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Summary. By using a visible geometrical approach the author proves the criterion on global 
equivalence of the second order ordinary linear homogeneous differential equations in the real 
domain, originally derived by O. Boruvka in 1967 by an analytic method. 
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I. INTRODUCTION 

The most general pointwise global transformation that converts solutions of any 
ordinary linear homogeneous differential equation of the second order 

(1) y" + al(x)y' + b1(x)y = 0 

with real continuous coefficients defined on an open interval J of reals into solutions 
of an equation 
(2) z" + a2(t) z' + b2(t) z = 0, 

a2, b2\ J -> U, is of the form 
z(t) = f(t) . y(h(t)) , 

where 
feC2(J),f(t)*0 on J, 
h is a C2-diffeomorphism of J onto I, i.e., 

h 6 C2(J), h'(t) * 0 on J, h(j) = I, and 

z is a solution of (2) whenever y is a solution of (l), cf. [2] and [4]. 
If at = 0, then a2 = 0 if and only if f(t) = c\h'(t)\~~U2 on J, where c * 0 is 

a constant, see e.g. [ l ] . Since fe C2(J), we have heC*(J). Thus, in accordance 
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with O. Boruvka [ l] , we shall consider the most general pointwise global transforma
tions in the form 

(3) ^ z(0 = c | h ' ( 0 | - 1 / 2 ^ ( 0 ) . 

h e C3(J), h'(t) =t= 0 on J, h(J) = I, c a nonzero constant. Such a transformation 
globally transforms solutions y of the equation 

(p) y" + it*) y = o, Pec°(i), 
into solutions of an equation 

(q) z" + q(t)z = 09 qeC°(j)9 

in the sense of the formula (3). The function h in it is called the transformator, and the 
equations (p) and (q) are said to be globally equivalent. 

In accordance with O. Boruvka [l] an equation (p) is said to be of finite type m, m 
a positive integer, if m is the maximal number of zeros of every nontrivial solution 
of (p) on the interval I. In this case, if there are two linearly independent solutions 
of (p) with m — 1 zeros, then (p) is of the finite type m and general, otherwise (p) 
is of the finite type m and special. 

If an equation (p) is not of a finite type, then it is either one-side oscillatory or 
both-side oscillatory. 

Two equations (p) and (q) are said to be of the same character, see again [1], 
if and only if they are 

of the same finite type m, m ^ 1, and either both are general, or both are special, 
or they are both one-side oscillatory, or they are both both-side oscillatory. 
O. Boruvka proved in 1967 in [ l ] : 
Boruvka's Criterion. Equations (p) and (q) are globally equivalent if and only 

if they are of the same character. 
The aim of this paper is to give another proof of the criterion based on a geometric 

interpretation of global transformations first introduced in 1971 in [3]. 

U. NOTATION AND SOME BASIC FACTS 

Denote by ^\}i\ the transformation (3) with the transformator ft, and write shortly 

(q) = nwp). 
Let yt and y2 be two linearly independent solutions of the equation (p), and let zx 

and z2 be obtained by (3) where yt and y2 stand instead of y. Denote by y and z the 
vector functions 

(;;) - (:;)• 
We will also write 

z = $-\h~\ y. 
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It can be shown that the coordinates of z are again linearly independent solutions 
of (q). Moreover, since y is formed by two linearly independent solutions of (p) 
and h is a C3-diffeomorphism of J onto J, the vector function 

AF\h\ y 

is formed by linearly independent solutions of the equation (q) for any nonsingular 2 
by 2 constant matrix A. 

Denote by ^V[y](x) the Wronskian of the pair yuy2 at the point xel. 
In [3] there was introduced the following 

CONSTRUCTION 

Consider our vector function y as a curve in the plane with coordinaie functions 
yx and y2 and the independent Variable x as the parameter. Take the central projection 
of the curve onto the unit circle Sx in the plane and introduce a length parametrization 
with a suitable orientation into the projection. We obtain the curve u(s), s e Iu, 
where 

ui(s) = sin s , u2(s) -= cos s , s elu. 

Lemma 1. The differential equation of the second order whose solutions are ux 

and w2< which is in fact 

u" + u — 0 on Iu, 

is globally equivalent to (p) on I. 
Moreover, there was also showen the following geometrical interpretation of zeros 

of solutions. 

Lemma 2. To each straight line d passing through the origin in the plane, 

d = (did + d2c2 = o), 

there exists one and only one (up to a constant nonzero factor) nontrivial solution yd 

of (p) whose zeros are exactly the parameters of intersections of the line d with the 
curve y. 

Now we will give another proof of Boruvka's Criterion. 

m . PROOF 

Consider two equations (p) and (a), their pairs of linearly independent solutions y 
and z, and the corresponding curves u and v on the unit circle given by Construction 
and defined on the intevals Iu and /„, respectively. Due to Lemma 1, solutions yx 
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/>l(*)\ = Cl /8 

Uw1 K « r vc 

irphism of / onto Iu. 

l-i(0\ =
 C2 / s 

Uwj1 i*i(oii/2\-

and y2 of (p) are globally transformed into sin s and cos s, se Jtt, in the sense of (3), 
i.e., 

fsin hi(x)N 

vcos hx(x)j 

where ft x is a C3-diffeomorphism of J onto Jtt 

Similarly 

r'sin h2(t)
s 

^cos h2(f)j 

where h2 *s a C3-diffeomorphism of J on to Jv. 
T o each solution ktyt + fc2j2 of (p) we assign the solution ktux + k2w2 of the 

equat ion 

(1M) * u" + u = 0 on JM 

a n d conversely. Since u is the central projection of y, L e m m a 2 guarantees the same 
number of zeros of bo th kiy1 + k2y2 and ft^t*! + fc2w2, or tha t bo th equat ions 
are one-side oscillatory, or tha t they are both-side oscillatory at the same t ime, i.e., 
(p) and (lM) are of the same character . 

Similarly, the equat ions (g) and 

(1,) v" + v = 0 on Iv 

are globally equivalent and at the same time: either the number of zeros of each 
solution r1zl + r2z2 (rl9 r2 — constants) of (q) is the same as the number of zeros 
of the solution r1v1 + r2v2 of the equation (ly), or both equations are one-side 
oscillatory, or they are both-side oscillatory, i.e., (q) and (1..) are of the same character. 

Now suppose that the equations (p) and (q) have the same character. In order to 
prove that (p) can be globally transformed into (q), it is sufficient to show that the 
equations (lM) and (ly), which are of the same character as well, are also globally 
equivalent. We know that 

ux(s) = sin s , u2(s) = cos s , s elu 

and 
Vi(o) = sin o , v2(o) = cos o , o elv 

are solutions of (lM) and (1,,), respectively. 
If the type of the equations (ltt) and (1„) is finite and equal to m, then the length 

X(lu) of the interval JM satisfies 

(m — 1) n < X(IU) = mn , 
and, of course, also 

(m — 1) n < X(IV) :g mn . 

If, moreover, (lM) and (1„) are general, then also 

(4) (m — 1) n < k(Iu) < mn and (m - 1) n < X(IV) < mn , 
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whereas if (lM) and (lv) are special then 

(5) X(IU) = X(IV) = mn, 
see also Fig. 1 for m -= 1. 

Fig. 1 

First consider the relation (4). Let Iu = (aM, bu) and Iv = (ay, by). Due to the 
relation (4), the vectors 

u(au) = (Sin *») and •<&.) = ( s i n *• v 7 \cos au)
 v y \̂ cos bM 

are not parallel. The vectors v(av) and v(bv) are not parallel, either. Hence there 
exists a centroaffine mapping of the plane with a nonsingular matrix A such that 
v(av) = A u(au) and v(bt.) = A u(bu). However, in this case, the central projection 
and the length parametrization <r\->h(a) -= s (with a suitable initial value, i.e., 
h(av) = au) of the curve A u(s), s e/u, lying on the ellipse ASj (described in Construc
tion) gives exactly the curve v(a), a elm on the unit shere S1 with the length para
metrization. Hence 

u = A 3T\h\ v . 

or, the equations (lM) and (1 )̂ are globally equivalent, see also Fig. 2 for type 1 and 
general. 

Now, if (5) is satisfied, i.e., the equations (lM) and (l,.) are of finite type m and 
special, then the transformator 
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s = h(o) = o + au - av 

converters u(s), selu< into v(o), oeIv. Hence (I,.) and (Jt.) are globally equivalent. 

Fig. 2 

In the case when both (lu) and (\v) are one-side oscillatory, Lemma 2 implies 
K = (aw> °°) anc* h = (atr °°)^ for u a n d v, otherwise (v2, vt) is taken instead of 
v = (vi, v2)- Then again 

s = h(o) = o + au- av 

globally transforms (l„) into (lv), i.e., (lv) = 3T\\{\ (1u). 
If (1H) and (iv) are both-side oscillatory, they coincide and, of course, they are 

globally equivalent. 
Now, it remains to show the converse, i.e., if the equation (p) can be globally 

transformed into (q), then (p) and (q) are of the same character. We have seen at the 
beginning of the proof that the equations (p) and (lu) are globally equivalent and, 
due to Lemmas 1 and 2 that both the equations are of the same character. Similarly 
for the equations (q) and (lt>). 

Hence it is sufficient to show that if (lu) can be globally transformed into (lt.), 
then these equations are of the same character. 

For this purpose, in accordance with the definition of global transformations, 
suppose 

(6) fsinff) = ^'Wi- i / 2 ( s i n !^V °*h 
v 7 ycos o) ' v n \cos h(o)j 
h being a C3-diffeomorphism of Iv onto Iu, A being a nonsingular 2 by 2 matrix. 
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Define the following bijection of the set of nontrivial solutions of (lM) onto the 
set of nontrivial solutions of (lv): 

To each nontrivial solution of (lM) 

kt sin s + k2 cos s , s elu, (k\ + k\ =f= 0), 

we have the corresponding solution 

<*..y^-'W.;r(£g). a eL V > 

of the equation (lv). 
Due to the relation (6), and bijectivity of the correspondence, to each nontrivial 

solution u of (lM) and its zero s0 there correspond exactly one nontrivial solution v 
of (lv) and its zero a0 = ft"1^). The definition of the character is based only on 
the cardinality and ordering (up to orientation) of the set of zeros of solutions, 
which is, of course, preserved by each C3-diffeomorphism ft. Hence the equations 
(lM) and (lv) have the same character, which completes the proof. 
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Souhrn 

JINÝ DŮKAZ BORŮVKOVÁ KRITERIA O GLOBÁLNÍ EKVIVALENCI 
OBYČEJNÝCH LINEÁRNÍCH DIFERENCIÁLNÍCH ROVNIC 2. ŘÁDU 

FRANTIŠEK NEUMAN 

Užitím názorného geometrického přístupu je dokázáno kriterium globální ekvivalence li
neárních obyčejných homogenních diferenciálních rovnic 2. řádu v reálném oboru, které bylo 
poprvé odvozeno v roce 1967 O. Borůvkou analytickou metodou. 
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Резюме 

ДРУГОЕ ДОКАЗАТЕЛЬСТВО КРИТЕРИЯ О. БОРУВКИ 
О ГЛОБАЛЬНОЙ ЭКВИВАЛЕНТНОСТИ ЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ 

УРАВНЕНИЙ ВТОРОГО ПОРЯДКА 

РКЛ^15ЕК NЕ^МАN 

С помощью наглядного геометрического подхода доказывается критерий глобальной 
эквивалентности линейных обыкновенных однородных дифференциальных уравнений второ
го порядка в вещественной области, который впервые был доказан О. Борувкой в 1967 году 
на основе аналитического метода. 

Ашког'х аАйгехх: Магетаихку й$1ау С5АУ - Вгпо, МепсНоуо пат. 1, 602 00 Вгпо. 
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