Theorem 3'. The constants in all our Theorems are very far 
from being best possible. 

To prove Theorem 3 we need two Lemmas, but first we have to introduce some 
notations. <3m will denote a graph of m vertices. 9(yl9..., yt) will denote the subgraph 
of ^ spanned by the vertices yl9 ..., yt. & — xt — ... — xr denotes the subgraph 
of ^ from which the vertices xu ..., xr and all edges incident to them have been 
omitted. Let el9..., er be edges of CS. <§ — et — ... — er denotes the subgraph of ^ 
from which the edges el9..., er have been omitted. e(@) will denote the number of 
edges of ̂ , v(x) the valency of the vertex x is the number of edges of <$ incident to x. 
K(uu ..., up) denotes the complete p — chromatic graph, with ut vertices of the i-th 
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color and where any two vertices of different color are joined by an edge. If Sf is 
a set \Sf\ denotes the number of its elements and if A c £f9 A is the complement 
of A in $f. 

We always assume p 2> 4, since our Theorems are all known for p = 3. 

Lemma 1. Let \Sf\ = n and At c: Sf9 1 <1 i <1 p. Assume 

<4> ^"(^-ris?)- 1 S i S" 
Then there are values lSi<JSpso that 

1 Jl V P - I 10pV 

(5) is not best possible, but suffices for our purpose. From (4) and \Sf\ = n it 
follows that if (5) fails to hold for every 1 _ i < j _ p, then 

w ' " - \j, _ i iop3 loop4/ 

From (6) we have 

P> Wa"(^7-I^-7^)-
Further clearly 

(8) |Af n A,.| = |Af| + \Aj\ - n + |Af n A,.| . 

Thus if (5) never holds we have from (4) and (8) that for every 1 <1 i < j <1 p 

(9) \I, n Aj\ < n (-±- + - M . 
W ' Jl Vsop4 iopV 

It is easy to see that (7) and (9) lead to a contradiction. We evidently have 

(10) n = \r\>i\Zl\- £ |A;nA-,|. 
i = l l<;i<j<;P 

Thus from (7) and (10) 

max AL n AA > n ( J 
i*i<j*p ~~ fp\ \P - i ioP2 loop3/ 

which contradicts (9) and hence proves the Lemma. 
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Lemma 2. Let &(n; m(n, p) - l2) = >̂ h < n/200j?4 be a graph which contains 
a Kp. Then it has a subgraph <&N, N > n/lOOp2 which also contains a Kp and 
each vertex of which has (in 9N) valency 

(11) t,(X)>jVf/^=^--i-y 
v ' \p - i loop4/ 

If our <S satisfies (11) our Lemma is proved. If not let x„ ... be a sequence of 
vertices of our <& so that the valency of xt in <3 — xx — ... — xt^t satisfies 

(12) t<x,) £ (n - i) (V— - — ) . V \p-l 100p4/ 

Suppose this process stops in k steps, in other words every vertex of <& — xv — ... 
... — xk has valency greater than 

(13) („ - k) (tZ* - - i -V 
y J K } \P - 1 loop4/ 

But then by (12) and by the fact that e(<$ — x t — ... — xk) ^( J a simple 
argument shows that V 2 / 

(14) 

«_(„,P)-^^(») + oW<(^i-^)0 + ("-). 
(14) clearly leads to a contradiction if n > n0(p) and n — k ^ n/lOOp2. Thus 

n ~ k> n/lOOp2. Put <SN = <# - xt - ... - xk. By (13) 9N satisfies (11), it clearly 
satisfies N > n/lOOp2. Finally by* (12) and k 2> 1 we obtain by a simple computation 

(15) e(%) >= e(V) -^{n - i) flzl - -L_\ > 
i=o \p - 1 100 j r / 

> ™{n>P) ~~~* - Kn ~ Of^11: - 7^-7) > m(n - M = W(-V,P)-200IT i=o \p — 1 lOOpy 

(15) implies by Turans theorem that our &N contains a Kp, which completes the 
proof of Lemma 2. 

Now we are ready to prove Theorem 3. Our &(n; m(n, p) — l2) contains by 
Lemma 2 a ̂ N, N > njlOOp2 the valency of each vertex of which satisfies (11) and it 
contains a Kp say (xu ..., xp). Denote by At the set of vertices in @N joined to xt. 
By (11) we can apply Lemma 1 and obtain that there are two vertices x{ and xj9 

1 .S i < J S P both of which are joined to (yu ..., yt are vertices of @N) 

(16) yi,...,y,, r > N f c J + J _ y N>n/100p2. 
\p - 1 lOpV 
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Consider now the graph ^N(yu ..., yt). By (11) and (16) we have for every i 

(17) v(yt) > N (V-^ L_ \ _ N + t = t - N f—-— + —L-\ > 
v ; Ky,) \p-l lOOpV \p-l 100// 

1 1 
+ 

x l l - ^ - 1 1 0 0 p 4 | > , 
p - 3 + 1 Vp - 3 20pV 
p - 1 10p3 

In (17) v(y() of course denotes valency in 9N(yu ..., yt). Denote by Bt the set of / s 
joined to y{. It immediately follows from (17) that for every il9..., ir, r gj P — 3 

(18) | B i l n . . . n B l V | > ^ - 3 , 

(for r.< p — 3 (17) could of course be considerably improved). 
For (18) and (15) we immediately obtain that ^v(yi> •••> yt) contains at least 

(t>(p-3)NI(p-l)>nimp>) 

,10* 1 fp-2 1 n*"2 np~2 

(19) , IT. 7 ^ ^ > 7 ^ TT^^Jl > (p - 2)! (20p3)'-2 (p - 2)! (I0p)5(p"2) (I0p)6p 

Kp_2's. (19) follows from the fact that by (18) we have for each r at least t/20p3 

choices for the r-th vertex of our Kp_2. Each of these Kp_2's form together with the 
edge (xf, Xj) a Kp of our @(n; m(n, p) — l2) each of which contain the edge (xh x,), 
and this completes the proof of Theorem 3. 

Now we prove Theorem 2. The proof is very similar to [1], We use the following 
theorem of SIMONOVITS [5]: 

To every p there is a dp so that if / < dpn and the graph @(n; m(n, p) — /) does not 
contain a Kp then it is (p — l)-chromatic, in other words it is a subgraph of some 

P - i 
K(wl5..., wp_!) with £ ut = n. 

i = i 

Now we are ready to prove Theorem 2. Consider Turans graph 

K(uu ..., Up^), w* = -—^—— , l _ i _ p - l , 

having the vertices xj°, 1 £ y <; [(it + i - 1)/(P - 1)], 1 <* i S P - 1. Add the /t 

edges (x^""1*, x^""1*), 2 g y £ lx + 1. This ^(n; m(n, j?) + /-) clearly has 
P-3 

*i EI [(n + *)I(P ~" 0}^Vs* Thus t o P r o v e Theorem 2 we only have to show 
i = 0 

(-0) / ^ . O a ' i f f r ^ l . 
'="LP- -J 
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To prove (20) observe that by Turans theorem our <g(n\ m(n9 p) + lx) contains 
a Kp, let r be the smallest integer so that ^ — ex - ... - er contains no K . By 
Turans theorem we have r = lx. Assume first r _• (lOP)6p lx. From Theorem 3 (and 
from the proof of Theorem 3) we obtain that if ep < l/2.108p6p+2, (lx < epn) then 
each of the edges ei9 1 = i ;= (I0p)6p . lx are contained in at least np"2l(l0p)6p Kps 
of 9 - et — ... — ei-t. These Kp's are clearly all different. Thus 9 contains at least 

lxn
p~2 > iJflKn + i)/(p - 1)] 

i = 0 

KpS which proves (20) in this case. 
Assume next r < (10p)6p lx. Let ep < Sp/(l0p)6p. We have by assumption lt < 

< epn. Then by the theorem of Simonovits 0 — ex — ... — er must be contained 
p - i 

in a K(ul9..., up_i), £ ui = n- Now we assume p —• 4. We then easily obtain 
i = l 

(21) - [ é^l. '-'-'-• 
To see this observe that if p ^ 4 and J] wt- = n and (21) is not satisfied for all i we 

i = l 

would have by a simple computation for sufficiently small* Sp 

P-I 

m(n, p) — r < e(& — ex — ... — er) ^ fj ti{ < m(n, p) — <5pn 
i = l 

an evident contradiction since r < Spn. 
Observe now that (since 5P is small) the edges eh 1 S i .= r must join vertices of 

the same color of our K(ui, ..., un). By (21) we observe by a simple argument 
that each eh 1 ^ i g r is contained in at least (r — lx = rx) 

p - 3 i 

Kp's and these Kp's are clearly, all different, or our graph contains at least 

Kp's. From r < dpn it follows for sufficiently small Sp that r([n/(P — 1)] — rx) 
is minimal if rx is as small as possible, in other words if r = lx, rx = 0. Thus by (22) 
our 9 contains at least 

P-3 

h 
І=O |_p - i j 
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Kps, which completes the proof of (20) and Theorem 2. 
With considerably greater care we could prove the following further results: 

Theorem 4. Let n > n0(p) 

w'-iX^-«)+'-«-'<[1>+4+J}-«-t-'-3-
Then every &(n; m(n, p) + 1 — /) which contains a Kp contains at least 

Kps. Further every @(n; m(n, p) + 1 — /) satisfying (23), which contains a Kp 

has an edge which is contained in ep g(n9 p, I) Kps. 
The proof of Theorem 4 is quite complicated, it uses methods of [1] and will 

not be given here. It is quite easy to see though that (24) is best possible. It suffices to 
consider a Turan graph K(uu ..., up_)), ut = [(n + i — l)/(p — 1)], 1 S i S 
= p - 1 having vertices x{/\ 1 = j g [(n + i - l)/(p - 1)], 1 S i <; P - 1. Add 
the edge ( x ^ " 1 ^ ^ " ^ ) arid omit / suitable edges emunating from x[p~l\ The 
details can be left to the reader. 

By the methods of this paper we can prove the following 

Theorem 5. Every @(2n; n2 + 1) contains at least n(n — 1) (n — 2) pentagons. 
K(n9 n) with one edge added shows that Theorem 5 is best possible. Theorem 5 

could be generalised for (2r + l)-gons but we will return to these questions at an­
other occasion. 
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