Časopis pro pěstování matematiky

Elena Brožíková
On 3-basic quasigroups and their congruences

Časopis pro pěstování matematiky, Vol. 115 (1990), No. 1, 38--47
Persistent URL: http://dml.cz/dmlcz/108729

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

ON 3-BASIC QUASIGROUPS AND THEIR CONGRUENCES

Elena Brožíková, Praha

(Received July 13, 1987)

Summary. A subgroup \mathbf{G} of the full autotopy group of a given 3-basic quasigroup \mathbf{Q} is said to be special if its component groups $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ form a 3-basic quasigroup ($\Gamma_{1}, \Gamma_{2}, \Gamma_{3} ; *$), where $\alpha * \beta=\gamma \Leftrightarrow(\alpha, \beta, \gamma) \in \mathbf{G}$ for $\alpha \in \Gamma_{1}, \beta \in \Gamma_{2}, \gamma \in \Gamma_{3}$.

In this paper a one-to-one correspondence between special subgroups \mathbf{G} and normal congruences \boldsymbol{Q} of a given 3-basic quasigroup \mathbf{Q} is proved.

Keywords: 3-basic quasigroup, autotopy, normal congruence, special autotopy group, $(n+1)$ basic quasigroup.

AMS Classification: 20 N05.
V. A. Beglarjan proved in [1] that every normal subgroup Γ of the associated group Q_{τ} of a given quasigroup (Q, \cdot) induces a normal congruence R^{Γ}, and their corresponding decompositions fulfil $Q / R^{\Gamma}=Q / \Gamma$. Conversely, every normal congruence ϱ on a quasigroup (Q, \cdot) induces a normal subgroup $\Gamma^{\boldsymbol{e}}$ of the associated group Q_{τ} of (Q, \cdot) such that the decomposition Q / Γ^{ϱ} is a refinement of the decomposition Q / ϱ. Further, every normal congruence ϱ on a quasigroup $\left(Q,^{\cdot}\right)$ admits a refinement ϱ^{\prime} such that $Q / \varrho^{\prime}=Q / \Gamma^{\varrho} \leqq Q / \varrho$.

If we have a 3 -basic quasigroup it is impossible to define an associated group. In the present paper we introduce as a certain compensation the connection between "special" subgroups of the full autotopy group of a given 3-basic quasigroup on one side and normal congruences of this quasigroup on the other side.

1. PRELIMINARIES

The quadruple $\left(Q_{1}, Q_{2}, Q_{3} ; A\right)$, where Q_{1}, Q_{2}, Q_{3} are non-void sets with the same cardinality and A is a map of $Q_{1} \times Q_{2}$ onto Q_{3} is called a 3-basic quasigroup if in the equation $A\left(a_{1}, a_{2}\right)=a_{3}$ any two of the elements $a_{1} \in Q_{1}, a_{2} \in Q_{2}, a_{3} \in Q_{3}$ uniquely determine the remaining one. If $Q_{1}=Q_{2}=Q_{3}$ we get a usual quasigroup. The triple of maps $\tau_{i}: Q_{i} \rightarrow Q_{i}^{\prime}, i=1,2,3$, is called a homotopy with components $\tau_{1}, \tau_{2}, \tau_{3}$ of a 3-basic quasigroup $\left(Q_{1}, Q_{2}, Q_{3} ; A\right)$ into a 3-basic quasigroup $\left(Q_{1}^{\prime}, Q_{2}^{\prime}\right.$, $\left.\boldsymbol{Q}_{3}^{\prime} ; A^{\prime}\right)$ if $\tau_{3} A\left(a_{1}, a_{2}\right)=A^{\prime}\left(\tau_{1} a_{1}, \tau_{2} a_{2}\right)$ for all $a_{1} \in Q_{1}, a_{2} \in Q_{2}$. If in particular $\boldsymbol{Q}_{1}=\boldsymbol{Q}_{2}=\boldsymbol{Q}_{3}, \boldsymbol{Q}_{1}^{\prime}=\boldsymbol{Q}_{2}^{\prime}=Q_{3}^{\prime}$ and $\tau_{1}=\tau_{2}=\tau_{3}$ we obtain a quasigroup homo-
morphism. A homotopy with bijective components is called an isotopy and an isotopy of $\left(Q_{1}, Q_{2}, Q_{3} ; A\right)$ onto itself is called an autotopy. The set of all autotopies $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ of a given 3-basic quasigroup forms a group under the composition \circ :

$$
\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \circ\left(\varphi_{1}^{\prime}, \varphi_{2}^{\prime} \varphi_{3}^{\prime}\right)=\left(\varphi_{1} \circ \varphi_{1}^{\prime}, \varphi_{2} \circ \varphi_{2}^{\prime}, \varphi_{3} \circ \varphi_{3}^{\prime}\right)
$$

This group is called a full autotopy group.
Let $\left(Q_{1}, Q_{2}, Q_{3} ; A_{3}\right)$ be a 3-basic quasigroup. Since any two of the elements a_{1}, a_{2}, a_{3} in the equation $A_{3}\left(a_{1}, a_{2}\right)=a_{3}$ uniquely determine the remaining one, we can define operations

$$
A_{2}\left(a_{3}, a_{1}\right)=a_{2}, \quad A_{1}\left(a_{2}, a_{3}\right)=a_{1}
$$

which are analogous to the left and right inverse operations of a usual quasigroup. Then

$$
A_{i}\left(A_{j}\left(a_{k}, a_{i}\right), A_{k}\left(a_{i}, a_{j}\right)\right)=a_{i}
$$

is fulfilled for $(i, j, k)=(1,2,3),(2,3,1),(3,1,2)$. Moreover, $\left(Q_{2}, Q_{3}, Q_{1} ; A_{1}\right)$ and $\left(Q_{3}, Q_{1}, Q_{2} ; A_{2}\right)$ are also 3-basic quasigroups which are called cyclic parastrophes of $\left(Q_{1}, Q_{2}, Q_{3} ; A_{3}\right)$.

In the sequel we shall use symbols $\mathbf{Q}, \mathbf{Q}^{\prime}$ as the notation for 3-basic quasigroups $\left(Q_{1}, Q_{2}, Q_{3} ; A\right),\left(Q_{1}^{\prime}, Q_{2}^{\prime}, Q_{3}^{\prime} ; A^{\prime}\right)$, respectively.

A congruence in a 3-basic quasigroup \mathbf{Q} is a triple of equivalence relations ϱ_{i} of Q_{i}, $i=1,2,3$, such that
(i) $x \varrho_{1} y \Rightarrow A(x, z) \varrho_{3} A(y, z)$ for all $z \in Q_{2}$,
(ii) $x \varrho_{2} y \Rightarrow A(z, x) \varrho_{3} A(z, y)$ for all $z \in Q_{1}$.

A congruence $\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right)$ of \mathbf{Q} is said to be normal if
(iii) $A(x, z) \varrho_{3} A(y, z) \Rightarrow x \varrho_{1} y$ for $x, y \in Q_{1}$ and $z \in Q_{2}$,
(iv) $A(z, x) \varrho_{3} A(z, y) \Rightarrow x \varrho_{2} y$ for $x, y \in Q_{2}$ and $z \in Q_{1}$.

In the definition of normal congruence we can combine conditions (i) and (ii) to
(I) $x_{1} \varrho_{1} y_{1}, x_{2} \varrho_{2} y_{2} \Rightarrow A\left(x_{1}, x_{2}\right) \varrho_{3} A\left(y_{1}, y_{2}\right)$ for $x_{1}, y_{1} \in Q_{1}$ and $x_{2}, y_{2} \in Q_{2}$, and conditions (iii) and (iv) to
(II) if $A\left(x_{1}, x_{2}\right) \varrho_{3} A\left(y_{1}, y_{2}\right)$, then $x_{1} \varrho_{1} y_{1} \Leftrightarrow x_{2} \varrho_{2} y_{2}$ for $x_{1}, y_{1} \in Q_{1}$ and $x_{2}, y_{2} \in Q_{2}$.

The connection between homotopies of a given 3-basic quasigroup and its normal congruences is well-known ([3]). Let $\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ be a homotopy of a 3-basic quasigroup \mathbf{Q} onto a 3-basic quasigroup \mathbf{Q}^{\prime}. Then we can define equivalence relations

$$
R^{\tau_{i}} \subseteq Q_{i} \times Q_{i} \quad \text { by } \quad x R^{\tau_{i}} y \Leftrightarrow \tau_{i} x=\tau_{i} y, \quad i=1,2,3
$$

We shall show that $\left(R^{\tau_{1}}, R^{\tau_{2}}, R^{\tau_{3}}\right)$ is a normal congruence on \mathbf{Q}.
(i) For $x, y \in Q_{1}$ let $x R^{\tau_{1}} y \Leftrightarrow \tau_{1} x=\tau_{1} y$, then $\tau_{3} A(x, z)=A^{\prime}\left(\tau_{1} x, \tau_{2} z\right)=$ $=A^{\prime}\left(\tau_{1} y, \tau_{2} z\right)=\tau_{3} A(y, z) \Rightarrow A(x, z) R^{\tau_{3}} A(y, z)$ for all $z \in Q_{2}$.
(ii) For $x, y \in Q_{2}$ let $x R^{\tau_{2}} y \Leftrightarrow \tau_{2} x=\tau_{2} y$, then $\tau_{3} A(z, x)=A^{\prime}\left(\tau_{1} z, \tau_{2} x\right)=$ $=A^{\prime}\left(\tau_{1} z, \tau_{2} y\right)=\tau_{3} A(z, y) \Rightarrow A(z, x) R^{\tau_{3}} A(z, y)$ for all $z \in Q_{1}$.
(iii) Let $A(x, z) R^{\tau_{3}} A(y, z) \Leftrightarrow \tau_{3} A(x, z)=\tau_{3} A(y, z)$, then $A^{\prime}\left(\tau_{1} x, \tau_{2} z\right)=$ $=A^{\prime}\left(\tau_{1} y, \tau_{2} z\right) \Rightarrow \tau_{1} x=\tau_{1} y \Rightarrow x R^{\tau_{1}} y$ for all $z \in Q_{2}$ and $x, y \in Q_{1}$.
(iv) Let $A(z, x) R^{\tau_{3}} A(z, y) \Leftrightarrow \tau_{3} A(z, x)=\tau_{3} A(z, y)$, then $A^{\prime}\left(\tau_{1} z, \tau_{2} x\right)=$ $=A^{\prime}\left(\tau_{1} z, \tau_{2} y\right) \Rightarrow \tau_{2} x=\tau_{2} y \Rightarrow x R^{\tau_{2}} y$ for all $z \in Q_{1}$ and $x, y \in Q_{2}$.

Conversely, every normal congruence ($\varrho_{1}, \varrho_{2}, \varrho_{3}$) on a 3-basic quasigroup \mathbf{Q} determines a homotopy of \mathbf{Q} onto a convenient 3-basic quasigroup \mathbf{Q}^{\prime}. Let $\varrho=$ $=\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right)$ be a congruence on $\mathbf{Q}=\left(Q_{1}, Q_{2}, Q_{3} ; \cdot\right)$ and let

$$
C_{a}^{\rho_{t} t}=\left\{x \in Q_{i} ; x \varrho_{i} a\right\}
$$

be an element of the decomposition Q_{i} / ϱ_{i} for $a \in Q_{i}, i=1,2,3$. Clearly $b \in C_{a}^{e i} \Rightarrow$ $\Rightarrow C_{a}^{e_{t}}=C_{b}^{e_{t}}$ and $b \notin C_{a}^{e_{t}} \Rightarrow C_{a}^{e_{i}} \cap C_{b}^{Q_{t}}=\emptyset$. Define a map $\odot:\left(Q_{1} / \varrho_{1}\right) \times\left(Q_{2} / \varrho_{2}\right) \rightarrow$ $\rightarrow\left(Q_{3} / Q_{3}\right)$ by

$$
\begin{equation*}
C_{x}^{e_{1}} \odot C_{y}^{e_{2}}=C_{x . y}^{e_{3}} \text { for all } x \in Q_{1}, y \in Q_{2} \tag{1}
\end{equation*}
$$

This map is independent of the choice of x, y because if $C_{x}^{e_{1}}=C_{x^{\prime}}^{e_{1}}$ and $C_{y}^{e_{2}}=C_{y^{\prime}}^{e_{2}}$, then $C_{x, y}^{e_{3} 3}=C_{x^{\prime}, y^{\prime}}^{e_{3}}$ for all $x, x^{\prime} \in Q_{1}$ and $y, y^{\prime} \in Q_{2}$. If $\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right)$ is a normal congruence, then $\left(Q_{1} / \varrho_{1}, Q_{2} / \varrho_{2}, Q_{3} / \varrho_{3} ; \odot\right)$ is a 3-basic quasigroup. We need to verify that every equation
(2)

$$
C_{a}^{e_{1}} \odot C_{y}^{e_{2}}=C_{c}^{e_{3}}, \quad a \in Q_{1}, y \in Q_{2}, c \in Q_{3}
$$

and every equation

$$
C_{x}^{Q_{1}} \odot C_{b}^{e_{2}}=C_{c}^{e_{3}}, \quad x \in Q_{1}, b \in Q_{2}, c \in Q_{3}
$$

are uniquely solvable by $C_{y}^{e_{2}} \in Q_{2} / \varrho_{2}$ and $C_{x}^{e_{1}} \in Q_{1} / \varrho_{1}$, respectively.
We have $C_{a}^{e_{1}} \odot C_{y}^{e_{2}}=C_{a . y}^{e_{3}}=C_{c}^{e_{3}}$ and consequently $(a . y) \varrho_{3} c$. Let $y=b$ be the unique solution of the equation $a . y=c$ and let $y=b^{\prime}$ be a solution of the relation $(a . y) \varrho_{3} c$. Then $(a . b) \varrho_{3} c,\left(a . b^{\prime}\right) \varrho_{3} c$ and consequently $(a . b) \varrho_{3}\left(a . b^{\prime}\right) \Rightarrow b \varrho_{2} b^{\prime} \Rightarrow$ $\Rightarrow C_{b}^{e_{2}}=C_{b^{2}}^{\rho_{2}}$. (Here we have used the fact that $\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right)$ is a normal congruence.)

The equation (2') can be discussed similarly.
The quasigroup $\mathbf{Q} / \varrho=\left(Q_{1} / \varrho_{1}, Q_{2} / \varrho_{2}, Q_{3} / \varrho_{3} ; \odot\right)$ is called the factor-quasigroup of \mathbf{Q} under ϱ. The maps $\tau_{i}: Q_{i} \rightarrow Q_{i} / \varrho_{i}$ defined by $\tau_{i} a=C_{a}^{e_{i}}, i=1,2,3$, satisfy

$$
\tau_{3}(x, y)=C_{x \cdot y}^{e_{3}}=C_{x}^{e_{1}} \odot C_{y}^{e_{2}}=\left(\tau_{1} x\right) \odot\left(\tau_{2} y\right)
$$

Consequently, $\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ is a homotopy of \mathbf{Q} onto \mathbf{Q} / ϱ.
We shall still prove that

$$
\begin{equation*}
x \cdot C_{y}^{e_{2}}=C_{x}^{e_{1}} \cdot y=C_{x \cdot y}^{e_{3}} \text { for all } x \in Q_{1}, y \in Q_{2} \tag{3}
\end{equation*}
$$

Let us take an arbitrary element $z \in x . C_{y}^{e_{2}}$ and let $b \in Q_{2}$ be another element satisfying the equation $z=x . b$. Then

$$
\tau_{3} z=\tau_{3}(x . b)=\left(\tau_{1} x\right) \odot\left(\tau_{2} b\right)=\left(\tau_{1} x\right) \odot\left(\tau_{2} y\right)=\tau_{3}(x \cdot y) \Rightarrow
$$

$z \varrho_{3}(x, y)$ and thus $z \in C_{x . y}^{e_{3}}$. Similarly, choose $z \in C_{x \cdot y}^{e_{3}}$, then $z \varrho_{3}(x, y)$ and $\tau_{3} z=$
$=\tau_{3}(x, y)=\left(\tau_{1} x\right) \odot\left(\tau_{2} y\right)=\left(\tau_{1} x\right) \odot\left(\tau_{2} b\right)=\tau_{3}(x . b)$ and $z \varrho_{3}(x . b)$ for all $b \in C_{y}^{e 2}$, thus $z \in x . C_{y}^{e_{2}}$ and $x . C_{y}^{e_{2}}=C_{x . y}^{e_{3}}$.

It can be verified analogously that $C_{x}^{e_{1}} . y=C_{x . y}^{e_{3}}$ for all $x \in Q_{1}, y \in Q_{2}$.

2. AUTOTOPIES

Let $\mathbf{Q}=\left(Q_{1}, Q_{2}, Q_{3} ; \cdot\right)$ be a 3-basic quasigroup, Π_{i} the full permutation group of $Q_{i}, i=1,2,3$, and $\mathscr{A}(\mathbf{Q})$ the full autotopy group of \mathbf{Q}. Starting from subgroups Γ_{1} of Π_{1} and Γ_{2} of Π_{2} we introduce Γ_{3} by

$$
\begin{gather*}
\Gamma_{3}=\left\{\varphi_{3} \in \Pi_{3} ; \varphi_{1} x . \varphi_{2} y=\varphi_{3}(x, y) \text { for all } x \in Q_{1}, y \in Q_{2},\right. \tag{4}\\
\left.\varphi_{1} \in \Gamma_{1}, \varphi_{2} \in \Gamma_{2}\right\} .
\end{gather*}
$$

Clearly $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \in \mathscr{A}(\mathbf{Q})$.
Lemma 1. Γ_{3} defined by (4) together with the map composition \circ is a subgroup of Π_{3}.

Proof. Clearly $e_{1}=i d_{Q_{1}} \in \Gamma_{1}, e_{2}=i d_{Q_{2}} \in \Gamma$ and by (4), $e_{3}=i d_{Q_{3}} \in \Gamma_{3}$. Now let $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right),\left(\varphi_{1}^{\prime}, \varphi_{2}^{\prime}, \varphi_{3}^{\prime}\right) \in \mathscr{A}(\mathbf{Q}) ; \varphi_{1}, \varphi_{1}^{\prime} \in \Gamma_{1} ; \varphi_{2}, \varphi_{2}^{\prime} \in \Gamma_{2}$, then $\varphi_{1}\left(\varphi_{1}^{\prime} x\right) . \varphi_{2}\left(\varphi_{2}^{\prime} y\right)=$ $=\varphi_{3}\left(\varphi_{1}^{\prime} x . \varphi_{2}^{\prime} y\right)=\varphi_{3}\left(\varphi_{3}^{\prime}(x . y)\right)$ for all $x \in Q_{1}, y \in Q_{2}$. Since $\varphi_{1} \circ \varphi_{1}^{\prime} \in \Gamma_{1}, \varphi_{2} \circ \varphi_{2}^{\prime} \in$ $\in \Gamma_{2}$ we have also $\varphi_{3} \circ \varphi_{3}^{\prime} \in \Gamma_{3}$. If $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \in \mathscr{A}(\mathbf{Q}), \varphi_{1} \in \Gamma_{1}, \varphi_{2} \in \Gamma_{2}$, then there exist $\varphi_{1}^{-1} \in \Gamma_{1}, \varphi_{2}^{-1} \in \Gamma_{2}$ (as Γ_{1}, Γ_{2} are groups) and $\varphi_{3}^{\prime} \in \Gamma_{3}$ with $\left(\varphi_{1}^{-1}, \varphi_{2}^{-1}, \varphi_{3}^{\prime}\right) \in$ $\in \mathscr{A}(\mathbf{Q})$. Thus $\varphi_{1}^{-1}\left(\varphi_{1} x\right) \cdot \varphi_{2}^{-1}\left(\varphi_{2} y\right)=\varphi_{3}^{\prime}\left(\varphi_{3}(x \cdot y)\right) \Rightarrow x \cdot y=\varphi_{3}^{\prime}\left(\varphi_{3}(x \cdot y)\right) \Rightarrow$ $\Rightarrow \varphi_{3}^{\prime} \circ \varphi_{3}=e_{3} \Rightarrow \varphi_{3}^{\prime}=\varphi_{3}^{-1}$.

Lemma 2. (obvious). All autotopies $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ (just obtained by (4) and said to be admissible) of \mathbf{Q} form a subgroup $G_{1,2}\left(\Gamma_{1}, \Gamma_{2}\right)$ of $\mathscr{A}(\mathbf{Q})$ under the componentwise composition.

Lemma 3. Let $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \in \mathscr{A}(\mathbf{Q})$ be admissible. Then arbitrary two of the components $\varphi_{1}, \varphi_{2}, \varphi_{3}$ determine uniquely the remaining one.

Proof. Let us choose φ_{1}, φ_{3} and suppose that there exist φ_{2} and φ_{2}^{\prime} such that $\varphi_{1} x . \varphi_{2} y=\varphi_{3}(x . y)$ and $\varphi_{1} x . \varphi_{2}^{\prime} y=\varphi_{3}(x . y)$. Then $\varphi_{1} x . \varphi_{2} y=\varphi_{1} x . \varphi_{2}^{\prime} y$ and $\varphi_{2} y=\varphi_{2}^{\prime} y$ for all $y \in Q_{2}, x \in Q_{1} \Rightarrow \varphi_{2}=\varphi_{2}^{\prime}$.

Similarly, if we choose φ_{2}, φ_{3}, then we get a unique φ_{1}.
Thus we can choose Γ_{1}, Γ_{2} arbitrary and obtain the unique corresponding Γ_{3}.
Using the permutations $\left(\begin{array}{lll}1 & 2 & 3 \\ i & j & k\end{array}\right)$ where $(i, j, k)=(1,2,3),(3,1,2),(2,3,1)$, and the corresponding cyclic parastrophes $\left(Q_{i}, Q_{j}, Q_{k} ; A_{k}\right)$, we can start from groups Γ_{i}, Γ_{j} and introduce Γ_{k} by

$$
\begin{gather*}
\Gamma_{k}=\left\{\varphi_{k} \in \Pi_{k} ; A_{k}\left(\varphi_{i} x, \varphi_{j} y\right)=\varphi_{k} A_{k}(x, y) \text { for all } x \in Q_{i}, y \in Q_{j}\right. \tag{5}\\
\left.\varphi_{i} \in \Gamma_{i}, \quad \varphi_{j} \in \Gamma_{j}\right\} .
\end{gather*}
$$

This permits us to choose any two groups of $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ arbitrarily, the remaining one being then uniquely determined by (5). Thus we obtain a subgroup $G_{i, j}\left(\Gamma_{i}, \Gamma_{j}\right)$ of $\mathscr{A}(\mathbf{Q})$.

Remark. Passing from Γ_{1}, Γ_{2} to Γ_{3} by (4) and similarly from $\Gamma_{2}^{\prime}=\Gamma_{2}, \Gamma_{3}^{\prime}=\Gamma_{3}$ to Γ_{1}^{\prime} by (5), we get in general $\Gamma_{1} \neq \Gamma_{1}^{\prime}$, thus $G_{1,2}\left(\Gamma_{1}, \Gamma_{2}\right) \neq G_{2,3}\left(\Gamma_{2}, \Gamma_{3}\right)$.

Now we present several examples.
Example 1. Let $\Gamma_{1}=\left\{e_{1}, \alpha\right\}, \Gamma_{2}=\left\{e_{2}, \beta\right\}$, where $\alpha^{2}=e_{1}, \beta^{2}=e_{2}$. Then by (4), $\Gamma_{3}=\left\{e_{3}, \gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ with the multiplication table

	γ_{1}	γ_{2}	γ_{3}	
γ_{1}	e_{3}	γ_{3}	γ_{2}	
γ_{2}	γ_{3}	e_{3}	γ_{1}	
γ_{3}	γ_{2}	γ_{1}	e_{3}	.

The admissible autotopies are $\left(e_{1}, e_{2}, e_{3}\right),\left(\alpha, e_{2}, \gamma_{1}\right),\left(e_{1}, \beta, \gamma_{2}\right)$ and $\left(\alpha, \beta, \gamma_{3}\right)$. If $\gamma_{3}=e_{3}$, then $\gamma_{1}=\gamma_{2}$ and we obtain

Example 2. $\Gamma_{1}=\left\{e_{1}, \alpha\right\}, \Gamma_{2}=\left\{e_{2}, \beta\right\}, \Gamma_{3}=\left\{e_{3}, \gamma\right\}$ with $\alpha^{2}=e_{1}, \beta^{2}=e_{2}$, $\gamma^{2}=e_{3}$ and with the admissible autotopies $\left(e_{1}, e_{2}, e_{3}\right),\left(\alpha, e_{2}, \gamma\right),\left(e_{1}, \beta, \gamma\right),\left(\alpha, \beta, e_{3}\right)$.

Example 3. Let $\Gamma_{1}=\left\{e_{1}, \alpha\right\}$ and $\Gamma_{2}=\left\{e_{2}, \beta_{1}, \beta_{2}\right\}$, where $\alpha^{2}=e_{1}$ and

	β_{1}	β_{2}	
β_{1}	β_{2}	e_{2}	
β_{2}	e_{2}	β_{1}	.

Then, by (4), Γ_{3} consists of 6 elements $e_{3}, \gamma_{1}, \gamma_{2}, \gamma_{3}, \gamma_{4}, \gamma_{5}$ with the multiplication table.

	γ_{1}	γ_{2}	γ_{3}	γ_{4}	γ_{5}
γ_{1}	γ_{2}	e_{3}	γ_{4}	γ_{5}	γ_{3}
γ_{2}	e_{3}	γ_{1}	γ_{5}	γ_{3}	γ_{4}
γ_{3}	γ_{4}	γ_{5}	e_{3}	γ_{1}	γ_{2}
γ_{4}	γ_{5}	γ_{3}	γ_{1}	γ_{2}	e_{3}
γ_{5}	γ_{3}	γ_{4}	γ_{2}	e_{3}	γ_{1}

The admissible autotopies are $\left(e_{1}, e_{2}, e_{3}\right),\left(e_{1}, \beta_{1}, \gamma_{1}\right),\left(e_{1}, \beta_{2}, \gamma_{2}\right),\left(\alpha, e_{2}, \gamma_{3}\right),\left(\alpha, \beta_{1}, \gamma_{4}\right)$, $\left(\alpha, \beta_{2}, \gamma_{5}\right)$.

We can observe that in Examples 1 and $3 G_{1,2}\left(\Gamma_{1}, \Gamma_{2}\right) \neq G_{2,3}\left(\Gamma_{2}, \Gamma_{3}\right)$, whereas in Example 2

$$
\begin{equation*}
G_{1,2}\left(\Gamma_{1}, \Gamma_{2}\right)=G_{2,3}\left(\Gamma_{2}, \Gamma_{3}\right)=G_{3,1}\left(\Gamma_{3}, \Gamma_{1}\right) \tag{6}
\end{equation*}
$$

holds.
Now we restrict ourselves to the case when (6) is satisfied.
Lemma 4. Let \mathbf{G} be a subgroup of $\mathscr{A}(\mathbf{Q})$ such that

$$
\begin{equation*}
\mathbf{G}=G_{1,2}\left(\Gamma_{1}, \Gamma_{2}\right)=G_{2,3}\left(\Gamma_{2}, \Gamma_{3}\right)=G_{3,1}\left(\Gamma_{3}, \Gamma_{1}\right) . \tag{7}
\end{equation*}
$$

Define a map *: $\Gamma_{1} \times \Gamma_{2} \rightarrow \Gamma_{3}$ by

$$
\begin{equation*}
\alpha * \beta=\gamma \Leftrightarrow(\alpha, \beta, \gamma) \in \mathbf{G} \quad \text { for all } \alpha \in \Gamma_{1}, \beta \in \Gamma_{2} . \tag{8}
\end{equation*}
$$

Then $\left(\Gamma_{1}, \Gamma_{2}, \Gamma_{3} ; *\right)$ is a 3-basic quasigroup.
Proof. If we choose any two elements of $\alpha \in \Gamma_{1}, \beta \in \Gamma_{2}, \gamma \in \Gamma_{3}$, then by (5) and (7) there exists a third element such that $(\alpha, \beta, \gamma) \in \mathbf{G}$, and by Lemma 3 this element is unique.

We say that the subgroup \mathbf{G} of $\mathscr{A}(\mathbf{Q})$ is special if its component groups $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ with the binary operation $*: \Gamma_{1} \times \Gamma_{2} \rightarrow \Gamma_{3}$ defined by (8) form a 3-basic quasigroup $\left(\Gamma_{1}, \Gamma_{2}, \Gamma_{3} ; *\right)$.

3. CONGRUENCES

Let $\mathbf{Q}=\left(Q_{1}, Q_{2}, Q_{3} ; \cdot\right)$ be a 3-basic quasigroup, \mathbf{G} a subgroup of $\mathscr{A}(\mathbf{Q})$ and $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ component groups of \mathbf{G}.

Lemma 5. $\left\{\Gamma_{i}(x) ; x \in Q_{i}\right\}$ is a decomposition of $Q_{i}, i=1,2,3$.
Proof. For all $x \in Q_{i}$ we trivially have $x \in \Gamma_{i}(x)$, because $e_{i}=i d_{Q_{i}} \in \Gamma_{i}, e_{i} x=x$. We need to prove that $\Gamma_{i}(x) \cap \Gamma_{i}(y) \neq \emptyset$ implies $\Gamma_{i}(x)=\Gamma_{i}(y), x, y \in Q_{i}$. If $z \in$ $\in \Gamma_{i}(x) \cap \Gamma_{i}(y)$, then there exist $\alpha, \beta \in \Gamma_{i}$ such that $z=\alpha x, z=\beta y$ and therefore $\Gamma_{i}(z) \subseteq \Gamma_{i}(x), \Gamma_{i}(z) \subseteq \Gamma_{i}(y) ;$ at the same time there exist $\alpha^{-1}, \beta^{-1} \in \Gamma_{i}$ such that $x=\alpha^{-1} z, y=\beta^{-1} z$, thus $\Gamma_{i}(x) \subseteq \Gamma_{i}(z), \Gamma_{i}(y) \subseteq \Gamma_{i}(z)$. This yields $\Gamma_{i}(x)=\Gamma_{i}(z)=$ $=\Gamma_{i}(y)$.

Now we can define for every $i=1,2,3$ an equivalence relation $R^{\Gamma_{i}}$ on Q_{i} by

$$
\begin{equation*}
x R^{\Gamma_{i}} y \Leftrightarrow \Gamma_{i}(x)=\Gamma_{i}(y) \text { for } x, y \in Q_{i} \tag{9}
\end{equation*}
$$

Theorem 1. $\left(R^{\Gamma_{1}}, R^{\Gamma_{2}}, R^{\Gamma_{3}}\right)$ defined by (9) is a congruence on \mathbf{Q} if $\mathbf{G}=G_{1,2}\left(\Gamma_{1}, \Gamma_{2}\right)$.
Proof. We must prove

$$
x_{1} R^{\Gamma_{1}} y_{1}, x_{2} R^{\Gamma_{2}} y_{2} \Rightarrow\left(x_{1} \cdot x_{2}\right) R^{\Gamma_{3}}\left(y_{1} \cdot y_{2}\right)
$$

When $x_{i} R^{\Gamma_{i}} y_{i}$, then $\Gamma_{i}\left(x_{i}\right)=\Gamma_{i}\left(y_{i}\right)$ and there exists $\varphi_{i} \in \Gamma_{i}$ such that $y_{i}=\varphi_{i} x_{i}$ ($i=1,2$) and

$$
y_{1} \cdot y_{2}^{\prime}=\varphi_{1} x_{1} \cdot \varphi_{2} x_{2} \stackrel{(4)}{=} \varphi_{3}\left(x_{1} \cdot x_{2}\right) \Rightarrow y_{1} \cdot y_{2} \in \Gamma_{3}\left(x_{1} \cdot x_{2}\right)
$$

By Lemma 5 we get $\Gamma_{3}\left(x_{1}, x_{2}\right)=\Gamma_{3}\left(y_{1}, y_{2}\right) \Rightarrow\left(x_{1}, x_{2}\right) R^{\Gamma_{3}}\left(y_{1}, y_{2}\right)$.
Theorem 2. Every special autotopy group \mathbf{G} of a 3-basic quasigroup \mathbf{Q} uniquely determines a normal congruence on \mathbf{Q}.

Proof. By the definition of a special autotopy group $\mathbf{G}=G_{1,2}\left(\Gamma_{1}, \Gamma_{2}\right)=$ $=G_{3,1}\left(\Gamma_{3}, \Gamma_{1}\right)=G_{2,3}\left(\Gamma_{2}, \Gamma_{3}\right)$ and by Theorem 1, the triple $\left(R^{\Gamma_{1}}, R^{\Gamma_{2}}, R^{\Gamma_{3}}\right)$ defined by (9) is a congruence. It remains to prove that this congruence is normal.
a) If $(x: z) R^{\Gamma_{3}}(y . z)$ for $x, y \in Q_{1}, z \in Q_{2}$, then $\Gamma_{3}(x . z)=\Gamma_{3}(y . z)$ and there exists $\varphi_{3} \in \Gamma_{3}$ such that $x . z=\varphi_{3}(y . z)$. When we choose $\varphi_{2}=i d_{Q_{2}}$, then there exists a unique $\varphi_{1} \in \Gamma_{1}\left(\mathbf{G}\right.$ is special) such that $x . z=\varphi_{3}(y . z)=\varphi_{1} y . z$. Thus $x=\varphi_{1} y$ and $x R^{\Gamma_{1}} y$.
b) If $(z . x) R^{\Gamma_{3}}(z . y)$ for $z \in Q_{1}, x, y \in Q_{2}$, then $\Gamma_{3}(z . x)=\Gamma_{3}(z . y)$ and $z . x=$ $=\varphi_{3}(z \cdot y)$ for $\varphi_{3} \in \Gamma_{3}$. If we choose $\varphi_{1}=i d_{Q_{1}}$, then there exists a unique $\varphi_{2} \in \Gamma_{2}$ such that $z \cdot x=\varphi_{3}(z \cdot y)=z \cdot \varphi_{2} y$. Thus $x=\varphi_{2} y$ and $x R^{\Gamma_{2}} y$.

Now we shall prove the converse theorem.
Theorem 3. Let $\varrho=\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right)$ be a congruence on a 3-basic quasigroup $\mathbf{Q}=$ $=\left(Q_{1}, Q_{2}, Q_{3}\right)$. Then for every $i=1,2,3$,

$$
\begin{equation*}
\Gamma_{i}=\left\{\varphi \in \Pi_{i} ; C_{\varphi x}^{Q_{i}}=C_{x}^{e_{i}} \text { for all } x \in Q_{i}\right\} \tag{10}
\end{equation*}
$$

forms a subgroup of Π_{i} and $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ are components of an autotopy group $\mathbf{G}=G_{1,2}\left(\Gamma_{1}, \Gamma_{2}\right)$. If $\varrho=\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right)$ is a normal congruence on \mathbf{Q}, then $\mathbf{G}=$ $=G_{1,2}\left(\Gamma_{1}, \Gamma_{2}\right)$ is a special autotopy group on \mathbf{Q}.

Proof. a) It follows from (10) that $\Gamma_{i}(x)=C_{x}^{e_{i}}$. Consequently, Γ_{i} is transitive on $C_{x}^{e_{i}}$. It is clear that $\mathrm{id}_{Q_{1}} \in \Gamma_{i}$. If $\varphi, \varphi^{\prime} \in \Gamma_{i}$, then $C_{\varphi x}^{e_{i}}=C_{x}^{Q_{i}}=C_{\varphi^{\prime} x}^{e_{i}}$ and $C_{\varphi^{\prime}(\varphi x)}^{e_{i}}=$ $=C_{\varphi x}^{\rho_{i}}=C_{x}^{e_{i}} \Rightarrow \varphi^{\prime} \circ \varphi \in \Gamma_{i}$. If $\varphi \in \Gamma_{i}$, then $C_{x}^{e_{i}}=C_{\varphi x}^{e_{i}}$ for $x \in Q_{i}$ and there exists $y \in Q_{i}$ such that $y \varrho_{i} x$ and $\varphi x=y$. Since φ is a permutation there is $\varphi^{-1} \in \Pi_{i}$ such that $x=\varphi^{-1} y$ and $C_{x}^{e_{i}}=C_{\varphi^{-1}}^{e_{i}}, C_{y}^{e_{i}}=C_{x}^{e_{i}}=C_{\varphi^{-1} y}^{e_{i}} \Rightarrow \varphi^{-1} \in \Gamma_{i}$. Thus we have proved that each Γ_{i} forms a subgroup of $\Pi_{i}, i=1,2,3$.
b) Now we shall prove that $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ are components of an autotopy group $\mathbf{G}=G_{1,2}\left(\Gamma_{1}, \Gamma_{2}\right)$. We need to prove that every two elements $\varphi_{1} \in \Gamma_{1}, \varphi_{2} \in \Gamma_{2}$ uniquely determine $\varphi_{3} \in \Gamma_{3}$ such that $\varphi_{1} x . \varphi_{2} y=\varphi_{3}(x . y)$ for all $x \in Q_{1}, y \in Q_{2}$. Let $\varphi_{1} \in \Gamma_{1} . \varphi_{2} \in \Gamma_{2}$, then for any $x \in Q_{1}$ and $y \in Q_{2}$ we have $C_{x . y}^{e_{3}}=C_{x}^{e_{1}} \odot C_{y}^{e_{2}}=$ $=C_{\varphi_{1} x}^{e_{1}} \odot C_{\varphi_{2} y}^{e_{2}}=C_{\varphi_{1} x . \varphi_{2} y}^{e_{3}}$ and $(x . y) \varrho_{3}\left(\varphi_{1} x . \varphi_{2} y\right)$. We know that every congruence relation is always reflexive and therefore for some $z \in Q_{3}$ we get $\varphi_{1} x . \varphi_{2} y=z$ and $C_{z}^{e_{3}}=C_{x . y}^{e_{3}}$. The transitivity of Γ_{3} on $C_{x . y}^{e_{3}}$ implies that there exists $\varphi_{3} \in \Gamma_{3}$ with $z=\varphi_{3}(x, y) \Rightarrow \varphi_{1} x . \varphi_{2} y=\varphi_{3}(x, y) \Rightarrow\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ is an autotopy on \mathbf{Q}.
c) Let $\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right)$ be a normal congruence on \mathbf{Q}. We must prove that every two elements of $\varphi_{1} \in \Gamma_{1}, \varphi_{2} \in \Gamma_{2}, \varphi_{3} \in \Gamma_{3}$ uniquely determine the remaining one such that $\varphi_{1} x . \varphi_{2} y=\varphi_{3}(x . y)$ for all $x \in Q_{1}, y \in Q_{2}$. If $\varphi_{1} \in \Gamma_{1}, \varphi_{3} \in \Gamma_{3}$, then for $x \in Q_{1}$, $y \in Q_{2}$ we have $C_{x}^{e_{1}}=C_{\varphi_{1} x}^{e_{1}}, C_{x . y}^{e_{3}}=C_{\varphi_{3}(x . y)}^{e_{3}}, C_{x . y}^{e_{3}}=C_{x}^{e_{1}} \odot C_{y}^{e_{2}}=C_{\varphi_{1} x}^{e_{1}} \odot C_{y}^{e_{2}}=$ $=C_{\varphi_{1} x . y}^{e_{3}}=C_{\varphi_{3}(x, y)}^{e_{3}}$ and $\left(\varphi_{1} x . y\right) \varrho_{3} \varphi_{2}(x . y)$. The reflexivity of ϱ_{3} implies that there exists an element $y^{\prime} \in Q_{2}$ such that that $\varphi_{1} x . y^{\prime}=\varphi_{3}(x . y)$ and $C_{\varphi_{3}(x, y)}^{e_{3}}=C_{\varphi_{1} x}^{e_{1}} \odot$ $\odot C_{y^{\prime}}^{e_{2}}$. Since simultaneously $C_{\varphi_{3}(x . y)}^{e_{3}}=C_{\varphi_{1} x}^{e_{1}} \odot C_{y}^{e_{2}}$, we obtain $C_{y}^{e_{2}}=C_{y^{\prime}}^{e_{2}}$. Here we have used the fact that $\left(\varrho_{1}, \varrho_{2}, \varrho_{3}\right)$ is a normal congruence. Now the transitivity of Γ_{2} on $C_{y}^{\rho_{2}}$ yields the existence of $\varphi_{2} \in \Gamma_{2}$ with $y^{\prime}=\varphi_{2} y$. Thus $\varphi_{3}(x . y)=\varphi_{1} x . \varphi_{2} y$.

Similarly, if $\varphi_{2} \in \Gamma_{2}, \varphi_{3} \in \Gamma_{3}$, then for $x \in Q_{1}, y \in Q_{2}$ we have $C_{y}^{e_{2}}=C_{\varphi_{2} y}^{e_{2}}$, $C_{x, y}^{e_{3}}=C_{\varphi_{3}(x . y)}^{e_{3}}$ and $C_{x, y}^{e_{3}}=C_{x}^{e_{1}} \odot C_{y}^{e_{2}}=C_{x}^{e_{1}} \odot C_{\varphi_{2} y}^{e_{2}}=C_{x, \varphi_{2} y}^{e_{3}}=C_{\varphi_{3}(x . y)}^{e_{3}}$ so that $\left(x . \varphi_{2} y\right) \varrho_{3} \varphi_{3}(x, y)$. The reflexivity of ϱ_{3} yields the existence of an element $x^{\prime} \in Q_{1}$ such that $x^{\prime} . \varphi_{2} y=\varphi_{3}(x, y)$ and $C_{\varphi_{3}(x, y)}^{e_{3}}=C_{x^{\prime}}^{e_{1}} \odot C_{\varphi_{2} y}^{e_{2}}$ so that $C_{x}^{e_{1}}=C_{x^{\prime}}^{e_{1}}$. Using the transitivity of Γ_{1} on $C_{x}^{\rho_{1}}$ we get $\varphi_{1} \in \Gamma_{1}$ such that $x^{\prime}=\varphi_{1} x$ and $\varphi_{3}(x . y)=$ $=\varphi_{1} x . \varphi_{2} y$.

Theorems 2 and 3 yield a 1-1-correspondence between the special autotopy groups and the normal congruences of a given 3-basic quasigroup \mathbf{Q}. On the other hand, we know that there exists a $1-1$-correspondence between the normal congruences of \mathbf{Q} and the homotopies of \mathbf{Q} onto \mathbf{Q}^{\prime}. So we have also a 1-1-correspondence between the special autotopy groups \mathbf{G} and the homotopies ($\tau_{1}, \tau_{2}, \tau_{3}$) of \mathbf{Q}. This correspondence $\mathbf{G} \Leftrightarrow\left(\tau_{1}, \tau_{2}, \tau_{3}\right)$ is given directly by

$$
\Gamma_{i}=\left\{\varphi \in \Pi_{i} ; \tau_{i}(\varphi x)=\tau_{i}(x), x \in Q_{i}\right\}
$$

and $\tau_{i}(x)=\tau_{i}(y) \Leftrightarrow y \in \Gamma_{i}(x)$, where $x, y \in Q_{i}, i=1,2,3$.
Now let \mathbf{G} and \mathbf{G}^{\prime} be special autotopy groups. If Γ_{i}^{\prime} is a subgroup of Γ_{i} for every $i=1,2,3$, then \mathbf{G}^{\prime} is a subgroup of \mathbf{G} and $R^{\Gamma^{\prime}}$ is a refinement of $R^{\Gamma_{i}}$ for $i=1,2,3$.

If $\Gamma_{i}=\Pi_{i}$ for every $i=1,2,3$, then we get the maximal normal congruence $\left(R^{\Pi_{1}}, R^{\Pi_{2}}, R^{\Pi_{3}}\right)$, i.e., $x R^{\Pi_{i}} y$ for all $x, y \in Q_{i}$ and $C_{x}^{R^{\Pi_{i}}}=Q_{i}=\Gamma_{i}(x)$ for every $x \in Q_{i}$.

If $\Gamma_{i}=\left\{e_{i}\right\}, i=1,2,3$, then we get the minimal normal congruence $\left(R^{e_{1}}, R^{e_{2}}, R^{e_{3}}\right)$ so that $x R^{e_{i}} y \Leftrightarrow x=y$ and $C_{x}^{R_{i}}=\Gamma_{i}(x)=\{x\}$ for every $x \in Q_{i}$ and $e_{i}=i d_{Q_{i}}$.

Now we pass to a usual quasigroup ($Q, Q, Q ; \cdot$) and take a special autotopy group \mathbf{G} with components $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$. Using Theorem 2 with $Q_{1}=Q_{2}=Q_{3}=Q$ we get a normal congruence $\left(R^{\Gamma_{1}}, R^{\Gamma_{2}}, R^{\Gamma_{3}}\right)$ with decomposition classes $C_{x}^{R^{\Gamma_{i}}}=\Gamma_{i}(x)$, $x \in Q$. So we have three (in general, mutually distinct) decompositions forming a 3-basic quasigroup $\left(Q / R^{\Gamma_{1}}, Q / R^{\Gamma_{2}}, Q / R^{\Gamma_{3}} ; \odot\right)^{p}$ with $C_{x}^{R \Gamma_{1}} \odot C_{y}^{R \Gamma_{2}}=C_{x . y}^{R \Gamma_{3}}$, where $x, y \in Q$.

All these results can be trivially generalized to $(n+1)$-basic quasigroups. We shall mention some primary notions. $\mathbf{Q}=\left(Q_{1}, Q_{2}, \ldots, Q_{n+1} ; A\right)$ is said to be an $(n+1)$ basic quasigroup if $Q_{1}, Q_{2}, \ldots, Q_{n+1}$ are sets with the same cardinality, A is an n-ary operation with

$$
\begin{equation*}
A\left(a_{1}, \ldots, a_{n}\right)=a_{n+1} \quad \text { for } a_{i} \in Q_{i}, \quad i=1, \ldots, n+1 \tag{11}
\end{equation*}
$$

and in (11) any n elements of $a_{i} \in Q_{i}, i=1, \ldots, n+1$, uniquely determine the remaining one. Under a homotopy of \mathbf{Q} onto \mathbf{Q}^{\prime} we mean an ordered $(n+1)$-tuple $\left(\tau_{1}, \ldots, \tau_{n+1}\right)$ of maps $\tau_{i}: Q_{i} \rightarrow Q_{i}^{\prime}, \tau_{i}\left(Q_{i}\right)=Q_{i}^{\prime}, i=1, \ldots, n+1$, such that $\tau_{n+1} A\left(a_{1}, \ldots, a_{n}\right)=A^{\prime}\left(\tau_{1} a_{1}, \ldots, \tau_{n} a_{n}\right)$ for all $a_{i} \in Q_{i}, i=1, \ldots, n$. By analogy we can define an isotopy and an autotopy. The $(n+1)$-tuple $\left(\varrho_{1}, \ldots, \varrho_{n+1}\right)$ of equivalence relations ϱ_{i} of $Q_{i}, i=1, \ldots, n+1$, is called a normal congruence on \mathbf{Q} if $a \varrho_{i} b$, $a, b \in Q_{i} \Leftrightarrow A\left(x_{1}, \ldots, x_{i-1}, a, x_{i+1}, \ldots, x_{n}\right) \varrho_{n+1} A\left(x_{1}, \ldots, x_{i-1}, b, x_{i+1}, \ldots, x_{n}\right)$ for all $i=1, \ldots, n$ and all $x_{j} \in Q_{j}, j=1, \ldots, i-1, i+1, \ldots, n$. A subgroup $\mathbf{G}=$ $=\left(\Gamma_{1}, \ldots, \Gamma_{n+1}\right)$ of the full autotopy group of is said to be special if $\left(\Gamma_{1}, \ldots, \Gamma_{n+1} ; \Phi\right)$ is an $(n+1)$-basic quasigroup, where

$$
\Phi\left(\varphi_{1}, \ldots, \varphi_{n}\right)=\varphi_{n+1} \Leftrightarrow\left(\varphi_{1}, \ldots, \varphi_{n}, \varphi_{n+1}\right) \in \mathbf{G}, \quad \varphi_{i} \in \Gamma_{i}, \quad i=1, \ldots, n+1
$$

Similarly as in the case $n=2$, we can prove that there exists a 1-1-correspondence between the normal congruences on \mathbf{Q} and the special autotopy groups \mathbf{G} on \mathbf{Q}.

If an $(n+1)$-basic quasigroup $\left(Q_{1}, \ldots, Q_{n+1} ; A\right)$ satisfies $Q_{1}=\ldots=Q_{n+1}$ then we get the n-quasigroup $(Q ; A)=(Q, \ldots, Q ; A)$. R.F. Kramareva ([2]) proved that every homotopy of an n-quasigroup ($Q ; A$) onto an n-quasigroup ($Q^{\prime} ; A^{\prime}$) determines a normal congruence $\left(\varrho_{1}, \ldots, \varrho_{n+1}\right)$, and that $\left(Q / \varrho_{1}, \ldots, Q / \varrho_{n+1} ; \tilde{A}\right)$ with

$$
\tilde{A}\left(C_{a_{1}}^{e_{1}}, \ldots, C_{a_{n}}^{e_{n}}\right)=C_{A\left(a_{1}, \ldots, a_{n}\right)}^{e_{n}+1} C_{a_{i}}^{e_{i}} \in Q / \varrho_{i}, \quad i=1, \ldots, n+1
$$

forms a partial n-quasigroup. This is exactly our $(n+1)$-basic quasigroup.

References

[1] V. A. Beglarjan: On normality of subquasigroups (in Russian), Issledovanija po teorii kvazigrupp i lup, Štiinca, Kišinev 1973, 18-32.
[2] R. F. Kramareva: About homotopies of n-quasigroups (in Russian), Voprosy teorii kvazigrupp i lup, Štiinca, Kišinev 1970, 76-91.
[3] E. I. Tebyrce: Some questions of the homotopy theory for quasigroups (in Russian), Iss'edovanija po obšČej algebre, Štiinca,Kišinev 1968, 74-81.

Souhrn

O 3-BÅZOVÝCH KVAZIGRUPÅCH A JEJICH KONGRUENCÍCH

Elena Brožíková

Podgrupa \mathbf{G} úplné grupy autotopií dané 3-bázové kvazigrupy \mathbf{Q} se nazývá speciálni, jestliže její grupy komponent $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ tvoří 3-bázovou kvazigrupu ($\Gamma_{1}, \Gamma_{2}, \Gamma_{3} ; *$), kde

$$
\alpha * \beta=\gamma \Leftrightarrow(\alpha, \beta, \gamma) \in \mathbf{G} \quad \text { pro } \quad \alpha \in \Gamma_{1}, \beta \in \Gamma_{2}, \gamma \in \Gamma_{3} .
$$

[^0]
О 3-БАЗОВЫХ КВАЗИГРУППАХ И ИХ КОНГРУЭНЦИЯХ
 Elena Brožíková

Подгруппа \mathbf{G} полной группы автотопий данной 3 -базовой квазигруппы \mathbf{Q} называется специальной, если ее группы компонент $\Gamma_{1}, \Gamma_{2}, \Gamma_{3}$ образуют 3-базовую квазигруппу (Γ_{1}, Γ_{2}, $\left.\Gamma_{3} ; *\right)$, где

$$
\alpha * \beta=\gamma \Leftrightarrow(\alpha, \beta, \gamma) \in \mathbf{G} \text { для } \alpha \in \Gamma_{1}, \beta \in \Gamma_{2}, \gamma \in \Gamma_{3} .
$$

В работе показано, что существует взаимно однозначное соответствие между специальными подгруппами \mathbf{G} и нормальными конгруэнциями \boldsymbol{Q} данной 3-базовой квазигруппы \mathbf{Q}.

Author's address: Strojní fakulta ČVUT, K201, Karlovo nám. 13, 12135 Praha 2.

[^0]: V této práci je dokázána vzájemně jednoznǎ̌ná korespondence mezi speciálními podgrupami \mathbf{G} a normálními kongruencemi ρ dané 3-bázové kvazigrupy \mathbf{Q}.

