## Časopis pro pěstování matematiky

Bohdan Zelinka
Infinite directed paths in locally finite digraphs

Časopis pro pěstování matematiky, Vol. 103 (1978), No. 2, 136--140
Persistent URL: http://dml.cz/dmlcz/108623

## Terms of use:

© Institute of Mathematics AS CR, 1978

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

# INFINITE DIRECTED PATHS IN LOCALLY FINITE DIGRAPHS 

Bohdan Zelinka, Liberec

(Received February 18, 1976)

We shall consider infinite locally finite directed graphs (shortly ILF-digraphs). A locally finite digraph is a digraph in which the indegree and the outdegree of each vertex is finite. We introduce three types of infinite directed paths (or shortly dipaths), namely one-way infinite sourcing dipaths, one-way infinite sinking dipaths and two-way infinite dipaths.

A one-way infinite sourcing dipath (or shortly sourcing dipath) in a digraph $G$ is a one-way infinite sequence

$$
v_{0}, e_{0}, v_{1}, e_{1}, v_{2}, e_{2}, \ldots,
$$

where $v_{i}$ are vertices and $e_{i}$ are edges of $G, e_{i}=\overrightarrow{v_{i} v_{i+1}}$ for all non-negative integers $i$ and all terms of the sequence are pairwise distinct.

A one-way infinite sinking dipath (or shortly sinking dipath) in a digraph $G$ is defined similarly as a sourcing dipath, the only difference being that $e_{i}=\overrightarrow{v_{i+1} v_{i}}$ for all non-negative integers $i$.

A two-way infinite dipath in a digraph $G$ is a two-way infinite sequence

$$
\ldots, v_{-2}, e_{-2}, v_{-1}, e_{-1}, v_{0}, e_{0}, v_{1}, e_{1}, v_{2}, e_{2}, \ldots,
$$

where $\dot{v}_{i}$ are vertices and $e_{i}$ are edges of $G, e_{i}=\overrightarrow{v_{i} v_{i+1}}$ for all integers $i$ and all terms of this sequence are pairwise distinct.

Finite dipaths are defined in a well-known way.
We shall prove some lemmas.
Lemma 1. Let $G$ be a strongly connected ILF-digraph. Then $G$ contains at least one one-way infinite sourcing dipath.

Proof. Let $v_{0}$ be a vertex of $G$. As $G$ is strongly connected, to any vertex $v$ of $G$ there exists a finite dipath from $v_{0}$ into $v$. If $n$ is a non-negative integer, let $V_{n}$ be the set of all vertices $v$ of $G$ such that there exists a dipath of the length $n$ from $v_{0}$ into $v$, but there exists no such dipath of a length smaller than $n$. Evidently $V_{0}=\left\{v_{0}\right\}$
and $V=\bigcup_{n=0}^{\infty} V_{n}$, where $V$ is the vertex set of $G$. As $G$ is locally finite, $V_{n}$ is a finite set for each $n$; as $G$ is infinite, $V_{n} \neq \emptyset$ for each $n$. Let $E_{0}$ be the set of all edges $\overrightarrow{u v}$ where $u \in V_{n}, v \in V_{n+1}$ for some $n$. Now we shall describe a labyrinth excursion on $G$ by the following rules:
I. The excursion starts at $v_{0}$; at the starting moment all edges of $G$ have the black colour.
II. If we are at a vertex $v$ which is the initial vertex of an edge $e \in E_{0}$, we go through $e$ into its terminal vertex and change the colour of $e$ to green.
III. If we are at a vertex $v$ which is not the initial vertex of a black edge $e \in E_{0}$, we go through the green edge whose terminal vertex is $v$ into its initial vertex and change its colour to red.

We shall prove that this labyrinth excursion is infinite. If we are at a vertex $v \neq v_{0}$, then there exists exactly one green edge incoming into $v$, namely the edge through which we have come into $v$ for the first time. Thus we cannot stop at a vertex $v \neq v_{0}$. Suppose that we stop at $v_{0}$. This means that we have traversed all edges outgoing from $v_{0}$ in both directions (this means that they are red). Let $M$ be the set of all vertices which we have traversed; as we have stopped after a finite number of steps, the set $M$ is finite. This implies that there exists a non-negative integer such that $M \cap V_{n}=\emptyset$. Let $v \in V_{n}$ and consider a finite dipath $P$ of the length $n$ from $v_{0}$ into $v$. We have $v_{0} \in M, v \notin M$, therefore there exists a vertex $w$ of $P$ which is in $M$ and such that no vertex of $P$ between $w$ and $v$, except $w$ itself, is in $M$. Let $x$ be the vertex of $P$ immediately succeeding $w$. Then $\overrightarrow{w x} \in E_{0}$, because it belongs to $P$ and $P$ has the length $n$. We traversed $w$ but we did not go through $\overrightarrow{w x}$ which was in $E_{0}$ and black and instead of this we returned from $w$ through a green edge, thus violating the rule II. Therefore the labyrinth excursion is infinite. We make no circuits at this excursion, because by the rule II we can go only from $V_{n}$ into $V_{n+1}$ for some $n$ and by the rule III we can only return through an edge already traversed. Thus the result of this excursion is a sequence of edges some of which are green and some red. The subsequence of this sequence consisting of all green edges is evidently the sequence of edges of a sourcing dipath.

Lemma 1'. Let $G$ be a strongly connected ILF-digraph. Then $G$ contains at least one one-way infinite sinking dipath.

Proof is dual to the proof of Lemma 1.
These two lemmas are the digraph analoga of Theorem 2.4.2 from [1] which concerns undirected graphs.

Lemma 2. Let $G$ be an acyclic ILF-digraph which contains no one-way infinite sourcing dipath. Then $G$ has at least one sink.

Lemma 2'. Let G be an acyclic ILF-digraph which contains no one-way infinite sinking dipath. Then $G$ has at least one source.

Proofs are evident.
Lemma 3. Lét G be an acyclic ILF-digraph which contains neither one-way infinite sourcing dipaths nor sinking ones. Then $G$ has infinitely many sources and infinitely many sinks.

Proof. According to Lemma $2^{\prime}$ the set $S$ of sources of $G$ is non-emty. Let $v$ be a vertex of $G$. Consider a sequence $v=u_{0}, u_{1}, u_{2}, \ldots$ such that $\overrightarrow{u_{n+1} u_{n}}$ is an edge of $G$ for $n=0,1, \ldots$ and suppose that this sequence continues as long as possible. In this sequence no vertex is repeated because $G$ is acyclic. The sequence must end at a certain vertex because otherwise it would be the sequence of vertices of a sinking dipath. Thus this sequence has its last vertex which is in $S$. We have proved that to each vertex $v$ of $G$ there exists a finite dipath from a vertex of $S$ into $v$. For each nonnegative integer $n$ let $V_{n}$ be the set of all vertices $v$ of $G$ with the property that there exists a dipath of the length $n$ from a vertex of $S$ into $v$ and there exists no shorter dipath with this property. Suppose that $S$ is finite. As $G$ is locally finite, each $V_{n}$ is a finite set. We have $V=\bigcup_{n=1}^{\infty} V_{n}$, where $V$ is the vertex set of $G$. As $G$ is infinite, we have $V_{n} \neq \emptyset$ for each $n$. Now by means of a labyrinth excursion similarly as in the proof of Lemma 1 we can prove that there exists a sourcing dipath in $G$, which is a contradiction. Thus $G$ has infinitely many sources. Dually we prove that $G$ has infinitely many sinks.

A leaf (or a quasi-component) of a digraph $G$ is a subgraph of $G$ induced by a class of the equivalence defined of the vertex set of $G$ so that two vertices $u, v$ are in this equivalence if and only if there exists a dipath from $u$ into $v$ and a dipath from $v$ into $u$. The leaf composition graph $L(G)$ of $G$ is the image of $G$ in the homomorphism $\tau$ which maps two vertices onto the same vertex if and only if they belong to the same leaf of $G$. This concept was defined in [1].

Theorem 1. Let G be an ILF-digraph which contains neither one-way infinite sourcing dipaths nor sinking ones. Then
( $\alpha$ ) each leaf of $G$ is a finite digraph;
$(\beta)$ the leaf composition graph $L(G)$ of $G$ has infinitely many sources and infinitely many sinks.

Proof. Each leaf of $G$ is strongly connected, therefore if $(\alpha)$ is not fulfilled, there exists an infinite leaf of $G$ and it contains a sourcing dipath and a sinking dipath by Lemmas 1 and $1^{\prime}$, which is a contradiction. If $(\beta)$ is not fulfilled, then $L(G)$ has a sourcing dipath or a sinking one by Lemma 3: Let $P$ be a one-way infinite dipath in $L(G)$. Let $v$ be a vertex of $P$ which is neither the first nor the last in $P$. Let $e_{1}$ (or $e_{2}$ ) be the edge of $P$ incoming into $v$ (or outgoing from $v$, respectively). Let $e_{1}^{\prime}, e_{2}^{\prime}$ be edges of $G$ such that $\tau\left(e_{1}^{\prime}\right)=e_{1}, \tau\left(e_{2}^{\prime}\right)=e_{2}$, where $\tau$ is the homomorphism from the definition of the leaf composition graph. Let $v^{\prime}$ be the terminal vertex of $e_{1}^{\prime}$, let $v^{\prime \prime}$
be the initial vertex of $e_{2}^{\prime}$. We have $\tau\left(v^{\prime}\right)=\tau\left(v^{\prime \prime}\right)=v$, therefore $v^{\prime}$ and $v^{\prime \prime}$ are in the same leaf of $G$. As any leaf is strongly connected, there exists a dipath $P(v)$ from $v^{\prime}$ into $v^{\prime \prime}$ in this leaf. For each edge $e$ of $P$ we choose an edge $e^{\prime}$ such that $\tau\left(e^{\prime}\right)=e$ and for the vertices of $P$ we find dipaths $P(v)$ as described; thus we obtain an infinite dipath in $G$.

Now we prove a theorem concerning two-way infinite dipaths.
Theorem 2. For every positive integer $n$ there exists a strongly connected ILFdigraph in which there exist $n \cdot v e r t e x-d i s j o i n t ~ s o u r c i n g ~ d i p a t h s ~ a n d ~ n ~ v e r t e x-~$ disjoint sinking dipaths, but no two-way infinite dipath.

Proof. Let the vertex set $V$ of the required digraph $G$ consist of all ordered pairs $[p, q]$, where $p$ is a positive integer and $q$ is an integer such that $1 \leqq q \leqq n$. An edge goes from $[p, q]$ into $[p+1, q]$ and from $[p+1, q]$ into $[p, q+1]$ for each $p$ and $q$, the sum $q+1$ being taken modulo $n$. Let $P_{i}$ be the sourcing dipath whose sequence of vertices is $[1, i],[2, i],[3, i], \ldots$ for $i=1, \ldots, n$. Let $Q_{j}$ be the sinking dipath whose sequence of vertices is $[1, j],[2, j-1],[3, j-2], \ldots$ for $j=1, \ldots, n$, where the differences $j-1, j-2, \ldots$ are taken modulo $n$. The paths $P_{1}, \ldots, P_{n}$ (or $Q_{1}, \ldots, Q_{n}$ ) form a system of $n$ pairwise vertex-disjoint sourcing (or sinking, respectively) dipaths. Now let $\left[p_{1}, q_{1}\right]$ and $\left[p_{2}, q_{2}\right]$ be two vertices of $G$. We go along $P_{q_{1}}$ from $\left[p_{1}, q_{1}\right]$ into $\left[p^{\prime}, q_{1}\right]$, where $p^{\prime}$ is the least integer such that $p^{\prime} \geqq p_{1}$ and $p^{\prime}+q_{1}-1 \equiv q_{2}(\bmod n)$. The vertex $\left[p^{\prime}, q_{1}\right]$ lies on $Q_{q_{2}}$. We go along $Q_{q_{2}}$ from $\left[p^{\prime}, q_{1}\right]$ into $\left[p^{\prime \prime}, q_{2}\right]$, where $p^{\prime \prime}$ is the greatest integer such that $p^{\prime \prime} \leqq p_{2}$ and $p^{\prime \prime} \equiv$ $\equiv 1(\bmod n)$; the vertex $\left[p^{\prime \prime}, q_{2}\right]$ lies on $Q_{q_{2}}$. Then we go along $P_{q_{2}}$ from $\left[p^{\prime \prime}, q_{2}\right]$ into $\left[p_{2}, q_{2}\right]$. We have proved that $G$ is strongly connected. Now let $R$ be a sinking dipath in $G$. Suppose that there exists $q_{0}$ such that $1 \leqq q_{0} \leqq n$ and $R$ has no common vertex with $P_{q_{0}}$. The dipath $R$ must have a common vertex with some $P_{i}$ because each vertex of $G$ belongs to some $P_{i}$. Thus we may choose $q_{0}$ so that $R$ has a common vertex with $P_{q_{0}-1}$ (subscript taken modulo $n$ ). Let $\left[p_{0}, q_{0}-1\right]$ be such a common vertex with the property that $p_{0}$ is minimal. Let $e$ be the edge of $R$ whose terminal vertex is $\left[p_{0}, q_{0}-1\right]$.Its initial vertex cannot be $\left[p_{0}-1, q_{0}+1\right]$, because of the minimality of $p_{0}$, therefore it is $\left[p_{0}+1, q_{0}\right]$. But this vertex belongs to $P_{q_{0}}$, which is a contradiction. Thus we have proved that each sinking path in $G$ has common vertices with all paths $P_{1}, \ldots, P_{n}$. As this must hold also for all infinite sinking subpaths of such a dipath, each sinking dipath in $G$ has infinitely many common vertices with each $P_{i}$ for $i=1, \ldots, n$. Now let $R_{1}$ be a sourcing dipath in $G$, let its initial vertex be $\left[p^{*}, q^{*}\right]$. Let $M$ be the set of all vertices of $G$ of the form $[p, q]$, where $p \leqq p^{*}$. This set is finite; it has $n p^{*}$ elements. Let $R_{2}$ be a sinking dipath in $G$. Only a finite number of vertices of $R_{2}$ are in $M$ and thus there exists a sinking dipath $R_{3}$ which is a subpath of $R_{2}$ and such that none of its vertices is in $M$. Now $R_{3}$ has infinitely many common vertices with $P_{q^{*}}$. Consider the sequence $\mathscr{S}$ of the common vertices of $P_{q^{*}}$ and $R_{3}$ in the ordering in which they occur when going along $R_{3}$ in the direction opposite to the orientation of its edges. From this sequence we con-
struct the sequence $\mathscr{S}_{0}$ of the first co-ordinates of these vertices. This sequence is an infinite sequence of positive integers and no term is repeated in it, therefore it cannot be decreasing. Thus there are two terms $p^{\prime}$ and $p^{\prime \prime}$ of this sequence such that $p^{\prime}<p^{\prime \prime}$ and $p^{\prime \prime}$ is the immediate successor of $p^{\prime}$ in $\mathscr{S}_{0}$. Obviously $p^{\prime}>p^{*}$. This implies that the vertices $\left[p^{\prime}, q\right]$ and $\left[p^{\prime \prime}, q^{*}\right]$ are vertices of $R_{3}$ and there exists a finite dipath $R_{4}$ from $\left[p^{\prime \prime}, q^{*}\right]$ into $\left[p^{\prime}, q^{*}\right]$ such that each edge of $R_{4}$ is an edge of $R_{3}$; obviously we must take $R_{4}$ as a finite sequence whose ordering is inverse to the ordering of a subsequence of $R_{3}$; do not forget that the elements of sinking dipaths are written in the ordering in which they occur when going along such a dipath in the direction opposite to the orientation of edges, while at finite dipaths this is done inversely. Let $\left[p^{\prime \prime}, q^{*}\right]=u_{0}, u_{1}, \ldots, u_{k}=\left[p^{\prime}, q^{*}\right]$ be the sequence of vertices of $R_{4}$. There exist numbers $l_{1}, \ldots, l_{n-1}$ such that $u_{0}, \ldots, u_{l_{1}}$ are in $P_{q^{*}}$, the vertices $u_{l_{i}+1}, \ldots$ $\ldots, u_{l_{t+1}}$ are in $P_{q^{*+i}}$ for $i=1, \ldots, n-1$ and $u_{l_{n}+1}, \ldots, u_{k}$ are again in $P_{q^{*}}$. Let $u_{l_{1}}=\left[\tilde{p}_{i-1}, q^{*}+i-1\right]$ for $i=1, \ldots, n, u_{t_{i}+1}=\left[p_{i}, q^{*}+i\right]$ for $i=1, \ldots, n$. Evidently $p_{i}=\tilde{p}_{i-1}-1$ for $i=1, \ldots, n$. Let $U_{1}$ be the set of all vertices $[p, q]$ such that either $p<p_{i}$, where $i \equiv q-q^{*}(\bmod n)$ and $q \neq q^{*}$, or $p<p^{\prime \prime}, q=q^{*}$. Let $U_{2}$ be the set of all vertices $[p, q]$ such that $p>\tilde{p}_{i}$, where $i \equiv q-q^{*}(\bmod n)$. Suppose that there exist vertices $x \in U_{1}, y \in U_{2}$ such that $\overrightarrow{x y}$ is an edge of $G$. Let $x=\left[p_{x}, q_{x}\right]$; then either $y=\left[p_{x}+1, q_{x}\right]$ or $y=\left[p_{x}-1, q_{x}+1\right]$. First suppose $y=\left[p_{x}+1, q_{x}\right]$. If $q_{x}=q^{*}$, then $p_{x}<p^{\prime \prime}$ because $x \in U_{1}$, but $p_{x}+1>\tilde{p}_{0}$ because $y \in U_{2}$; therefore $p_{x}<p^{\prime \prime} \leqq \tilde{p}_{0}<p_{x}+1$. This is impossible because $p_{x}, p^{\prime \prime}, p_{0}$ are integers. If $q_{x} \neq q^{*}$, then $p_{x}<p_{i}$, where $i \equiv q_{x}-q^{*}(\bmod n)$ and $p_{x}+1>\tilde{p}_{i}$. But then $p_{x}<p_{i} \leqq \tilde{p}_{i}<p_{x}+1$ and this is again impossible. Now let $y=\left[p_{x}-1, q_{x}+1\right]$. Then $p_{x}<p_{i}, p_{x}-1>\tilde{p}_{j}$, where $i \equiv q_{x}-q^{*}(\bmod n)$, $j \equiv q_{x}+1-q^{*}(\bmod n)$. This means $\tilde{p}_{j}<p_{x}-1<p_{x}<p_{i}$. But $\tilde{p}_{j}=p_{i}-1$ and thus this inequality is also impossible. Now consider again the sourcing dipath $R_{1}$ whose vertex is $\left[p^{*}, q^{*}\right]$. The dipath $R_{1}$ being infinite, it must contain some vertices from $U_{2}$ because $V-U_{2}$ is a finite set. As $\left[p^{*}, q^{*}\right]$ is in $U_{1}$, there must exist an edge $e$ of $R_{1}$ such that its initial vertex is in $U_{1}$ and its terminal vertex is in $V-U_{1}$. This terminal vertex cannot be in $U_{2}$, therefore it is in $V-\left(U_{1} \cup U_{2}\right)$. But each vertex of $V-\left(U_{1} \cup U_{2}\right)$ belongs to $R_{4}$ and therefore also to $R_{2}$. We see that $R_{1}$ has a common vertex with $R$. We have chosen a sourcing dipath $R_{1}$ and a sinking dipath $R_{2}$ quite arbitrarily and proved that they have a common vertex. Therefore each sourcing dipath and each sinking dipath in $G$ have a common vertex. This implies the nonexistence of a two-way infinite dipath in $G$; if it existed, then by deleting one edge from it we would obtain a sourcing dipath and a sinking dipath vertex-disjoint to each other, which would be a contradiction.

## Reference

[1] O. Ore: Theory of Graphs. Providence 1962.
Author's address: 46001 Liberec 1, Komenského 2 (katedra matematiky VŠST).

