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OSCILLATION BEHAVIOUR OF SOLUTIONS OF NEUTRAL
DELAY DIFFERENTIAL EQUATIONS

SVATOSLAV STANEK, Olomouc
(Received January 5, 1988)

Summary. In the present paper we study oscillatory behaviour of solutions of the neutral
delay differential equation

d n m

—d_t [x(2) —izlpi(t) x(t — a)]+ qo(t) x(t) +j;1qj(t) x(t — bj) =0, t=1¢y.
We generalize the results of [3] for the equation

d

E;Ix(t) —px(t— )]+ 0N x(t—0a)=0, t=1¢,,

where p, T and o are positive constants, Q € C([t,, o), R™).
Keywords. Neutral delay differential equation; oscillatory solution; nonoscillatory solution.

AMS classification. 34K15, 34C10.

1. INTRODUCTION

This paper deals with the oscillatory behaviour of solutions of linear neutral delay
differential equations in the form

d d ’
& 150 3,pi0) (e — )] + au() () +
(1) m
+Yat)x(t —b) =0, t=t,,
j=1
where (R* = [0, o0)) .
(i) pi’ q_,e C’([to, 00), R+) (i = 1, 2, PERY n; j = 0, 1, ooy m);
(ii) lim Y pi(t) =: p, lim p;(f) > O exist, where iy e {1,2,...,n}
t=o i=1 t— o0
(iii) a;, b; are positive constants (i = 1,2,...,n; j = 1,2,..., m).
Let g € C([to — @, ], R), where a := max {a,, b;}. By a solutlon of (1) with the
i,

initial function ¢ at t, we mean a function x € C([t, — «, ), R) such that x(r) =
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= o(t) for to — a < t < to, x(t) — Y, pi(t) x(t — a;) is continuously differentiable
i=1

for t = t, and x(t) satisfies equation (1) for ¢ = t,.
By the method of steps (see e.g. [1]) it can be proved that for any continuous
initial function ¢ there exists a unique solution of (1) for t = t,.

A solution x of (1) is called oscillatory if there exists a sequence{t;} in [t,, o)
with lim #; = oo and x(t;) = 0 for every i = 1,2,.... A solution x of (1) is called

i-w

nonoscillatory if it is eventually positive or negative.

The object of this paper is to generalize the results in [3] where the equation (1)
is of the following special form

S[0) = palt = 9] + QO x(t = 0) =0, t 210,

with p, 7 and ¢ being positive constants and Q € C([#,, ), R*).

2. RESULTS

Lemma 1. Let a; > 0 be positive constants, pi e C([#, ), R*) (i - 1,2,...,n),

a = maxa,, g: [to — a, ©) > R and let lim Zp(t) = p, hm p,o(t) = B > 0 exist
t2o0 i=1

for some iy €{1,2,...,n}. Set

(1) := g(1) —i;nlpi(t) g(t —a;) for t=t,.

Assuming 0 < p £ 1, g bounded on [ty — a, ®) and hmf(t) = 7y we obtain the
following statements:

(a) p=1 implies y = 0,
(b) p < 1 implies the existence of lim g(t).

t— o

Proof. Let {t;} and {t;} be sequences of points in [y, ), lim ¢; = lim t; = oo,
such that v e

A = lim sup g(7) = lim ¢(1,),

t— o i=o
B :=lim inf g(t) = lim g(¢}) .
t— o0 i— o

For every & > 0 it is possible to determine a positive integer N such that p,(¢;) > 0,
Pil(t) >0, g(t; —a)S A +e g(ti—a)2B—¢ for every i 2N and j =
=1,2,...,n. For this i we then have
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ot = ai) = ——[a(t) = £(t) = 3. pt) glt; — a))] 2
Pio(t:) j=1

J¥io

[dm—ﬂm—c4+s§mmn

v

1
pio(to)

[o(r)) = /() Zp,(t Ja(ti — a))] =

lo(t ) j¢ 10

s — ,0( 1) [g(t (t)_(B_E ZPJ l)]

Taking limits as i > oo we obtain the inequalities
1 \
Az lA-7-(1+ 90~ ],

Bgéw—y—w—@@—mL

g(t; — a;,)

]*lo

which are satisfied for every ¢ > 0. Then

i gA(] - p)a
y £ B(1 — p).
If p=1, theny = 0 and (a) is proved. If p < I,

A< _ <B,
I—-p
which implies that A = B and (b) is proved.

Theorem 1. Suppose the conditions (i)—(iii) are satisfied with p < 1 and
t m
@) Y 4 = oo
to j=0
Then every nonoscillatory solution of (1) tends to zero as t —» .

Proof. We can assume without any loss of generality that equation (1) has a non-
oscillatory solution x, x(t) > 0 for t = T(Xt,). Setting

w(t) 1= x(1) — é‘pi(t) x(t —a;) for 121,

we have

W) = = [0 X)) + Taf)x( - b)] S0, 1= T+a,

which implies that w is nonincreasing on the interval [T + «, o). In particular
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x(t) 2 w(t), x(t — b)) 2 w(t — b)) 2 w(t)fort = T+ 2. j = 1.2,...,

(3) qo(1) x(1) + glqj(t) x(t — b)) 2 w(t)z:ioqj(t). 12T+ 2a.

If w(t) = 0 for t 2 T + 2a, then (3) implies

W) = =u() Y a0

hence

(4) wit) < w(T + 20} exp [ — (T4 24 Z qis)ds]. t =T+ 2x.

j=0

If w(t) < 0 for t 2 T,(=T + 2a), then
(5) x() < ¥ pdt)x(t —a)), 1= Ty.
=1

Define B := max {w(T + 2u), 0}. From (4) and (5) we get

|=

x(1) = 3 pdt) x(t — a;) + Bexp [ = [7120 2 q,(s) ds]
i=o

for t = T,.

ni, and thus

Now we prove that x is a bounded solution of (1). Let there exist a sequence {1},

t, = Ti, such that

(6) lim x(,) = w ., x{(1,;) = max x(1) .
k= o0 TSttty
Then

m

x(t,) < Z p (t) x(t, — a;) + Bexp [— [#4 24 Z q(s)ds] £

Ji=0

< (tk)Zp(tk)+BeXp[ ITWZq ) ds] .

Herefrom we obtain for k sufficiently large (so that Z pit) < 1)

x(t) < ~---~—§_-" exp [ [T 24 Z q(s)ds] .
| — Z pit) i=0

It follows from (2) that

. B
lim —————exp [— jT+2,Zq (s)ds] =

k-—)uol_zp(t

__B_ limexp [ — I”oaij(é) ds] =0,

1—[)}.—*00

in contradiction to (6).
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Applying Lemma 1 (b) with f(£) = w(t), g(f) = x(t), we conclude that lim x(t) =
exists. Consequently, w is bounded on [y, ). If L > 0, then e

xmsg for 12T, (2T)

and
t m
w(t) = w(Tz + o) = "_[ [g0(s) x(s) + .Zlqj(s) x(s — by)]ds =
T2+a J=
t
<-E Sema,
2 T2+¢J =0
so that
L t m
w(t) < w(T, + &) — = Y qis)ds for t= T, +a.
Tz+aj=o

However, by virtue of (2) this leads to a contradiction with the boundedness of w.
Theorem 1 is true completely proved.

Theorem 2. Suppose the conditions (i)—(iii) and (2) are satisfied and Z pi(t) =
for t 2 T(=t,).
Then every solution of (1) oscillates.

Proof. On the contrary, without any loss of generality let us assume that equation
(1) has a nonoscillatory solution x, x(t) > 0 for t = T, (2 T). Putting

wit) 1= x(t) — lei(t} x(t — a;),
we have
w(t) = —[qo{t) x(1) + X a(t) x(t — b)] S0 for t =T, +«.
=1

Consequently, w is nonincreasing on [T; + «, ).
Assumption (2) then implies w(f) % 0 in a neighbourhood of co. Let w(f) < 0
fort 2 T, (2 T)). Hence

(7 w(t) < w(T) (<0) for t 2= T,

To arrive at a contradiction we assume x to be not bounded. Then there exists
a sequence {t;} such that t;e [T, + o, ©), llmt = o0, 11m x(t,) = o0, x(t;) =

= max x(t). From (7) we obtain
T2Sts1y

xX(t;) £ w(Ty) + éll’i(‘f) x(t; — a;) £ w(Tp) +
+ x(ti)é:lpi(tj) = w(Ty) + x(t)) .
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Therefore w(T;) 2 0 contrary to w(T;) < 0. Thus x is a bounded function and hence
w is also a bounded function. From Lemma 1 (a) we obtain lim w(f) = 0 in contra-
t—o0

diction to w'(f) < 0, w(t) < 0 for t 2 T, + a. From this contradiction we conclude
that w(t) > 0 for t 2 Ty + a. Consequently,

8) x(1) >‘=ilp,-(t) x(t—a) for t2 Ty +a.

If lim inf x(¢) = O then there exists a sequence {t;}, t;€ [T} + a, o), such that

t—®

limx(t;)) =0, x(t;) = min x(f)
J= o Ti1sStsty

and (8) then yields

x(6) > X pit) x(; = @) 2 3(t) ¥ pilt) = (1)
and
x(t) > x(t;), j=1,2,....
Hence there exists a positive constant § > 0 such that
9 (N2 for t2T5 (2T, + ).
Integrating (1) from T + a« to t we get
) = Ty )+ Ty [0o8)X6) + 5,046 56 = )] ds = 0

and by (9) we conclude
W(T3 4 2) > fryva [90) X0) + 30,6 (o = )] ds 2

2 B fhes 504665
Hence
wW(Ts + o) > B (1,40 2, qfs)ds for t2Ts +a,
j=o0
which, as t — oo, is contrary to assumption (2).

Remark 1. In the following Example 1 we shall demonstrate that the assumption
Y. pt) =1 for t = T in Theorem 2 cannot be replaced by a weaker assumption
i=1
p=1.

Example 1. Let
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(t—1)(1 + In% (¢ — 1)) exp| arctg 1
p(t) - [ In t] .

1
‘ t(1 + In? t) exp| arctg ——
U+ %) "[ gln(r—l)]

1
exp|arctg — | — 1
_ 1+t p[ glnt]

Intln(Int) exp arctgL ’
1

nt
exp [arctg —1——] -1
1 , In(t —1
0) = ——— + p() L=
tintin(Int) [ 1 ]
exp|arctg— | — 1
Int

for t 2 3. Since p'(f) = O(1/(t1n t(In (In t))?)) for t — oo, we have Q(f) > 0 for
t 2 T(23) and 7 Q(s) ds = oo. The equation

[x() = p()x(t = D] + Q) x(r) =0, t=T
has a nonoscillatory solution x(f) = exp [arctg (1/In )] — 1, lim x(f) = 0.
t— o0

Theorem 3. Suppose the conditions (i)—(iii) are satisfied with p <1, go(t) = 0
for t = t, and

1 m
(10) lim inf j Y g,(s)ds > 1 ,
t= t—pJ=1 e

where b := min b;.

J
Then every solution of (1) oscillates.
Proof. On the contrary without loss of generality let us assume that (1) has

a nonoscillatory solution x, x(f) > 0 for t = T (Xt,). Theorem 1 then implies
lim x(f) = 0. Setting

w(t) := x(t) "é, pi) Xt — a), 121,

we conclude that w is a nonincreasing function on [T + «, o). Since w(f) < x(t)
fort =2 T+ « we get

W() + (e = )T a0 S w0 + Ta)wle - b) S
< w(i) +élq;(t) *(t - b) =0,
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thus
(1) w(t) + w(t — b)jilqj(t) <0 for t2T+a.
Condition (10) implies (see Theorem 2 [2]) that the equation
x'(t) + x(t — b)flqj(t) <0, t2T+a,
cannot have an eventually plositive solution, in contradiction to x(f) > 0 for t 2 T.

Remark 2. If pft) = 0 for t 2 t,, i = 1,2,..., n, then Theorem 3 follows from
Corollary 2 [4].
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Souhrn

OSCILACNI VLASTNOSTI RESENf NEUTRALNICH DIFERENCIALNICH
ROVNIC SE ZPOZDENYM ARGUMENTEM

SVATOSLAV STANEK
V praci jsou uvedeny podminky, které jsou postadujici k tomu, aby vSechna feSeni rovnice (1)

byla oscilatorickd, a dale posta&ujici podminky k tomu, aby vSechna neoscilatoricka feSeni kon-
vergovala k nule pro t— .

Pe3ome

KOJIEBATEJIbHBIE CBOVICTBA PEMIEBMI BENTPAJILHBIX
JU®OEPEHLIVAJIBHBIX VPABHEHUN C 3AITA3LBIFAIOIIVIM API YMEHTOM

SVATOSLAV STANEK
B craThe NpUBOOATCA NOCTATOYHBIC YCJIOBHS M KonebGaHusi BCeX pelueHuit ypaBHenmit (1)

H Jajee OOCTAaTOYHBbIC YCJIOBHA OJist TOIO, yTOGBI BCE HC](OHCGJIIOIHHCC}X PE€LICHUA CIPEMAJINCH
K HYJIEIO JJiA ¢t —> OO,

Author’s address: Katedra matematické analyzy a numerické matematiky pfirodov&decké
fakulty Univerzity Palackého, Leninova 26, 771 46 Olomouc.
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