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ON KNESER PROBLEM FOR DIFFERENTIAL EQUATIONS 
OF THE 3RD ORDER 

IRENA RACHUNKOVA, Olomouc 

(Received May 15, 1987) 

Summary. In the paper sufficient conditions are found for the existence of a solution u of the 
third order nonlinear differential equation, satisfying u(t) ^ 0, u'(t) ^ 0, u"(t) ^ 0 for t e (0, oo) 
and <p(u(0), w'(0), M^O)) = 0, where tp is a continuous function. 

Keywords: Kneser problem, a priori estimate, Caratheodory conditions, Arzela-Ascoli theorem, 
Nagumo functions. 
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1. INTRODUCTION 

In this paper we consider the problem 

(1) u ' " = / ( ( , u , u ' , u " ) , 

(2) u(t) ^ 0 , u'(t) ^ 0 , u"(f) ^ 0 for t e R+ , 

(3) <p(u(0),u'(0),u"(0)) = 0 . 

Sufficient conditions are found for the existence of solutions of this problem. 
We shall use the following notation: 

R+ = <0, oo) , R_ = ( - oo, 0> , D = R+ x R_ x R+ , J c R , 

C(J) is the set of all real continuous functions on J, 
AC2(J) is the set of all real functions which are absolutely continuous with their 

second order derivatives on J, 
L(J) is the set of all real Lebesgue integrable on J functions, 
a.e. = almost every, 
Lloc(J) is the set of all real functions which are Lebesgue integrable on each segment 

contained in J, 
Car l o c(J x I) is the set of all functions f: J x I -> R satisfying the local 

Caratheodory conditions on J x 7, i.e. 
(i) for each (x1 ? x2i x3) e 7, the mapping t H->/(I*, xl9 x2, x3) is Lebesgue 

measurable on J, 
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(ii) for a.e. t e J, the mapping (xl9 x2, x 3) »->/(r, xl9 x2, x 3) is continuous on J, 
(iii) for each Q > 0 there exists hQ e Lloc(J) such that 

з 

I 
1 = 1 

I \x,\ á e => | / ( í , * i , x2, *3)| ^ K(t) on / x J . 

A function u e AC2(R+) which fulfils (l) for a.e. teR + and satisfies (2), (3) for 
each t e R+ will be called a solution of the problem (l), (2), (3). 

In what follows we shall assume 

(4) fe Carloc(tf+ x D) , /(*, 0, 0, 0) = 0 , /(*, xl9 x2, 0) <: 0 on R+ x D 

(which means for a.e. t e R+ for every x1eR + 9 x2eR_) , 

(5) <p 6 C(D) , ^(O, 0, 0) < 0 . 

Moreover, cp will satisfy exactly one of the following conditions: 

(cpl) (p(xl9 x2, x3) > 0 for x± > r , 

(cp2) <p(xl9x29x3) > 0 for | x 2 | > r , 

(<p3) <p(x1? x2, x3) > 0 for x3 > r , 

(cpA) <p(x1? x2, x3) > 0 for xt + |x2 | > r , 

(<p5) <p(x1? x2, x3) > 0 for xt + x3 > r , 

(<p6) <p(xx, x2, x3) > 0 for |x2 | + x3 > r , 

(cpl) cp(xl9 x2, x3) > 0 for xx + |x2 | + x3 > r , 

where r e (0, 00). 

Remark, a) Clearly 

(cpA) =-> (pi), (92) , 

(95) =-> (<pl), (<p3) , 

(<p6) => (cp2), (cp3), 

(cpl) => (<p4), (cp5)9 (cp6) . 

b) In the special case cp(xl9 x2, x3) = x1 — r the condition (3) reduces to u(0) = r. 
In this case cp satisfies (cpl). Similarly for <p(x1? x2, x3) = |x2 | — r the condition (3) 
reduces to u'(0) = — r and cp satisfies (cp2)9 and so on. 

c) Similar problems for differential equations of w-th order and differential 
systems were solved in [1 —10], Here, for n = 3, stronger results are obtained. 

2. THE MAIN RESULTS 

From now on we shall assume that 
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(6)'. ae(0,co), xeR+, kl9k2eN, h0, hl9 h2 e L ]oc«a , oo)), 

f00 ds 
co e C(R+) is a positive function and = + oo , 

Jo <o{s) 

.... "M-PTV 
Jow(s) 

(7) <5(.>, •) is nondecreasing for any t e <0, a> , 

f * > <5(*, x) G L«0 , a>) is nonnegative for any x e R+ . 

Theorem 1. Let (4), (5), (6), (<pl) be fulfilled, let A e L«0 , a>) be a positive function 
and 

(8) f l i i = + oo wAere //(*) = f A(T) dT . 
J o *f(0 J o 

Further, let 

(9) -h(t) (1 + x3)2 £ f(t, xl9 x29 x3) = 0 

for any (t, xl9 x2, x3) e <0, a> x <0, r> x R_ x R+ , 
2 

(10) f(t, xu x2, x3) ^ [ho(0 + _ l*,(t) |*.|*' + «*3] «(x3) 
» = 1 

for any (t, xu x2, x3) e <a, oo) x <0, r> x K_ x R+ . 

TAen i*Ae problem (l), (2), (3) Aas at /east one solution. 

Remark . Other existence theorems with the assumption (cpi) can be found in [l 1], 

Theorem 2. Let (4), (5), (6), (7), (q>2) be fulfilled and 

(11) lim t5(u x)dt > r. 

* -ao J 0 

Let there exist a0 e (0, oo), a0 < a and a positive function A e L«0 , a0>) such that 

Ca° dt f* 
(12) - _ = +cx) , vvAere H(t) = A(T)dT . 

Jo H(t) Jo 
Further, let 
(13) f(t,xux2,x3) = - c ^ , ^ ) 

for any (t, xl9 x2, x3) e<0, a> x I*+ x < - r , 0> x K+, 

and /et on fAe set <0, a0> x R+ x < — 7% 0> x K+ rAe inequality (9) and on fAe 
set (a, 00) x R+ x < — r, 0> x R+ the inequality (10) be satisfied. Then the 
problem (1), (2), (3) Aas at least one solution. (The theorem is proved in [12].) 
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Theorem 3. Let (4), (5), (6), (7), (<p3) be fulfilled and 

(14) lim I d(t9x)dt > r . 
*-*°°Jo 

Let us suppose that on the set <0, a> x R+ x R_ x R+ the inequality (13) and on 
the set (a9 oo) x R+ x R_ x R+ the inequality (10) are satisfied. 
Then the problem (1), (2), (3) has at least one solution. 

Theorem 4. Let (4), (5), (6), (8), (cp4) be fulfilled. Let us suppose that on the set 
<0, a> x <0, r> x < — r, 0> x R + the inequality (9) and on the set <a, oo) x 
x <0, r> x < —r, 0> x R+ the inequality (10) are satisfied. 
Then (1), (2), (3) is solvable. 

Theorem 5. Let (4), (5), (6), (cp5) be fulfilled. Let 

(15) f(t9 xl9 x29 x3) = 0 

for any (t9 xl9 x29 x3) e <0, a> x <0, r> x R_ x R+ . 

and let (10) be satisfied for any (t9 xl9 x29 x3) e <a, oo) x <0, r> x R_ x R + . 
Then (1), (2), (3) is solvable. 

Theorem 6. Let (4), (5), (6), (7), (14), (96) be fulfilled. Let us suppose that (13) is 
satisfied on the set <0, a> x R+ x < —r, 0> x R+ and (10) is satisfied on the set 
(a9 00) x R+ x < — r, 0> x R + . 
Then (1), (2), (3) is solvable. 

Theorem 7. Let (4), (5), (6), (cpl) be fulfilled, let (15) be satisfied on <0, a) x 
x <0, r> x < - r , 0> x R+ and (10) on <a, 00) x <0, r> x < - r , 0> x K + . 
Then (l), (2), (3) is solvable. 

Remark . The assumption (13) in Theorems 2,3 ,6 is essential and cannot be 
omitted. For example, the problems 

u'" = 0 , u(t) = 0 , u'(i) = 0 , u"(t) = 0 , u'(0) = -r , 
or 

uw = 0 , u(t) = 0 , u'(t) = 0 , u"(t) = 0 , u"(0) = r , V 
or • :\ \\ 

u"r = 0 , u(t) = 0 , ii'(f) = 0 , u"(0 = 0 , u"(0) + |u'(0)| - r 

have no solution although the function f(t9 xl9 xl9 x3) = 0 satisfies all assumptions 
of Theorem 2 or 3 or 6 except (13). 

If the function f is nonpositive, i.e. satisfies 

(4n) fe Carloc(K+ x D) , f(t9 0, 0, 0) = 0 , f(t9 xl9 x2, x3) = 0 on R+ x D 

instead of (4), we obtain the following corolaries. '! : 
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Corollary 1. Let (4n), (5), ((pi) be fulfilled. Let there exist a e (0, oo) and a positive 
function h G L ( < 0 , a>) satisfying (8) such that (9) is fulfilled on<0, a> x <0, r> x 
x _R_ x K+ . 
Then (1), (2), (3) is solvable. 

Corollary 2. Lef (4n), (5), (7), (11), (12), (<p2) be fulfilled. Let (13) be satisfied 
on <0, a> x R+ x < - r , 0> x £ + and (9) on <0, a0> x £ + x < - r , 0> x R + , 
where a0 e (0, a). 
T/ien (1), (2), (3) is solvable. 

Corollary 3. Let (4n), (5), (7), (14), (<p3) be fulfilled and let on the set <0, a> x 
x R+ x R_ x <0, r> fhe inequality (13) be satisfied. 
Then (l), (2), (3) is solvable. 

Corollary 4. Lef (4n), (5), (8), (<p4) be fulfilled and on the set <0, a> x <0, r> x 
x < —r, 0> x R+ let the inequality (9) be satisfied. 
Then (1), (2), (3) is solvable. 

Corollary 5. Let (4n), (5), (q>5) be fulfilled. Then (1), (2), (3) is solvable. 

Corollary 6. Let (4n), (5), (7), (14), (cp6) be fulfilled and let (13) be satisfied on the 
set <0, a> x R + x < - r , 0> x <0, r>. Then (l), (2), (3) is solvable. 

Corollary 7. Let (4n), (5), ((pi) be fulfilled. Then (1), (2), (3) is solvable. 

3. PROOFS 

To prove the above theorems we need some lemmas. 

Lemma 1. Let (4), (5) and ((pi) be fulfilled, where i e {l, 2, 3, 4, 5, 6, 7}. Suppose 
that 

| / ( t ,x 1 ?x 2 ,x 3) |^ f*(0 

holds on the set R+ x £), where f* e Lioc(R+). 

Then for any c e (0, oo) the boundary value problem 

um=f(t,u,u',u"), 

<p(u(0), u'(0), u"(0)) = 0 , u(c) = u'(c) = 0 

has at least one solution u e y4c2(<0, c>) satisfying 

u(t) ^ 0 , u'(t) £ 0 , u"(t) ^ 0 on <0, c> . 

Proof. Lemma 1 can be proved analogously to Lemma 3 in [12]. 
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Lemma 2. Let c > 0 and let v e C2(<0, c» be such that 

v(t) = 0 , v'(t) g 0, v"(t) = 0 for 0 = r = c . 

Then the inequality 

\v'(t)\ = v(0)jc + V(2<0 w(t)) for 0 = f = c 

where w(f) = max {|t/'(s)| : t ^ s g c} ho/ds. 

Proof. See Lemma 3 in [11]. 

Proof of Theorem 1. Without loss of generality we may assume that hj 
(j = 0,1, 2) are nonnegative functions. 

First, suppose that there exists f* e Lloc(R+) such that 

(16) | / (^ ,x 1 ,x 2 ,x 3) |= f*(0 on R+xD. 

Then for any peN the boundary value problem (1), (3) 

(17) . u(a + p) = u'(a + p) = 0 

has at least one solution u e _4C2(<0, a + p>) satisfying 

(18) u(t) = 0 , u'(t) g 0 , w"(f) = 0 for 0 = f g a + p . 

(See Lemma 1.) 
From (3), (<pl) and (18) it follows that 

(19) 0 g u(t) = r for 0 = f = a + p 

and 
M(0) = u(a) + a\u'(a)\ + ft t u"(t) dt, 

which implies 

(20) JS ' w"(0 dt = r . 
By (9) we have 

(21) (1 + u"(t))' = -h(t) (1 + u"(t))2 for 0 = t = a . 

Integrating the differential equation 

(22) z'(t) = -fc(f) z2(f) , 0 = ' f = a , 

we get z(f) = (l/z(0) + H(t)yx and by virtue of (8) there exist e e (0,1) and a0 e 
e (0, a) such that J"0 f(z(f) — 1) dt > r, where z(0) = l/e. Let us suppose that 1 + 
+ u"(t) = z(t) for a0 ^ t ^ a. Then \a

ao t u"(i) dt > r which contradicts (20). Thus 
it is necessary that there exist t0 e (a09 a) such that 

(23) 1 + u\t0) < z(t0) . 
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Now, from (21), (22), (23) by Chaplygin Lemma on differential inequalities (see [5]) 
we get 1 + u"(t) <: l/e for 0 S t = t09 and by (9) 

(24) u"(f) ^ rt for 0 g t = a , where rx = l/e - 1 . 

Using Lemma 2 and taking into account (18), (19), (24) we obtain 

(25) \u'(t)\ <: r2 for 0 = t = a + p , where r2 = rja + J(2rr^) . 

By (10) we have 

(«»(0)' ^ |>o(0 + hlt) \uW(tf> + au"(t)] oiu"(t)) 
i— 1 

and integrating from a to t and using (19), (24), (25) we get 

(26) u"(t) S Q(t) for a St ^ a + p 9 
2 

where g(t) = fl-1^^) + ar2 + (r*1 + r2
2 + 1) Ĵ  £ hivr) dx). Now, if/ does not 

satisfy (16), we put i=z° 

/t\ = j r + 2̂ + ^I for 0 = f = a 
a ^ " (r + r2 + o(t) for a < t = a + p , 

rl for 0 g s = <r(f) 
X(t9 s) = <2 - sla(t) for r/(f) ^ 5 ^ 2 a(t) 

0 for 2 a(t) = s , 
3 

?(t, xl9 x2, x3) = x(t, E |*i|)/('> *1> *2, X3) . 
i = 1 

Since / satisfies (16) and all assumptions of Theorem 1, the boundary value problem 

u'" - f(t, u, u', u") , (3), (17) 

has at least one solution up satisfying (18), (19), (24), (25), (26) and so 
3 

(27) £ K ^ W I = <0 for 0 ̂  * = a + p . 
.= i 

Thus up is also a solution of the problem (1), (3), (17) on <0, a + p>. Now, denote 

x3) for 0 St <* a + p 
for t > a -\~ p . 

Then |/p(f, x l s x2, x3)| g |/(f, xl9 xl9 x3)\ for any p e N and lim/p(t, xl9 x29 x3) = 
= /(r, xl5 x2, x3) on R+ x D. Since p~>0° 

3 

sup { £ |u<Tl\t)\ :peN} S o(t) for t e K+ , 

fP(t,Xь*2,*з)=={£(ř'Xl'X2' 

we can prove by the Arzeli-Ascoli theorem that the sequence {up}p=1 contains 
a subsequence {upy}JLt which is locally uniformly converging together with{up }j°=1 

and {upjljLx on R+, and u(t) = lim uPJ(t) is a solution of (1), (2), (3) on R+. 
j-+oo 
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Proof of T h e o r e m 3. The first part of this proof is similar to that of Theorem 1 
and u denotes again a solution of (1), (3), (17) satisfying (18). 

Now, let us choose c0 e (r, oo) and a function 80 satisfying (7) and (14) such that 
S(t, x) __ 80(t, x) on <0, a> x R+ and <50(f. x) = 80(t9 c0) on <0, a> x <c0, oo). 
From (<p3), (13) and (18) it follows that 

(28) u'" __ -S(t9u) __ -d0(t9u), 

(29) 0 __ u"(t) __ r for 0 __ t __ a . 

According to (14) there exist r0 e <r, oo) and a0 e (0, a) such that J0° <30(f, r0) d* > r. 
Integrating (28) we obtain by (29) J0° d0(t9 u(a0)) &t 5_ r. Therefore u(a0) < r0 and 
by (18) we get 

(30) 0 5_ u(t) = r0 for a0 __ f __ a + p , p e N . 

The equality w(a0) = u(a) + \u'(a)\ (a - a0) + j " 0 (* - a0) u"(t) &t yields 

(31) |«'(a)| __ r0/(« - a 0 ) . 

From the equality u(0) = u(a) + |u'(a)| a + J0 * w"(f) d* we get by (29), (30) and 

(31) u(0) __ r l5 where r t = r0 + ar0/(a — a0) + a2r, thus 

(32) 0 __ u(f) __ rx for O ^ ^ a + p . 

Now, using Lemma 2, we obtain by (18) 

(33) \u'(t)\ = r2 for 0 __ f __ a + p , where r2 = i^/a + V(2rxr) . 

Similarly as in the proof of Theorem 1 we obtain from (10) 

(34) u"(t) S Q(t) for a __ t = a + p , 

where 

e(0 = fl-^r) + ar2 + (r*1 + # + 1) ft £ /*,(') dT) • 
i = 0 

Now, if / does not satisfy (16), we put 

/.A f ri + r2 + r for 0 __ t __ a , , 
ait) = < / \ i- ^ c i = m a x co> r i ! -

l r i + r2 + e(0 for a < r _g a + p , * l ° l> 

for 0 __ s __ cx , M - I S for - r2 = s = 0 
for s > cx , 2K ' \—r2 for s< 

ď 2 ( s ) = | _ * 

, t , _ f- for 0 _ 5 _ e(ř) 

1 for 0 __ s _5 a(ř) 
[2 - sjo(t) for a(t) < s __ 2 <r(í), 
[O for 2 a(í) < s 

(/(í, ff^Xi), <r2(x2), o-3(í? x3)) for 0 __ í __ a 

^ I h D / a . x ^ x ^ X s ) for a < r _ _ a + p. 
i = l 
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Clearly / satisfies (4), (10) and (16). Further, 

(35) J(t, x u x 2 , x3) = f(t9 xl9 xl9 x3) for t > a , £ \x\ = a(t) , 
з 

I 
І = I and for 

(t9xl9x29x3)e(09a} x <0, cx> x < - r 2 , 0 > x <0, O(f)> 

we have 

(36) /(*, x l 5 x2, x3) = -(5(f, ^ ( x ^ ) = -S0(t9 x x) on <0, a> x D . 

Therefore the boundary value problem 

M'" = /(f, M, u', u"), (3), (17) 

has at least one solution Mpe.AC2(<0, a + p>) satisfying (18), (28) —(34) and so up 

is also a solution of (1), (3), (17) on <0, a + p>. The last part of this proof is the 
same as in the proof of Theorem 1. 

P r o o f of T h e o r e m 4. The difference between the assumptions of Theorems 1 
and 4 is only in the boundedness of x 2. So we can prove Theorem 4 in the same way 
as Theorem 1 because the boundedness of M', where u is a solution of (1), (3), (17), 
follows from (cp4). 

P r o o f of T h e o r e m 5. Similarly as in the proof of Theorem 1 we can obtain 
a solution u of (l), (3), (17) satisfying (18). From (cp5)9 (15) and (18) it follows that 

(37) 0 = u(t) = r for 0 = f = a + p , 0 ^ u"(t) = r for 0 = t = a . 

Using Lemma 2 and taking into account (18), (37) |M'(*")| = rt for 0 ^ t = a + p9 

where r x = rja + 2r. Now we can proceed as in the proof of Theorem 1. 

P r o o f of T h e o r e m 6. Similarly as in the proof of Theorem 1 we can obtain 
a solution u of (l), (3), (17) satisfying (18). From (96), (13) and (18) it follows that 

0 = u'(t) = - r for 0 ^ t = a + p9 0 = u"(t) = r for 0 = t = a . 

Analogously as in the proof of Theorem 3 we choose c0 e (r, 00) and a function S0 

and get the estimate (32). Now we can proceed as in the proof of Theorem 1. 

P r o o f of T h e o r e m 7. Similarly as in the proof of Theorem 1 we obtaina solution 
M of (1), (3), (17) satisfying (18). From (<p7), (15) and (18) it follows that 

0 = u(t) = r , - r = u'(t) = 0 for 0 = f = a + p, 

0 = u"(t) = r Tor 0 = t = a . 

As in the proof of Theorem 1 we obtain from (10) the estimate 0 = u"(t) ^ g(t) for 
a = t ^ a + p9 where 

o(r) = fl-^Gfr) + ar + (rfcl + rk* + 1) JJ £ h.(T) dt) . 
. = 0 

The rest of the proof is analogous to that of Theorem 1. 
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Souhrn 

KNESEROVA ÚLOHA PRO DIFERENCIÁLNÍ ROVNICE З. ŘÁDU 

IRENA RACHŮNKOVÁ 

V práci jsou nalezeny postačující podmínky pro existenci řešení и nelineární diferenciální 
rovnice 3. řádu, splňujícího podmínky u(t)^ 0, «'(Olš 0, u"(t)}> 0 pro te <0, oo) a <p(u(0)9 

u'(0), u"(0)) = 0, kde q> je spojitá funkce. 

Резюме 

ЗАДАЧА КНЕЗЕРА ДЛЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ 3-ГО ПОРЯДКА 

IRENA RACHŮNKOVÁ 

В работе приведены достаточные условия для существования решения и нелинейного 
дифференциального уравнения третьего порядка, удовлетворяющего условиям u(t) ^ 0, 
u'(t) g 0, u"(t) ^ 0 для te <0, оо) и <p(u(0)t w'(0), и"(0)) = 0, где <р — непрерывная функция. 

Authoťs address: Přírodovědecká fakulta UP, Gottwaldova 15, 771 46 Olomouc. 
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