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115(1990) ČASOPIS PRO PĚSTOVÁNÍ MATEMATIKY No. 1,64-72 

NATURAL OPERATORS TRANSFORMING VECTOR FIELDS 
TO THE SECOND ORDER TANGENT BUNDLE 

MIROSLAV DOUPOVEC, Brno 

(Received November 30, 1987) 

Summary. We study some properties of the non-pro duct-preserving functor T 2 of the second 
order tangent vectors. We determine all natural operators T-> TT2 transforming vector fields 
to the second order tangent bundle, and all natural transformations TT2 —> TT2 over the identity 
of the functor T2. 
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Recently, Kolaf has determined all natural operators T -> TF transforming every 
vector field on a manifold M into a vector field on FM9 where F is any natural 
bundle corresponding to a product-preserving functor, [6]. The proof is based on the 
result by Kainz and Michor that every such a functor coincides with a Weil functor 
TB defined by a Weil algebra B. The functor Tr of the r-th order tangent vectors is 
an example of a non-product-preserving functor, which has different properties. 

Using a general method by Kolaf, [4], we determine all natural operators trans
forming every vector field on a manifold M into a vector field on its second order 
tangent bundle T^M. We deduce that all such operators form a 4-parameter family. 
In this connection we find all natural transformations TT2 -> TT2 over the identity 
of the second order tangent functor. — All manifolds and maps are assumed to be 
infinitely differentiable. The author is grateful to Prof. I. Kolaf for suggesting the 
problem, useful discussions and valuable comments. 

1. THE SECOND ORDER TANGENT FUNCTOR 

Denote by Jtf the category of all manifolds and all smooth maps, by ZFJt the 
category of fibred manifolds, by "/*& the category of differentiable vector bundles 
and by Jtfm the category of m-dimensional manifolds and their local diffeomorphisms. 

The space T2*M = J2(M, R)0 of all 2-jets of a manifold M into reals with target 
zero is a vector bundle over M. The dual vector bundle 

T2M = (т2*м)* 
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is called the second order tangent bundle of M, [9]. Given a map / : M -> IV, we 
can define a linear map T}*X)N -> T2*M by the composition of jets V *-+ Vojlffor 
any Ve T}*X)N. The dual map T2M -> T}(X)N is said to be the second order tangent 
map of/: M -• IV at x and is denoted by Txf. We have defined the functor T2: Jtf -> 
-> V$ft. Since any linear functional on T2*M can be expressed in the form 

uiK + uij^L 
dxl dxl dxJ 

with uiJ symmetric in i and j , any local chart (xl) on M induces a local chart (x', u*, 
uiJ) on T2M. Given some local coordinates (x*) or (yp) on M or IV, the corresponding 
fibre coordinates on T2M or T2N are (x1, u', tiy) or (yp, vp, vpq), respectively. Let 
yP _ /-'(x*) be the coordinate expression of a map / : M -> IV, and 7*/ = (x*, y*, 
fp,f!j). Then the coordinate formula for T2fis, [3], 

(1) V^fiu'+ffpV, 

vp
q=fPfWa. 

2. NATURAL OPERATORS 

Let us recall the concept of a natural bundle in the sense of Nijenhuis, [7]. 
A natural bundle over m-manifolds is a functor F: Jtfm -> SFJl such that 
(a) every manifold M e Ob ^ / m is transformed into a fibred manifold pM: FM-> 

-> M over M, 
(b) every local difTeomorphism / : M -> IV of m-manifolds is transformed into 

an SFJl — morphism F/ over / , 
(c) for every inclusion of an open subset i: U -> M, we have FU = 1^(10 a nd Fi 

is the inclusion PMX^) ~~* - r ^ ' s e e a*so" W* 
A natural bundle F: Jtfm -> J^^/ is said to be of an order r, if, for any local 

diffeomorphisms / , g: M -> IV and any x e M, the relation jrf(x) = / g(x) implies 
F/ | FXM = Fg | FXM, where FXM denotes the fibre of FM over x e M. Let 
d<»(y _̂ . x) denote the set of all smooth sections of a fibred manifold Y-> X. Given 
two fibred manifolds Y -> X and W -> Z such that q: Z -> X is also a fibred manifold, 
a map _4: C°°(y-> X) -> C°°(JV-> Z) is called a base extending operator, [5]. We 
say that_4 is an r-th order operator, if fs^x) = jrs2(x) implies Asx(z) = A s2(z) for 
any su s2 e C°°(y-> X), any xeX and all z e q~l(x). Such an operator is said to be 
regular, if it transforms every smoothly parametrized family of sections into 
a smoothly parametrized family. 

Let F and G be two natural bundles on Jlfn and let £ be a natural bundle on Jtfm, 
m = dim GRn. A natural operator A: F -> EG is defined as a system of regular base 
extending operators AM: C«>(FM -> M) -> C»(EGM -> GM) for all M eOb Jtfn 

such that for every s e C°°FM we have AN(FfoS of1) = EGf o AMs o (G/)"1 for 
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every diffeomorphism / : M -> N, and Avs = (AMs) \ GU for every open subset 
U <= M. A natural operator _4:T-> TF is said to be absolute, if AMX = AM0M 

for every vector field X on the manifold M, provided 0M is the zero vector field on M. 
Denote by Jr the functor which transforms every fibred manifold Y-> X into its 

r-th jet prolongation JrY-> X and every fibred manifold morphism cp: Y-> Y over 
a local diffeomorphism <p0:X -* X into the induced map Jr(p: JrY-> JrY given by 
Jr<p(jxf)

 = I^oCxoOp ° / ° <Po *)• ^ F -s a n arbitrary s-th order natural bundle, then 
JrF is an (r + s)-th order natural bundle. 

Remark 1. To describe all natural operators A: F -> FG, we shall use thefol-
lowing assertion, [5]. Let (JrF)0 = (JrFRm)0, G0 = (GRm)0, (EG)0 = {EGRm)0 

be the standard fibres. There is a bijection between the Gs
m — equivariant maps 

(JrF)0 x G0 -> (EG)0 over the identity of G0 and the r-th order natural operators 
F -> EG, provided s is the maximum of the orders of the functors JrF and EG, and Gs

m 

means the group of all invertible s-jets from Rm into Rm with source and target 0. 

3. NATURAL OPERATORS T-^ TT2 

Denote by ST2 the flow operator transforming every vector field X on M into its 
flow prolongation 3~2X = djdt\0 (F2(exp tX)), where exp tX means the flow of X. 
If X%x) (d\dxl) is the coordinate expression of X and X) = (dXl(x)\dxJ), X)k = 
= (d2Xl(x)jdxJ dxk), then one easily evaluates the coordinate expression of 3T2X 

xih+{x'juJ+xijktlJk) h+{xyj + xiuik) h -
Further, the multiplication of vectors by real numbers determines the Liouville 

vector field L(M) on T2M, the coordinate form of which is 

i d a d 
ul— + ulJ . 

3M1 duiJ 

Clearly, X h-> L(M), XeC^TM is an absolute operator T-> TT2. Moreover, given 
a vector field X on M and a function/: M -> R, we can iterate the derivative X(Xf) 
off with respect to X. In this way we obtain an operator D2: CX(TM) -> C™(T2M) 
with the coordinate expression 

dxl dxJ dxl dxl dxJ 

Analogously, using the derivative Xf of/ with respect to X, we obtain the identity 
operator Dx: C">(TM) -* C°°(TM). Further, we have a canonical inclusion TM c 
c T2M. The section DkX: M -> T2M, fc = 1,2, can be extended by means of the 
fibre translations into a vector field constant on each fibre, so that we have constructed 
natural operators Dl9 D2: T-> TT2. 
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Proposition 1. All natural operators T-> TT2 form the A-parameter family 

(2) \ki^2 + k2L + k3D2 + k4Dt , k{ e R . 

Proof. Lemma 1 in [6] implies that the order of any natural operator A: T-> TT2 

is less than or equal to 2. By Remark 1 there is a bijective correspondence between 
such operators and certain Gm — equivariant maps of the standard fibres. The co
ordinates on the standard fibre S = TQR"1 are u\ uiJ. Since T2 is a second order 
functor, S is a Gm — space. Denote by 

(3) a), a)k, a)kl 

the canonical coordinates on Gm and by tilda the coordinates of the element inverse 
to (3) in Gm. By (l), the action of Gm on S is 

(4) ul = a)uJ + a)ku
Jk, 

uiJ = a[a\ukl. 

Let V2 = Jl(TRm) be the space of all 2-jets of the vector fields on Rm at the origin. 
Using standard evaluations we find the following equations of the action of Gm on V2: 

X1 = a)XJ, 

X) = a[{a
kXl + aiXkd) , 

while for X)k we need only the action of the subgroup a)k = 0: 

t „i zmzn\rp . i vm ~f ~n 

pc = amnpaj akX
p + amXlnajak. 

The standard fibre of TT2 is Z = 5 x Rm x S with the coordinates u1', u'7, F ' = 
= dx\ Ul = du\ UlJ = dulJ. Using (4), we deduce the transformation laws of the 
coordinates Y'\ U'\ UiJ 

Yl = a)YJ, 

Ul = a)UJ + a)kU
Jk + a)ku

JYk + a)klu
JkYl, 

V" = alaJUkl + (aL^* + alaJ
m) uklYm. 

We have to determine all Gm — equivariant maps / : Vm x S -* Z over ids. Let 

r = / ' (K / ,K j ,X j k , u i , u^ ) 

denote the first series of components of f Consider first the equivariancy of / 1 

with respect to the kernel K3 of the jet projection Gm -> Gm given by a) = (5j, ̂ ^ = 0. 
We obtain 

f\X'\ X), Kjk, u1, uf )̂ = /'(X1, Kj, Kj, + a^K', uf, uiJ) , 

which indicates that fl are independent of K}k. Further, the homotheties a) = kd) 
and the other a's vanishing give the homogeneity condition 

fc/' = /'(feX1, Kj, fcw1', k2uiJ). 
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Therefore 
Yi = g)(Xk)XJ + h)(Xk)uJ, 

where g) and /ij'are smooth functions. The equivariancy of Y' with respect to the 
kernel K2 of the jet projection G* -> Gj. characterized by a) = S) means 

gtj(Xk)XJ + h^X)) uJ = gfrX) + a)mXm) uJ + h%Xk + ak
lmXm) (uJ + aJ

klu
kl). 

This implies h) = 0, g) = const. Evaluating the equivariancy of Yl with respect 
to the subgroup G cz G^ given by arbitrary a] and the other a's vanishing we find 
that g\ are G — equivariant. By the theory of invariant tensors, [ l ] , g) = k±b), 
so that 
(5) Yl = ktX

l, kt e R . 

Consider now the difference A — k^3T2, where 3~2 means the flow operator and k1 

is taken from (5). This operator transforms every vector field X e C°°(TM) into 
a vertical vector field on T2M. We have VT2M = T2M © T2M, so that the compo
nents hiJ of the difference operator have the tensorial transformation law. Similarly 
to the case of/' We prove that hiJ are independent of X)k. The homotheties lead to the 
condition k2hiJ = hiJ(kX'\X), kul, k2uiJ). Hence 

hiJ = ffttf) ukl + g&X:) uW + h[\{x:) XV + k[\{x:) XkXl, 

where fk
J
h g

l
k{, hl

k{ and kkl are smooth functions. Further, taking into account the 
equivariancy of hiJ with respect to the kernel K2 we obtain 

<6) fi
k[(x:) uki + giax:) ukui + hi\(x:) x v + ki\(x:) xkx> = 

= flJ
l(X:)ukl + gi\(x:)(uk + ak,su")(ul + a\qu">) + 

+ hjf^X^u1 + a'rsu") + k&XfiX'X1. 

This implies g[{ = 0. Setting ul = 0 and uiJ = 0 in (6), we obtain 

kij,(x:)xkxi = ki\(x: + a:Px')xkx'. 

This gives, similarly to the case of giJ, fc$X™) XkX' = k3X
lXJ, fc3 e R. Analogously, 

putting uiJ = 0 in (6) we prove that hl
k{(X:) Xkul = e(XiuJ + XJu% eeR. The 

remaining part of (6) has the form 

fi>(x:) uu + e(x!uj + xw) = fij(x: + a:Px-) ukt + 
+ e[Xl(uJ + aJ

klu
kl) + XJ(ul + aitu

kl)~\ . 

Differentiating the latter relation with respect to X™ we get df^/dX: = const, so that 
JiftX:) ukl = (gi{mX: + ci\)«". Applying the theory of invariant tensors, [4], we 
find fi\ukl = k2u

iJ + fX\uiJ + g(Xku
kJ + X{uik), k2,f, geR.Vp to now, we have 

•deduced 

{7) hiJ = k^X* + k2u
iJ + e(XiuJ + XJul) + fXk

ku
iJ + g(X'ku

kJ + X{uik) . 
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The equivariancy with respect to the subgroup Gi c G„ characterized by aj = d) 
then leads to the relation 

e(Xia[lu
kl + X*al

klu
kl) + fa\xX

xuiJ + g(a[xX
xukJ + aJ

klX
luik) = 0 . 

If the dimension m of the manifold M is greater than or equal to 2, then e = / = 
= g = 0, while in the case m = 1 we have 

(8) 2e + 2g + f = 0 . 

Suppose first that m = 2. Then 

(9) hiJ = k2u
iJ + k3X

lXJ . 

Now, we can take the difference A — k^2 — fc2L— k3D2. Its components W 
have the tensorial transformation law. Evaluating first the equivariancy with respect 
to the kernel K3 and then with respect to the homotheties we obtain 

hi=f'{X:)XJ + gi
J(X-)uJ. 

In the same way as in the case of fl we find 

(10) hl = fc4X
f, fc4eK. 

Hence (5), (9) and (10) prove the proposition for m = 2. 
Finally, let m = 1. Denote by (ul9 u2) the coordinates on S9 by (al9 al9 a3) the 

coordinates on G\, by (X9 Xl9 X2) the coordinates on V\ and hl9 h2 the components 
of the difference A - k^2. It follows from (7) and (8) that 

h2 = fc2w2 + k3X
2 + cc(X1u2 — Xut) , a e R . 

We easily evaluate that 

(11) ajh^X,Xl9Xl9 ul9 u2) + a2k2u2 + a2k3X
2 + a2a(X1u2 — Xut) = 

= hi(X,Xi,X2, w l 5w2), 

where u1 = a1u1 + a2u2, u2 = a\u29 X = atX, Xx = Xt + (a2\a^)X, while 
for X2 we need only the action of the subgroup a2 = 0: X2 = (l/ax) X2 + (a3ja\) X. 
Putting a1 = 1, a2 = 0 in (11) we show that h1 does not depend on X2. Next, the 
homotheties a1 = fc, a2 = 0 imply h1 = / 1 ( .K 1 )X + gi(Xi)Mi. Further, the equi
variancy of h1 with at = 1 leads to the relation 

(12) / i ( X i ) X + gi(Xx) Ul + a2[k2u2 + k3X
2 + a(XlM2 - Xu,)] = 

= /1(X1 + a2X)X + gi(Xt + a2X)(Ul + a2u2) . 

Differentiating with respect to u2 we obtain 

a2\k2 + aXJ = g1(X1 + a2X) a2 . 

Next, differentiating the latter relation with respect to X and setting a2 = 0 we get 
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dgi(X1)jdX1 = 0. This gives ^(X i ) = g = const. Further, if we compare the 
coefficients by tt2 in (12), we find a = 0, g = fc2. The relation (12) has now the form 

(13) * f^XO X + a2k3X
2 = f^X, + a2X) X . 

Differentiating with respect to Xx we show that df^dXt is constant. This yields 

(14) / i = f * i + fc4, f,fc4eR. 

Finally, (13) and 14) imply f = fc3. Thus, we have deduced 

n2 = k2u2 + k3X , 

hx = fc2Mi + k3XxX + fc4X. 

This completes the proof. 

4. THE NATURAL TRANSFORMATIONS 7 T 2 - > T T 2 

Proposition 2. All natural transformations TT2 -> TT2 over the identity of T2 

form a ^-parameter family 
F1' = aYl, 

Ul = all1 + 07' + yu{, 

UiJ = <xUiJ + yuiJ 

with any a, ft, y e R. 

Proof. According to the general theory [2], the natural transformations TT2 -» 
-• TT2 over idri are in bijection with the G* — equivariant maps f: Z -> Z of the 
standard fibres. The coordinate form of the map f is 

Y1' = / l (n l , t t y , y l ,U l ,U y ) , 

Ul = g\ul
9 uiJ, T, IP, UiJ), 

UiJ = hiJ{ul, uiJ, T, IP, UiJ) . 

Considering equivariancy with respect to the homotheties we obtain homogeneity 
conditions 

fcf* = f\ku{, k2uiJ, kY'1, kUl, k2UiJ), 

kg1 = 0''(fctt', k2uiJ, kY1, kUl, k2UiJ) , 

k2giJ = giJ(kul, k2uiJ, kT, kUl, k2UiJ). 
This implies 

(15) p =a1 t t i + /? 1r + y1lP, 

gl = axu
l + btU

{ + cYl, 

giJ = a2tt^ + b2U
iJ + hiJ(ul, T, Ul), 

70 



where hiJ are certain polynomials. Consider nowtheequivariancy of/' with respect 
to the kernel K2. We obtain 

a^1' + jSjT + y-U1 = a^H1 + <*>'*) + fty1 + 

+ 7i(tf' + a^U* + a> 'Y* + a)klu
JkYl). 

Then we have ax = 0, yx = 0, and /J4 is arbitrary, so that the function / ' in (15) 
has the form 

(16) f'-PiY1. 

Analogously, using the equivariancy of gl with respect to the kernel K2 we find 

(17) a2 = ai9 bl = b2 = pl, hJ\ui,Yi,Ui) = 0. 

Substituting (16) and (17) to (15) we complete the proof. 

Remark 2. For a Weil functor TB, all natural operators T-> TTB can be construc
ted from the flow operator 2TB by applying all natural transformations H of TTB 

into 7TB over the identity of TB, [6]. This is not true for the non-product-preserving 
functor T2. In this case all natural operators T-> TT2 form a 4-parameter family, 
while all natural transformations H: TT2 -* TT2 over idT2 form a 3-parameter 
family. Hence the composition H 0 ZT2 forms a 3-parameter family only, in which 
the operator D2 is not included. 

Remark 3. In the case of a Weil functor TB, Theorem 1 from [6] implies that the 
difference between a natural operator T-> TTB and its associated absolute operator 
is a linear operator. This is not true for the non-product-preserving functors, the 
operator D2 being the simpliest counter-example. 

Remark 4. The operators 3T2, L and Dx transform every vector field on a manifold 
M into a vector field on T2M tangent to the subbundle TM c T2M, but D2 does 
not. With a little surprise we can express it by saying that the natural operator D2: 
T-> 7T2 is not compatible with the natural inclusion TM cz T2M. 
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Souhrn 

PŘIROZENÉ OPERÁTORY TRANSFORMUJÍCÍ VEKTOROVÁ POLE 
NA TEČNÝ BANDL DRUHÉHO ŘÁDU 

MIROSLAV DOUPOVEC 

V článku jsou určeny všechny přirozené operátory převádějící libovolné vektorové pole 
na varietě M na vektorové pole na tečném bandlu druhého řádu T2M. V této souvislosti jsou 
nalezeny všechny přirozené transformace TT2—> TT2 nad identickým zobrazením funktoru T2. 

Резюме 

ЕСТЕСТВЕННЫЕ ОПЕРАТОРЫ, ПРЕОБРАЗУЮЩИЕ ВЕКТОРНЫЕ ПОЛЯ 
В КАСАТЕЛЬНОЕ РАССЛОЕНИЕ ВТОРОЙ СТЕПЕНИ 

МШОЗЬАУ ОООТОУЕС 

Определяются все естественные операторы, преобразующие любое векторное поле на 
многообразии М в векторное поле на касательном расслоении второй степени Т2М. В связи 
с тем определяются все естественные преобразования ТТ2 —> ТТ2 над тождественным ото
бражением функтора Т 2 . 

Ашког'з аЛАгеж: Кагеска тагетаику а с1езкпр1^ш ееоте1пе V^Т Вгпо, ГакиИа 81го)ш, 
Тесптска 2, 616 69 Вгпо. 

72 


		webmaster@dml.cz
	2012-05-12T17:36:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




