Časopis pro pěstování matematiky

Irena Rachůnková

On Kneser problem for differential equations of the 3rd order

Časopis pro pěstování matematiky, Vol. 115 (1990), No. 1, 18--27

Persistent URL: http://dml.cz/dmlcz/108726

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON KNESER PROBLEM FOR DIFFERENTIAL EQUATIONS OF THE 3RD ORDER

Irena RachưnkovA, Olomouc

(Received May 15, 1987)

Summary. In the paper sufficient conditions are found for the existence of a solution u of the third order nonlinear differential equation, satisfying $u(t) \geqq 0, u^{\prime}(t) \leqq 0, u^{\prime \prime}(t) \geqq 0$ for $t \in\langle 0, \infty)$ and $\varphi\left(u(0), u^{\prime}(0), u^{\prime \prime}(0)\right)=0$, where φ is a continuous function.

Keywords: Kneser problem, a priori estimate, Carathéodory conditions, Arzelà-Ascoli theorem, Nagumo functions.

AMS Classification: 34B15, 34C11

1. INTRODUCTION

In this paper we consider the problem

$$
\begin{equation*}
u^{\prime \prime \prime}=f\left(t, u, u^{\prime}, u^{\prime \prime}\right), \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
u(t) \geqq 0, \quad u^{\prime}(t) \leqq 0, \quad u^{\prime \prime}(t) \geqq 0 \quad \text { for } t \in R_{+}, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\varphi\left(u(0), u^{\prime}(0), u^{\prime \prime}(0)\right)=0 \tag{3}
\end{equation*}
$$

Sufficient conditions are found for the existence of solutions of this problem.
We shall use the following notation:

$$
R_{+}=\langle 0, \infty), \quad R_{-}=(-\infty, 0\rangle, \quad D=R_{+} \times R_{-} \times R_{+}, \quad J \subset R,
$$

$C(J) \quad$ is the set of all real continuous functions on J,
$A C^{2}(J)$ is the set of all real functions which are absolutely continuous with their second order derivatives on J,
$L(J) \quad$ is the set of all real Lebesgue integrable on J functions,
a.e. $=$ almost every,
$L_{\text {loc }}(J)$ is the set of all real functions which are Lebesgue integrable on each segment contained in J,
$\operatorname{Car}_{\text {loc }}(J \times I)$ is the set of all functions $f: J \times I \rightarrow R$ satisfying the local Carathéodory conditions on $J \times I$, i.e.
(i) for each $\left(x_{1}, x_{2}, x_{3}\right) \in I$, the mapping $t \mapsto f\left(t, x_{1}, x_{2}, x_{3}\right)$ is Lebesgue measurable on J,
(ii) for a.e. $t \in J$, the mapping $\left(x_{1}, x_{2}, x_{3}\right) \mapsto f\left(t, x_{1}, x_{2}, x_{3}\right)$ is continuous on I,
(iii) for each $\varrho>0$ there exists $h_{q} \in L_{\text {loc }}(J)$ such that

$$
\sum_{i=1}^{3}\left|x_{i}\right| \leqq \varrho \Rightarrow\left|f\left(t, x_{1}, x_{2}, x_{3}\right)\right| \leqq h_{o}(t) \quad \text { on } \quad I \times J
$$

A function $u \in A C^{2}\left(R_{+}\right)$which fulfils (1) for a.e. $t \in R_{+}$and satisfies (2), (3) for each $t \in R_{+}$will be called a solution of the problem (1), (2), (3).

In what follows we shall assume

$$
\begin{equation*}
f \in \operatorname{Car}_{\mathrm{loc}}\left(R_{+} \times D\right), f(t, 0,0,0)=0, f\left(t, x_{1}, x_{2}, 0\right) \leqq 0 \text { on } R_{+} \times D \tag{4}
\end{equation*}
$$ (which means for a.e. $t \in R_{+}$for every $x_{1} \in R_{+}, x_{2} \in R_{-}$),

$$
\begin{equation*}
\varphi \in C(D), \quad \varphi(0,0,0)<0 \tag{5}
\end{equation*}
$$

Moreover, φ will satisfy exactly one of the following conditions:

$$
\begin{aligned}
& \text { (} \varphi 1 \text {) } \varphi\left(x_{1}, x_{2}, x_{3}\right)>0 \text { for } x_{1}>r \text {, } \\
& \text { (} \varphi \text { 2) } \varphi\left(x_{1}, x_{2}, x_{3}\right)>0 \text { for }\left|x_{2}\right|>r \text {, } \\
& \text { (} \varphi \text { 3) } \varphi\left(x_{1}, x_{2}, x_{3}\right)>0 \text { for } x_{3}>r \text {, } \\
& \text { (} \varphi 4 \text {) } \varphi\left(x_{1}, x_{2}, x_{3}\right)>0 \text { for } x_{1}+\left|x_{2}\right|>r \text {, } \\
& \text { (} \varphi 5 \text {) } \varphi\left(x_{1}, x_{2}, x_{3}\right)>0 \text { for } x_{1}+x_{3}>r \text {, } \\
& \text { (ب6) } \varphi\left(x_{1}, x_{2}, x_{3}\right)>0 \text { for }\left|x_{2}\right|+x_{3}>r \text {, } \\
& \text { (} \varphi \text { 7) } \varphi\left(x_{1}, x_{2}, x_{3}\right)>0 \text { for } x_{1}+\left|x_{2}\right|+x_{3}>r \text {, }
\end{aligned}
$$

where $r \in(0, \infty)$.
Remark. a) Clearly

$$
\begin{aligned}
& (\varphi 4) \Rightarrow(\varphi 1),(\varphi 2), \\
& (\varphi 5) \Rightarrow(\varphi 1),(\varphi 3), \\
& (\varphi 6) \Rightarrow(\varphi 2),(\varphi 3), \\
& (\varphi 7) \Rightarrow(\varphi 4),(\varphi 5),(\varphi 6)
\end{aligned}
$$

b) In the special case $\varphi\left(x_{1}, x_{2}, x_{3}\right)=x_{1}-r$ the condition (3) reduces to $u(0)=r$. In this case φ satisfies $(\varphi 1)$. Similarly for $\varphi\left(x_{1}, x_{2}, x_{3}\right)=\left|x_{2}\right|-r$ the condition (3) reduces to $u^{\prime}(0)=-r$ and φ satisfies $(\varphi 2)$, and so on.
c) Similar problems for differential equations of n-th order and differential systems were solved in $[1-10]$. Here, for $n=3$, stronger results are obtained.

2. THE MAIN RESULTS

From now on we shall assume that
(6)

$$
a \in(0, \infty), \quad \alpha \in R_{+}, \quad k_{1}, k_{2} \in N, \quad h_{0}, h_{1}, h_{2} \in L_{\mathrm{loc}}(\langle a, \infty)),
$$

$$
\omega \in C\left(R_{+}\right) \text {is a positive function and } \int_{0}^{\infty} \frac{\mathrm{d} s}{\left.\omega_{(}^{\prime} s\right)}=+\infty
$$

ध. $\quad \Omega(x)=\int_{0}^{x} \frac{\mathrm{~d} s}{\omega(s)}$,
(7) $\quad \delta(t, \cdot)$ is nondecreasing for any $t \in\langle 0, a\rangle$, $\delta(\cdot, x) \in L(\langle 0, a\rangle)$ is nonnegative for any $x \in R_{+}$.

Theorem 1. Let (4), (5), (6), ($\varphi 1$) be fulfilled, let $h \in L(\langle 0, a\rangle)$ be a positive function and
(8) $\quad \int_{0}^{a} \frac{t \mathrm{~d} t}{H(t)}=+\infty \quad$ where $\quad H(t)=\int_{0}^{t} h(\tau) \mathrm{d} \tau$.

Further, let

$$
\begin{equation*}
-h(t)\left(1+x_{3}\right)^{2} \leqq f\left(t, x_{1}, x_{2}, x_{3}\right) \leqq 0 \tag{9}
\end{equation*}
$$

$$
\text { for any }\left(t, x_{1}, x_{2}, x_{3}\right) \in\langle 0, a\rangle \times\langle 0, r\rangle \times R_{-} \times R_{+},
$$

$$
\begin{align*}
& f\left(t, x_{1}, x_{2}, x_{3}\right) \leqq\left[h_{0}(t)+\sum_{i=1}^{2} h_{i}(t)\left|x_{i}\right|^{k_{i}}+\alpha x_{3}\right] \omega\left(x_{3}\right) \tag{10}\\
& \text { for any }\left(t, x_{1}, x_{2}, x_{3}\right) \in\langle a, \infty) \times\langle 0, r\rangle \times R_{-} \times R_{+}
\end{align*}
$$

Then the problem (1), (2), (3) has at least one solution.
Remark. Other existence theorems with the assumption ($\varphi 1$) can be found in [11].
Theorem 2. Let (4), (5), (6), (7), (φ 2) be fulfilled and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \int_{0}^{a} t \delta(t, x) \mathrm{d} t>r \tag{11}
\end{equation*}
$$

Let there exist $a_{0} \in(0, \infty), a_{0}<a$ and a positive function $h \in L\left(\left\langle 0, a_{0}\right\rangle\right)$ such that

$$
\begin{equation*}
\int_{0}^{a_{0}} \frac{\mathrm{~d} t}{H(t)}=+\infty, \text { where } H(t)=\int_{0}^{t} h(\tau) \mathrm{d} \tau \tag{12}
\end{equation*}
$$

Further, let

$$
\begin{align*}
& f\left(t, x_{1}, x_{2}, x_{3}\right) \leqq-\delta\left(t, x_{1}\right) \tag{13}\\
& \text { for any }\left(t, x_{1}, x_{2}, x_{3}\right) \in\langle 0, a\rangle \times R_{+} \times\langle-r, 0\rangle \times R_{+},
\end{align*}
$$

and let on the set $\left\langle 0, a_{0}\right\rangle \times R_{+} \times\langle-r, 0\rangle \times R_{+}$the inequality (9) and on the set $(a, \infty) \times R_{+} \times\langle-r, 0\rangle \times R_{+}$the inequality (10) be satisfied. Then the problem (1), (2), (3) has at least one solution. (The theorem is proved in [12].)

Theorem 3. Let (4), (5), (6), (7), (φ 3) be fulfilled and

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \int_{0}^{a} \delta(t, x) \mathrm{d} t>r . \tag{14}
\end{equation*}
$$

Let us suppose that on the set $\langle 0, a\rangle \times R_{+} \times R_{-} \times R_{+}$the inequality (13) and on the set $(a, \infty) \times R_{+} \times R_{-} \times R_{+}$the inequality (10) are satisfied.
Then the problem (1), (2), (3) has at least one solution.
Theorem 4. Let (4), (5), (6), (8), ($\varphi 4$) be fulfilled. Let us suppose that on the set $\langle 0, a\rangle \times\langle 0, r\rangle \times\langle-r, 0\rangle \times R_{+}$the inequality (9) and on the set $\langle a, \infty) \times$ $\times\langle 0, r\rangle \times\langle-r, 0\rangle \times R_{+}$the inequality (10) are satisfied.
Then (1), (2), (3) is solvable.
Theorem 5. Let (4), (5), (6), ($\varphi 5$) be fulfilled. Let

$$
\begin{align*}
& f\left(t, x_{1}, x_{2}, x_{3}\right) \leqq 0 \tag{15}\\
& \text { for any }\left(t, x_{1}, x_{2}, x_{3}\right) \in\langle 0, a\rangle \times\langle 0, r\rangle \times R_{-} \times R_{+} .
\end{align*}
$$

and let (10) be satisfied for any $\left(t, x_{1}, x_{2}, x_{3}\right) \in\langle a, \infty) \times\langle 0, r\rangle \times R_{-} \times R_{+}$. Then (1), (2), (3) is solvable.

Theorem 6. Let (4), (5), (6), (7), (14), (φ 6) be fulfilled. Let us suppose that (13) is satisfied on the set $\langle 0, a\rangle \times R_{+} \times\langle-r, 0\rangle \times R_{+}$and (10) is satisfied on the set $(a, \infty) \times R_{+} \times\langle-r, 0\rangle \times R_{+}$.
Then (1), (2), (3) is solvable.
Theorem 7. Let (4), (5), (6), (φ 7) be fulfilled, let (15) be satisfied on $\langle 0, a) \times$ $\times\langle 0, r\rangle \times\langle-r, 0\rangle \times R_{+}$and (10) on $\langle a, \infty) \times\langle 0, r\rangle \times\langle-r, 0\rangle \times R_{+}$. Then (1), (2), (3) is solvable.

Remark. The assumption (13) in Theorems $2,3,6$ is essential and cannot be omitted. For example, the problems

$$
u^{\prime \prime \prime}=0, \quad u(t) \geqq 0, \quad u^{\prime}(t) \leqq 0, \quad u^{\prime \prime}(t) \geqq 0, \quad u^{\prime}(0)=-r,
$$

or

$$
u^{\prime \prime \prime}=0, \quad u(t) \geqq 0, \quad u^{\prime}(t) \leqq 0, \quad u^{\prime \prime}(t) \geqq 0, \quad u^{\prime \prime}(0)=r,
$$

or

$$
u^{\prime \prime \prime}=0, \quad u(t) \geqq 0, \quad u^{\prime}(t) \leqq 0, \quad u^{\prime \prime}(t) \geqq 0, \quad u^{\prime \prime}(0)+\left|u^{\prime}(0)\right|==r
$$

have no solution although the function $f\left(t, x_{1}, x_{2}, x_{3}\right)=0$ satisfies all assumptions of Theorem 2 or 3 or 6 except (13).

If the function f is nonpositive, i.e. satisfies

$$
\begin{equation*}
f \in \operatorname{Car}_{\mathrm{loc}}\left(R_{+} \times D\right), f(t, 0,0,0)=0, f\left(t, x_{1}, x_{2}, x_{3}\right) \leqq 0 \text { on } R_{+} \times D \tag{4n}
\end{equation*}
$$ instead of (4), we obtain the following corolaries.

Corollary 1. Let (4n), (5), ($\varphi 1$) be fulfilled. Let there exist $a \in(0, \infty)$ and a positive function $h \in L(\langle 0, a\rangle)$ satisfying (8) such that (9) is fulfilled on $\langle 0, a\rangle \times\langle 0, r\rangle \times$ $\times \boldsymbol{R}_{-} \times \boldsymbol{R}_{+}$. Then (1), (2), (3) is solvable.

Corollary 2. Let (4n), (5), (7), (11), (12), ($\varphi 2$) be fulfilled. Let (13) be satisfied on $\langle 0, a\rangle \times R_{+} \times\langle-r, 0\rangle \times R_{+}$and (9) on $\left\langle 0, a_{0}\right\rangle \times R_{+} \times\langle-r, 0\rangle \times R_{+}$, where $a_{0} \in(0, a)$.
Then (1), (2), (3) is solvable.
Corollary 3. Let (4n), (5), (7), (14), (φ 3) be fulfilled and let on the set $\langle 0, a\rangle \times$ $\times R_{+} \times R_{-} \times\langle 0, r\rangle$ the inequality (13) be satisfied.
Then (1), (2), (3) is solvable.
Corollary 4. Let (4n), (5), (8), ($\varphi 4$) be fulfilled and on the set $\langle 0, a\rangle \times\langle 0, r\rangle \times$ $\times\langle-r, 0\rangle \times R_{+}$let the inequality (9) be satisfied.
Then (1), (2), (3) is solvable.
Corollary 5. Let (4n), (5), ($\varphi 5$) be fulfilled. Then (1), (2), (3) is solvable.
Corollary 6. Let (4n), (5), (7), (14), ($\varphi 6$) be fulfilled and let (13) be satisfied on the set $\langle 0, a\rangle \times R_{+} \times\langle-r, 0\rangle \times\langle 0, r\rangle$. Then (1), (2), (3) is solvable.

Corollary 7. Let (4n), (5), (φ 7) be fulfilled. Then (1), (2), (3) is solvable.

3. PROOFS

To prove the above theorems we need some lemmas.
Lemma 1. Let (4), (5) and (φ i) be fulfilled, where $i \in\{1,2,3,4,5,6,7\}$. Suppose that

$$
\left|f\left(t, x_{1}, x_{2}, x_{3}\right)\right| \leqq f^{*}(t)
$$

holds on the set $R_{+} \times D$, where $f^{*} \in L_{\mathrm{loc}}\left(R_{+}\right)$.
Then for any $c \in(0, \infty)$ the boundary value problem

$$
\begin{aligned}
& u^{\prime \prime \prime}=f\left(t, u, u^{\prime} ; u^{\prime \prime}\right), \\
& \varphi\left(u(0), u^{\prime}(0), u^{\prime \prime}(0)\right)=0, \quad u(c)=u^{\prime}(c)=0
\end{aligned}
$$

has at least one solution $u \in A C^{2}(\langle 0, c\rangle)$ satisfying

$$
u(t) \geqq 0, \quad u^{\prime}(t) \leqq 0, \quad u^{\prime \prime}(t) \geqq 0 \quad \text { on }\langle 0, c\rangle .
$$

Proof. Lemma 1 can be proved analogously to Lemma 3 in [12].

Lemma 2. Let $c>0$ and let $v \in C^{2}(\langle 0, c\rangle)$ be such that

$$
v(t) \geqq 0, \quad v^{\prime}(t) \leqq 0, \quad v^{\prime \prime}(t) \geqq 0 \quad \text { for } \quad 0 \leqq t \leqq c .
$$

Then the inequality

$$
\left|v^{\prime}(t)\right| \leqq v(0) / c+\sqrt{ }(2 v(t) w(t)) \quad \text { for } \quad 0 \leqq t \leqq c
$$

where $w(t)=\max \left\{\left|v^{\prime \prime}(s)\right|: t \leqq s \leqq c\right\}$ holds.
Proof. See Lemma 3 in [11].
Proof of Theorem 1. Without loss of generality we may assume that h_{j} ($j=0,1,2$) are nonnegative functions.

First, suppose that there exists $f^{*} \in L_{\mathrm{loc}}\left(R_{+}\right)$such that

$$
\begin{equation*}
\left|f\left(t, x_{1}, x_{2}, x_{3}\right)\right| \leqq f^{*}(t) \quad \text { on } \quad R_{+} \times D \tag{16}
\end{equation*}
$$

Then for any $p \in N$ the boundary value problem (1), (3)

$$
\begin{equation*}
u(a+p)=u^{\prime}(a+p)=0 \tag{17}
\end{equation*}
$$

has at least one solution $u \in A C^{2}(\langle 0, a+p\rangle)$ satisfying

$$
\begin{equation*}
u(t) \geqq 0, \quad u^{\prime}(t) \leqq 0, \quad u^{\prime \prime}(t) \geqq 0 \quad \text { for } \quad 0 \leqq t \leqq a+p \tag{18}
\end{equation*}
$$

(See Lemma 1.)
From (3), $(\varphi 1)$ and (18) it follows that

$$
\begin{equation*}
0 \leqq u(t) \leqq r \quad \text { for } \quad 0 \leqq t \leqq a+p \tag{19}
\end{equation*}
$$

and

$$
u(0)=u(a)+a\left|u^{\prime}(a)\right|+\int_{0}^{a} t u^{\prime \prime}(t) \mathrm{d} t
$$

which implies

$$
\begin{equation*}
\int_{0}^{a} t u^{\prime \prime}(t) \mathrm{d} t \leqq r \tag{20}
\end{equation*}
$$

By (9) we have

$$
\begin{equation*}
\left(1+u^{\prime \prime}(t)\right)^{\prime} \geqq-h(t)\left(1+u^{\prime \prime}(t)\right)^{2} \text { for } 0 \leqq t \leqq a \tag{21}
\end{equation*}
$$

Integrating the differential equation

$$
\begin{equation*}
z^{\prime}(t)=-h(t) z^{2}(t), \quad 0 \leqq \cdot t \leqq a \tag{22}
\end{equation*}
$$

we get $z(t)=(1 / z(0)+H(t))^{-1}$ and by virtue of (8) there exist $\varepsilon \in(0,1)$ and $a_{0} \in$ $\epsilon(0, a)$ such that $\int_{a_{0}}^{a} t(z(t)-1) \mathrm{d} t>r$, where $z(0)=1 / \varepsilon$. Let us suppose that $1+$ $+u^{\prime \prime}(t) \geqq z(t)$ for $a_{0} \leqq t \leqq a$. Then $\int_{a_{0}}^{a} t u^{\prime \prime}(t) \mathrm{d} t>r$ which contradicts (20). Thus it is necessary that there exist $t_{0} \in\left(a_{0}, a\right)$ such that

$$
\begin{equation*}
1+u^{\prime \prime}\left(t_{0}\right)<z\left(t_{0}\right) \tag{23}
\end{equation*}
$$

Now, from (21), (22), (23) by Chaplygin Lemma on differential inequalities (see [5]) we get $1+u^{\prime \prime}(t) \leqq 1 / \varepsilon$ for $0 \leqq t \leqq t_{0}$, and by (9)

$$
\begin{equation*}
u^{\prime \prime}(t) \leqq r_{1} \quad \text { for } \quad 0 \leqq t \leqq a, \quad \text { where } \quad r_{1}=1 / \varepsilon-1 \tag{24}
\end{equation*}
$$

Using Lemma 2 and taking into account (18), (19), (24) we obtain

$$
\begin{equation*}
\left|u^{\prime}(t)\right| \leqq r_{2} \quad \text { for } \quad 0 \leqq t \leqq a+p, \quad \text { where } \quad r_{2}=r / a+\sqrt{ }\left(2 r r_{1}\right) \tag{25}
\end{equation*}
$$

By (10) we have

$$
\left(u^{\prime \prime}(t)\right)^{\prime} \leqq\left[h_{0}(t)+\sum_{i=1}^{2} h_{i}(t)\left|u^{(i-1)}(t)\right|^{k_{i}}+\alpha u^{\prime \prime}(t)\right] \omega\left(u^{\prime \prime}(t)\right)
$$

and integrating from a to t and using (19), (24), (25) we get

$$
\begin{equation*}
u^{\prime \prime}(t) \leqq \varrho(t) \quad \text { for } \quad a \leqq t \leqq a+p \tag{26}
\end{equation*}
$$

where $\varrho(t)=\Omega^{-1}\left(\Omega\left(r_{1}\right)+\alpha r_{2}+\left(r^{k_{1}}+r_{2}^{k_{2}}+1\right) \int_{a}^{t} \sum_{i=0}^{2} h_{i}(\tau) \mathrm{d} \tau\right)$. Now, if f does not
satisfy (16), we put

$$
\begin{aligned}
& \sigma(t)= \begin{cases}r+r_{2}+r_{1} & \text { for } \quad 0 \leqq t \leqq a \\
r+r_{2}+\varrho(t) & \text { for } a<t \leqq a+p,\end{cases} \\
& \chi(t, s)= \begin{cases}1 & \text { for } 0 \leqq s \leqq \sigma(t) \\
2-s / \sigma(t) & \text { for } \\
\sigma(t) \leqq s \leqq 2 \sigma(t) \\
0 & \text { for } 2 \sigma(t) \leqq s,\end{cases} \\
& \tilde{f}\left(t, x_{1}, x_{2}, x_{3}\right)=\chi\left(t, \sum_{i=1}^{3}\left|x_{i}\right|\right) f\left(t, x_{1}, x_{2}, x_{3}\right) .
\end{aligned}
$$

Since \tilde{f} satisfies (16) and all assumptions of Theorem 1, the boundary value problem

$$
u^{\prime \prime \prime}=\tilde{f}\left(t, u, u^{\prime}, u^{\prime \prime}\right), \quad \text { (3), (17) }
$$

has at least one solution u_{p} satisfying (18), (19), (24), (25), (26) and so

$$
\begin{equation*}
\sum_{i=1}^{3}\left|u_{p}^{(i-1)}(t)\right| \leqq \sigma(t) \quad \text { for } \quad 0 \leqq t \leqq a+p \tag{27}
\end{equation*}
$$

Thus u_{p} is also a solution of the problem (1), (3), (17) on $\langle 0, a+p\rangle$. Now, denote

$$
f_{p}\left(t, x_{1}, x_{2}, x_{3}\right)= \begin{cases}f\left(t, x_{1}, x_{2}, x_{3}\right) & \text { for } 0 \leqq t \leqq a+p \\ 0 & \text { for } t>a+p\end{cases}
$$

Then $\left|f_{p}\left(t, x_{1}, x_{2}, x_{3}\right)\right| \leqq\left|f\left(t, x_{1}, x_{2}, x_{3}\right)\right|$ for any $p \in N$ and $\lim f_{p}\left(t, x_{1}, x_{2}, x_{3}\right)=$ $=f\left(t, x_{1}, x_{2}, x_{3}\right)$ on $R_{+} \times D$. Since

$$
\sup \left\{\sum_{i=1}^{3}\left|u_{p}^{(i-1)}(t)\right|: p \in N\right\} \leqq \sigma(t) \quad \text { for } \quad t \in R_{+}
$$

we can prove by the Arzelà-Ascoli theorem that the sequence $\left\{u_{p}\right\}_{p=1}^{\infty}$ contains a subsequence $\left\{u_{p_{j}}\right\}_{j=1}^{\infty}$ which is locally uniformly converging together with $\left\{u_{p_{j}}^{\prime}\right\}_{j=1}^{\infty}$ and $\left\{u_{p j}^{\prime \prime}\right\}_{j=1}^{\infty}$ on R_{+}, and $u(t)=\lim _{j \rightarrow \infty} u_{p j}(t)$ is a solution of (1), (2), (3) on R_{+}.

Proof of Theorem 3. The first part of this proof is similar to that of Theorem 1 and u denotes again a solution of (1), (3), (17) satisfying (18).
Now, let us choose $c_{0} \in(r, \infty)$ and a function δ_{0} satisfying (7) and (14) such that $\delta(t, x) \geqq \delta_{0}(t, x)$ on $\langle 0, a\rangle \times R_{+}$and $\delta_{0}(t, x)=\delta_{0}\left(t, c_{0}\right)$ on $\langle 0, a\rangle \times\left\langle c_{0}, \infty\right)$. From ($\varphi 3$), (13) and (18) it follows that

$$
\begin{equation*}
u^{\prime \prime \prime} \leqq-\delta(t, u) \leqq-\delta_{0}(t, u), \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
0 \leqq u^{\prime \prime}(t) \leqq r \quad \text { for } \quad 0 \leqq t \leqq a \tag{29}
\end{equation*}
$$

According to (14) there exist $r_{0} \in\langle r, \infty)$ and $a_{0} \in(0, a)$ such that $\int_{0}^{a_{0}} \delta_{0}\left(t, r_{0}\right) \mathrm{d} t>r$. Integrating (28) we obtain by (29) $\int_{0}^{a_{0}} \delta_{0}\left(t, u\left(a_{0}\right)\right) \mathrm{d} t \leqq r$. Therefore $u\left(a_{0}\right)<r_{0}$ and by (18) we get

$$
\begin{equation*}
0 \leqq u(t) \leqq r_{0} \quad \text { for } \quad a_{0} \leqq t \leqq a+p, \quad p \in N \tag{30}
\end{equation*}
$$

The equality $u\left(a_{0}\right)=u(a)+\left|u^{\prime}(a)\right|\left(a-a_{0}\right)+\int_{a_{0}}^{a}\left(t-a_{0}\right) u^{\prime \prime}(t) \mathrm{d} t$ yields

$$
\begin{equation*}
\left|u^{\prime}(a)\right| \leqq r_{0} /\left(a-a_{0}\right) \tag{31}
\end{equation*}
$$

From the equality $u(0)=u(a)+\left|u^{\prime}(a)\right| a+\int_{0}^{a} t u^{\prime \prime}(t) \mathrm{d} t$ we get by (29), (30) and (31) $u(0) \leqq r_{1}$, where $r_{1}=r_{0}+a r_{0} /\left(a-a_{0}\right)+a^{2} r$, thus

$$
\begin{equation*}
0 \leqq u(t) \leqq r_{1} \quad \text { for } \quad 0 \leqq t \leqq a+p \tag{32}
\end{equation*}
$$

Now, using Lemma 2, we obtain by (18)

$$
\begin{equation*}
\left|u^{\prime}(t)\right| \leqq r_{2} \quad \text { for } \quad 0 \leqq t \leqq a+p, \quad \text { where } \quad r_{2}=r_{1} / a+\sqrt{ }\left(2 r_{1} r\right) \tag{33}
\end{equation*}
$$

Similarly as in the proof of Theorem 1 we obtain from (10)

$$
\begin{equation*}
u^{\prime \prime}(t) \leqq \varrho(t) \quad \text { for } \quad a \leqq t \leqq a+p \tag{34}
\end{equation*}
$$

where

$$
\varrho(t)=\Omega^{-1}\left(\Omega(r)+\alpha r_{2}+\left(r_{1}^{k_{1}}+r_{2}^{k_{2}}+1\right) \int_{a}^{t} \sum_{i=0}^{2} h_{i}(\tau) \mathrm{d} \tau\right)
$$

Now, if f does not satisfy (16), we put

$$
\begin{aligned}
& \sigma(t)=\left\{\begin{array}{ll}
r_{1}+r_{2}+r & \text { for } 0 \leqq t \leqq a \\
r_{1}+r_{2}+\varrho(t) & \text { for } a<t \leqq a+p,
\end{array} \quad c_{1}=\max \left\{c_{0}, r_{1}\right\},\right. \\
& \sigma_{1}(s)=\left\{\begin{array}{lll}
s & \text { for } & 0 \leqq s \leqq c_{1}, \\
c_{1} & \text { for } & s>c_{1},
\end{array} \quad \sigma_{2}(s)=\left\{\begin{array}{ccc}
s & \text { for } & -r_{2} \leqq s \leqq 0 \\
-r_{2} & \text { for } & s<-r_{2},
\end{array}\right.\right. \\
& \sigma_{3}(t, s)=\left\{\begin{array}{lll}
s & \text { for } & 0 \leqq s \leqq \varrho(t) \\
\varrho(t) & \text { for } & \varrho(t)<s,
\end{array}\right. \\
& \chi(t, s)= \begin{cases}1 & \text { for } 0 \leqq s \leqq \sigma(t) \\
2-s / \sigma(t) & \text { for } \quad \sigma(t)<s \leqq 2 \sigma(t), \\
0 & \text { for } 2 \sigma(t)<s\end{cases} \\
& \tilde{f}\left(t, x_{1}, x_{2}, x_{3}\right)= \begin{cases}f\left(t, \sigma_{1}\left(x_{1}\right), \sigma_{2}\left(x_{2}\right), \sigma_{3}\left(t, x_{3}\right)\right) & \text { for } \quad 0 \leqq t \leqq a \\
\chi\left(t, \sum_{i=1}^{3}\left|x_{i}\right|\right) f\left(t, x_{1}, x_{2}, x_{3}\right) & \text { for } \quad a<t \leqq a+p .\end{cases}
\end{aligned}
$$

Clearly f satisfies (4), (10) and (16). Further,

$$
\begin{equation*}
\tilde{f}\left(t, x_{1}, x_{2}, x_{3}\right)=f\left(t, x_{1}, x_{2}, x_{3}\right) \text { for } t>a, \quad \sum_{i=1}^{3}\left|x_{i}\right| \leqq \sigma(t), \tag{35}
\end{equation*}
$$

and for

$$
\left(t, x_{1}, x_{2}, x_{3}\right) \in\langle 0, a\rangle \times\left\langle 0, c_{1}\right\rangle \times\left\langle-r_{2}, 0\right\rangle \times\langle 0, \varrho(t)\rangle
$$

we have

$$
\begin{equation*}
\tilde{f}\left(t, x_{1}, x_{2}, x_{3}\right) \leqq-\delta\left(t, \sigma_{1}\left(x_{1}\right)\right) \leqq-\delta_{0}\left(t, x_{1}\right) \quad \text { on }\langle 0, a\rangle \times D . \tag{36}
\end{equation*}
$$

Therefore the boundary value problem

$$
u^{\prime \prime \prime}=\tilde{f}\left(t, u, u^{\prime}, u^{\prime \prime}\right),
$$

has at least one solution $u_{p} \in A C^{2}(\langle 0, a+p\rangle)$ satisfying (18), (28)-(34) and so u_{p} is also a solution of $(1),(3),(17)$ on $\langle 0, a+p\rangle$. The last part of this proof is the same as in the proof of Theorem 1.

Proof of Theorem 4. The difference between the assumptions of Theorems 1 and 4 is only in the boundedness of x_{2}. So we can prove Theorem 4 in the same way as Theorem 1 because the boundedness of u^{\prime}, where u is a solution of (1), (3), (17), follows from (φ).

Proof of Theorem 5. Similarly as in the proof of Theorem 1 we can obtain a solution u of (1), (3), (17) satisfying (18). From ($\varphi 5$), (15) and (18) it follows that

$$
\begin{equation*}
0 \leqq u(t) \leqq r \quad \text { for } \quad 0 \leqq t \leqq a+p, \quad 0 \leqq u^{\prime \prime}(t) \leqq r \quad \text { for } \quad 0 \leqq t \leqq a \tag{37}
\end{equation*}
$$

Using Lemma 2 and taking into account (18), (37) $\left|u^{\prime}(t)\right| \leqq r_{1}$ for $0 \leqq t \leqq a+p$, where $r_{1}=r / a+2 r$. Now we can proceed as in the proof of Theorem 1.

Proof of Theorem 6. Similarly as in the proof of Theorem 1 we can obtain a solution u of (1), (3), (17) satisfying (18). From ($\varphi 6$), (13) and (18) it follows that

$$
0 \geqq u^{\prime}(t) \geqq-r \text { for } 0 \leqq t \leqq a+p, \quad 0 \leqq u^{\prime \prime}(t) \leqq r \text { for } 0 \leqq t \leqq a .
$$

Analogously as in the proof of Theorem 3 we choose $c_{0} \in(r, \infty)$ and a function δ_{0} and get the estimate (32). Now we can proceed as in the proof of Theorem 1.

Proof of Theorem 7. Similarly as in the proof of Theorem 1 we obtain a solution u of (1), (3), (17) satisfying (18). From ($\varphi 7$), (15) and (18) it follows that

$$
\begin{aligned}
& 0 \leqq u(t) \leqq r, \quad-r \leqq u^{\prime}(t) \leqq 0 \text { for } 0 \leqq t \leqq a+p, \\
& 0 \leqq u^{\prime \prime}(t) \leqq r \text { for } 0 \leqq t \leqq a .
\end{aligned}
$$

As in the proof of Theorem 1 we obtain from (10) the estimate $0 \leqq u^{\prime \prime}(t) \leqq \varrho(t)$ for $a \leqq t \leqq a+p$, where

$$
\varrho(t)=\Omega^{-1}\left(\Omega(r)+\alpha r+\left(r^{k_{1}}+r^{k_{2}}+1\right) \int_{a}^{t} \sum_{i=0}^{2} h_{i}(\tau) \mathrm{d} \tau\right) .
$$

The rest of the proof is analogous to that of Theorem 1.

References

[1] T. А. Чантурия: О задаче типа Кнезера для системы обыкновенных дифференциальных уравнений. Матем. заметки, 15 (1974), 897-906.
[2] T. A. Чанпурия: О монотонных решениях системы нелинейных дифференциальных уравнений. Аннал. Полон. Мат., 37 (1980), 59-70.
[3] P. Hartman, A. Wintner: On monotone solutions of systems of nonlinear differential equations. Amer. Journ. of Math., 76 (1954), 860-866.
[4] I. T. Kiguradze: On monotone solutions of nonlinear ordinary differential equations of order n. Izv. Akad. Nauk SSSR, ser. mat., 33 (1969), 1293-1317.
[5] И. Т. Кигурадзе: Некоторые сингулярные краевые задачи для обыкновенных дифференциальных уравнений. ИТУ Тбилиси, 1975.
[6] И. Т. Кигурадзе, И. Рахункова: О разрешимости нелинейной задачи типа Кнезера, Дифф. yp. 15 (1979), 1754-1765.
[7] I. T. Kiguradze, I. Rachünková: On a certain non-linear problem for two-dimensional differential systems. Arch. Math. (Brno), 16 (1980), 15-38.
[8] И. Рахуикова: О задаче Кнезера для систем обыкновенных дифференциальных уравнений. Сообщ. Акад. Наук ГССР 94 (1979), 545-548.
[9] I. Rachünkova: On Kneser problem for systems of nonlinear ordinary differential equations, Czechoslovak Math. J., 31 (106) (1981), 114-126.
[10] И. Рахункова: Об одной нелинейной задаче для дифференциьлных систем n-го порядка, Czechoslovak Math. J., 34 (109) (1984), 285-297.
[11] I. Rachünková: On a nonlinear problem for third order differential equations (to appear).
[12] I. Rachünková: Nonnegative nonincreasing solutions of differential equations of the 3rd order (to appear).

Souhrn

KNESEROVA ÚLOHA PRO DIFERENCIÁLNÍ ROVNICE 3. ŘÁDU

Irena Rachůnková

V práci jsou nalezeny postačující podmínky pro existenci řešení u nelineární diferenciální rovnice 3. ̌̌ádu, spln̆ujícího podmínky $u(t) \geqq 0, u^{\prime}(t) \leqq 0, u^{\prime \prime}(t) \geqq 0$ pro $t \in\langle 0, \infty)$ a $\varphi(u(0)$, $\left.u^{\prime}(0), u^{\prime \prime}(0)\right)=0$, kde φ je spojitá funkce.

Резюме
 ЗАДАЧА КНЕЗЕРА ДЛЯ ДИФФЕРЕНЦИАЛЬНОГО УРАВНЕНИЯ 3-ГО ПОРЯДКА Irena Rachưnková

В работе приведены достаточные условия для существования решения u нелинейного дифференциального уравнения третьего порядка, удовлетворяющего условиям $u(t) \geqq 0$, $u^{\prime}(t) \leqq 0, u^{\prime \prime}(t) \geqq 0$ для $t \in\langle 0, \infty)$ и $\varphi\left(u(0), u^{\prime}(0), u^{\prime \prime}(0)\right)=0$, где φ - непрерывная функция.

Author's address: Přírodovědecká fakulta UP, Gottwaldova 15, 77146 Olomouc.

