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Časopis pro pěstování matematiky, roč. 90 (1965), Praha 

SOME INEQUALITIES CONCERNING Il-ISOMORPHISMS 

BOHDAN ZELINKA, Liberec 

(Received October 20, 1964) 

In this article two problems of S. M. Ulam are solved. 

In his book [1] (page 18 of the Russian translation) S. M. ULAM defines the II-
isomorphism in a given Cartesian power Em, where m = 2, as a mapping by which to 
an element of Em with coordinates [xu x2, ..., xm] an element with coordinates 
[f(xx\f(x2), ...,/(xm)] is assigned, where/ is a one-to-one mapping of E onto E. 
Using this concept, the Il-automorphism is defined in the usual manner. Now in [1] 
one asks the questions to find suitable inequalities for the cardinality of the class of 
subsets of Em which are Il-isomorphic to a given subset and of the set of Il-auto-
morphisms of a given set, supposing that the cardinality e of the set E is finite. At 
first we shall solve the second problem. 

Let a set A c Em be given and A be the set of coordinates of elements of A, i.e. 
such a subset of _, that each element of A is a coordinate at least of one element of 
A and AT contains all such elements. Let a be the cardinality of the set A; it is evidently 
a finite number. Let us denote J(A) the set of II-automorphisms of the set A (we 
do not consider their values outside A). Then the following theorem is true. 

Theorem 1. Given a, for the cardinality of the set J(A) we have the following 
inequality: 

1 = card J(A) = a\ 

This inequality cannot be improved. 

Proof. The proof of the inequality itself is simple. In the set A there exists always 
an identical Il-automorphism, so that card J(A) _• 1. Each Il-automorphism of the 
set A is induced by some one-to-one mapping (permutation) of A onto 1; such 
mappings and II-automorphisms induced by them are assigned one to another in 
one-to-one manner, so that Card J(A) _i a!, because a\ is the number of permutations 
of the set A. Next, we shall prove that the cases card J(A) = 1 and card J(A) = a\ 
can occur. At first we take the first case with a = 2 (for a = 1 the proof is trivial). 
Let pu p2,..., pi be the elements of the set A. Let A be the set of elements pt for 
i =- 1,..., a — 1 such that the first coordinate of the element px is p{ and all other 
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coordinates of the element p{ are equal to p,+1. The set constructed in such a manner 
has only the identical IT-automorphism. Each of the elements pt and p~ is a coordi
nate of only one element of A and each other element is a coordinate of exactly two 
elements of A. Let cp be an arbitrary Il-automorphism of the set A induced by 
a permutation <p of the set A. As pt is a coordinate of exactly one element of A and 
is its first coordinate, cp(Pt) must be also a coordinate of exactly one element of A, 
and must be its first coordinate. But such an element is only pt and consequently, 
<p(pt) = p^ But then cp(pt) = pt and therefore (p(p2) = p2- From this it follows 
that (p(p2)

 = Pi> a s Pi is t u e on 'y element of A with the first coordinate p2; from this 
again it follows that (p(p3) = p3. In this manner we shall prove after a finite number 
of steps that cp is an identical Il-automorphism. As we have chosen cp arbitrarily, 
we have proved that in A only an identical Il-automorphism exists. In the second case 
let again pl9 p2,..., p~ be the elements of the set A and let now pt for i = 1, ..., a 
be the elements of the set A such that all coordinates of the element pt are equal 
to p{. Easily we can verify that each permutation of the set A induces a Il-auto
morphism of the set A and therefore card J(A) = a! 

Using Theorem 1 we shall prove a new theorem concerning the first problem. For 
simplifying the considerations we shall consider the II-isomorphism as a mapping 
of the set A into £, so the matter will be with the contracting of the IT-isomorphism 
onto the set A. 

Theorem 2. For the cardinality of the set A of the sets U-isomorphic with the 
set A the following inequality is true: 

©--"-"(î) 
This inequality cannot be improved. 

Proof. Every one-to-one mapping of A into E induces some II-isomorphism of 
the set A onto some subset of Em. The number of those mappings is the same as the 

number of variations with a elements of e elements, i.e. a\ I \; also, each of those 
\aj 

II-isomorphisms is induced by some of those mappings. Now, if the II-isomor
phism cp maps the set A onto some set B c Em and \p is some Il-automorphism of 
the set A, then the composed II-isomorphism cpij/ also maps the set A onto JB and 
each II-isomorphism of A onto B can evidently be expressed so. Therefore, if B is 
Il-isomorphic with A9 then the number of II-isomorphisms mapping A onto B is equal 

to card J(A). The cardinality of the class A is therefore equal to all ^ j/card J(A 

Using the inequality of Theorem 1, we get the inequality 

QscrdAStfQ 
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As the inequality of Theorem 1 cannot be improved, also this inequality cannot be 
improved. 

Corollary. For the cardinality of the set A the following inequality is true: 

1 g card A <J el 

This inequality cannot be improved in general case. (Both the bounds are attained 
for a = e.) 
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Výtah 

NĚKTERÉ NEROVNOSTI TÝKAJÍCÍ SE П-ISOMORFISMŮ 

BOHDAN ZELINKA, Liberec 

V článku jsou dokázány nerovnosti pro mohutnost třídy podmnožin Em ne
isomorfních dané podmnožině a pro mohutnost množiny П-automorfismů dané 
množiny za předpokladu, že mohutnost množiny E je konečná. Je to řešení problé
mů z [1]. 

Резюме 

НЕКОТОРЫЕ НЕРАВЕНСТВА КАСАЮЩИЕСЯ 
П-ИЗОМОРФИЗМОВ 

БОГДАН ЗЕЛИНКА (Bohdan Zelinka), Либерец 

В статье доказаны неравенства для мощности класса подмножеств Ет П-изо-
морфных данному подмножеству и для мощности множества П-автоморфиз-
мов данного множества с предположением, что мощность множества Е конеч
на. Это решение задач из [1]. 
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