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PERIODIC SOLUTIONS OF THE EQUATION x"(t) + g(x(t)) = p(¢)

SvaroprLuKk Fudik and VLADIMIR LOVICAR, Praha
(Received February 5, 1974)

1. INTRODUCTION, NOTATION AND MAIN RESULTS

Let Ry denote the N-dimensional Euclidean space with the usual norm. Let I be
a compact nonempty interval in R,. The following notation will be used:

C*(I) will denote the space of the functions which are k-times continuously dif-
ferentiable on I (at the end-points of the interval I we mean of course the one-sided
derivatives). For the sake of simplicity we use the notation C°(I) = C(I).

L,(I) will denote the space of all measurable functions u such that |u| is integrable
in the sense of Lebesgue, with the usual norm

ol = [ o).

Definition. Let pe L,(I) and let g be a continuous real-valued function defined
on the whole real line R,. A function x € C!(I) is said to be a solution in the sense
of Carathéodory of the equation

(1.1) x(1) + g(x(t)) = p(1)

on the interval I if for any a, t €I it holds

(1.2) x(t) = x(a) + (t — a) x'(a) + J‘t(t ~ 5)(p(s) = g(x(s))) ds
6r equivalently

(12)  x() = x(a@) + (t — &) x(a) + j ( I :(p(S) — 9(x(s)) ds) dr.
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It is easy to see that x is a solution of (1.1) in the sense of Carathéodory if and only
if x’ is absolutely continuous and satisfies the equation (1.1) for almost all tel.
Analogously, if p € C(I) then for the solution x of (1.1) in the sense of Carathéodory
we immediately obtain x € C*(I) and in this case the function x satisfies the equation
(1.1) at any point of the interval I.

For our convenience put J = <0, 1).

This paper contains the following results:

Theorem 1. Let a, b,'c, d be real numbers and let g be a continuous real-valued
function defined on R, and such that

(1.3) lim 9(0) _ + 0.
: R

Then the boundary value problem

(1.4) x"(t) + g(x(1)) = p(t), teJ,
ax(0) + bx'(0) =0, cx(1) + dx'(1) =0

has for each pe L,(J) infinite number of distinct solutions in the sense of Ca-
rathéodory.

Corollary 1. Under the assumptions of Theorem 1 the boundary value problem
(1.4) has for each p € C(J) infinite number of distinct solutions.

Theorem 2. Let the function g satisfy the assumptions of Theorem 1. Then for
any right hand side p € L,(J) the periodic problem

(19) ) + o) = 20
x(0) = x(1), x(0) = x'(1)

has at least one solution in the sense of Carathéodory.

Corollary 2. Under the assumptions of Theorem 2 the periodic problem (1.5)
has at least one solution for each p € C(J).

At first the authors believed the result obtained in Theorem 1 to be new. After the
preliminary communication (see [6]) was published STEFAN SCHWABIK informed us
that the same result has been obtained by H. EHRMANN (see [4]), who used also
essentially the same method of proof. Since the proof of Theorem 2 requires the
same auxiliary lemmas we present here also Theorem 1. By the authors’ best know-
ledge the assertion of Theorem 2 has not been published until now under such general
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assumptions. Several authors considered the case of a special right hand side (see
e.g. [2]) or introduced some additional assumptions (see e.g. [5], [7], [8]). For
instance, in [7] it is proved that the equation (1.1) with g(£) = 2¢* has a periodic
solution with the period 1 provided the function p satisfies the following conditions:

piseven on Ry,
p', p” are continuous on R,,

p has the period 1.
j‘] p(t) dt = 0.

Note that the proofs of Corollaries can be obtained immediately from Theorems
by applying the remark following Definition and thus they are omitted. The proofs
of Theorems are based on the shooting method. Moreover, in the proof of Theorem 2
we use a certain fixed point theorem (see Lemma 9) the proof of which follows from
the properties of Brouwer’s topological degree of mapping (see e.g. [1]).

The authors are very much indebted to STEFAN SCHWABIK for his advice, comments,
bibliography and terminology remarks.

2. AUXILIARY LEMMAS

Let g be a function satisfying the assumptions of Theorem 1. For he (0, 1) and
£ e R, define

2.1) g(é) = ﬁ ::g(n) d.n :

Obviously the functions g, satisfy on R, locally the Lipschitz condition. Moreover,
it is easy to see that there exist nonnegative functions y;, 7, on R; and positive
numbers &,, m such that

gh(é)
4

71(¢) £ < 7,(8)

for all || > &, and he(0,1),

lim 7,(§) = +o,
1§l

1) 21 for [¢] =&
and :

|gh(f)| =m
for [¢] < &o and he (0, 1).
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Denote by M = M(y1, 72, &0, m) the set of all functions f defined on R, and
satisfying the following conditions:

(i) f is locally lipschitzian on R,;
(ii) ,(¢) §f(f)/f = 72(5) for 'fl > o5
(i) L/ = m for [l 5 o

We shall consider the family of ordinary differential equations of the first order
22, v'() = h(t, o(1)) ,
where
o(t) = [x(s), »(9)] ,
he, v(t)) = [¥(®), p(t) = F(x(9)],
feM, peL,(J).

In accordance with the definition of a solution in the sense of Carathéodory of
the equation (1.1) on the interval I = R, we define that a continuous vector valued
function v, (t) = [x, (1), y,,,(t)] is a solution of (2.2),, in the sense of Carathéodo-
ry on [ if for arbitrary a, t €I it holds

ww=nM+pmwa

yra(t) = yp,(a) + J'I(P(S) — f(xs,,(s)) ds .
For £eR, and fe M denote

(23) 6,(9) = J: £(5)ds.

Lemma 1. Let v, , =[x, ,, ¥;.,] be a solution of (2.2);, (in the sense of Cara-
théodory) on the interval I < J. Then for any a, t €l it holds

(24) Vi) + 2G(xs,(1)) = ¥7,(a) + 2G,(x1,,(a)) +
+ 2fp(s) Vs.o(s)ds.
(The proof is trivial.)

Lemma 2. Let G, be a function defined by (2.3). Then there exists a constant
k = 0 such that the inequality

62
(25) GA) 2 5k
holds for each £ ¢ R, and fe M.
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Moreover, for E€ R, it is

(2.6) . |GA&)] = m&, + [¢| :ﬂyz(s) ds .

Proof. It follows from the definition of the set M that f(s) 2 s for |s| = &, and
fe M. Hence for |¢| = &, we have

3 Sosgng 4 52 52 Sosgng
Gf(€)=J'f(s)ds=J. f(s)d8+j f(S)dS§—2~——29+J~ f(s)ds
0 0

Zosgnd o

which implies (2.5) with
62
k= —29 + mé, .

The proof of the other part of the assertion is analogous.

Under the assumption (i) in the definition of the set M there exists for an arbitrary
initial value u € R, a unique solution v, , () (in the sense of Carathéodory) of the
equation (2.2) .y, satisfying v, , ,(0) = u which is defined on the maximal interval
Jypu < J with 0 J, ,, (see e.g. [3, Chapter II]). For ue R, and te J, ,, put

(2'7) Vf,p(t’ u) = vf,p,u(t) .

Lemma 3. Let pe LI(J) and f € M. Then the function V; , defined by the relation
(2.7) is defined on J x R, and is a continuous mapping from J x R, into R,.

Proof. First let us show that the mapping V; , is defined on J x R, (e, Jspu =
= J for any ueR,, fe M and pe L,(J)). To this end it is sufficient to prove an
appropriate apriori estimate for weak solutions of the equation (2.2) o

Let v, , = [X/,,» ¥s,5] be a weak solution of (2.2),, on an interval I < J, O€l,
which satisfies the initial condition v, ,,(0) = u = [uy, u,]. In virtue of Lemma 1
for any t €1 it holds

(2'8) ylz'.p(t) + 2Gf(x.r,p(t)) =uj + 2G!(“1) + 2J‘tP(S)IJ’f,p(s) ds.
Let us denote ‘
(2.9 27 (1) = sup {|y;,(s)); s€<0, >}, tel.

Then we obtain from (2.8) and from Lemma 2
t
i) S (48 + 26w+ 20) + 221,00 [ 1o )
0
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for t e I. This implies by an elementary calculation the estimate
(2.10) vralt) S 27,0 <

< (1 = o) 7" (u3 + 2G4(uy) + 2k) + o1 ~ &) 7" (J:IP(S)I ds)z

for tel and g (0, 1).
From (2.8), (2.10) and from Lemma 2 one can easily obtain also the estimate
(2.11) X0

< (14 (1 = 60) ™) (u2 + 2G,(u) + 26) + (1 + &5 *(1 — £)?) ( f;,p(s)l ds)z.

It follows from (2.10), (2.11) and [3, Chapter II] that the mapping V; , is defined
on J x R,. Continuity of ¥ , follows from the assumption (i) in the definition of the
set M.

Now let us denote (for fe M and p e L,(J)) by d, , a function defined on R, by
(2.12) d, (u) = inf {|V, ,(t u)]; teJ}.

Then it holds

Lemma 4. lim df,,,(u) = + oo uniformly with respect to fe M and p from any

luj— 0
boudend subset of Ly(J), i.e., for any bounded set U c L,(J) and arbitrary K > 0
there exists © > 0 such that d; (u) > K for each lul =t,feMand peU.

Proof. Let U = {pe L,(J); ||p| < ¢} and let v, , = [x,,, y,,] be a weak solu-
tion of (2.2),, on the interval J with vs,(0) = u = [uy, u,]. Then from (2.8) we

obtain

@13)  Y2,(0) + 2Gs(xp,(1) Z u3 + 2Gfuy) - 2 zf,p(t)Jllp(S)I ds

for te J, where the function zj , is defined by (2.9). Let &, € (0, 1) be fixed. Then
from (2.10), (2.13) we have for any ¢; > Oand fe M

(2.14)  y2,(1) + 2 Glxp(1) 2 (1 = &1 = 20)7") (u3 + 2 G{uy)) ~ K,

where

(2.15) K, = 231(1 - go)‘l k + (81361(1 - so)'l + 31_1) 2.
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Let ¢, > 0 be fixed and such that

Further let us denote by 6, the function defined on R, by
3lx. y]) = y* +2Gx), [xy]eR,.
The relation (2.14) implies
(2.16) 8.V, (t,u)) 2 K, 6(u) — K, 2 K,u? + Kyu} — K,k — K,

for ueR,, teJ, feM, peU.

Suppqse that there exist K > 0, U LI(J) a bounded set, f,e M, p,eU, t, e J,
u, € R, such that |u,| > oo and

dfmpn u") —S: IantPn(t”’ u")l < K *

Since & , is continuous on R, we conclude that the sequence {6, (V. , (t., 4,))} is
bounded which is a contradiction with (2.16).

Remark 1. Put
Dy p(u) = sup {|Vy,(t, u)|; te J}

for fe M, pe L,(J) and u € R,. Then from (2.10), (2.11) and Lemma 2 the following
inequality immediately follows:

lus]
IDp (@) S (1 +2(1 — &)~ (u% +2mé +2uy| | va(s)ds + Zk) +
. $o

1 2
+(1+25 (1 —¢)7Y) (J. |p(s)| ds) .
0
As usual, denote for an arbitrary nonzero complex number z € C
—ix_ Z
Argz ={xeR;; e ¥ = —}
|2l
In the sequel we need the following.

Lemma 5. Let X be a topological space and let F be a continuous complex valued
‘function defined on J x X satisfying F(t, u) + 0 for an arbitrary [t,u] e J x X.
Then for any u € X there exists a continuous real valued function , on J such that

Y() e Arg F(t,u), telJ.
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Moreover, for an arbitrary u € X the value

W(u) = wu(l) - w,,(O)

is independent of the choice of a continuous function o, on J with o (t) € Arg F(t, u),
te J, and the mapping ¥ is continuous on X.

Proof. The assertions of Lemma except possibly the continuity of the function ¥
are well-known from the classical complex analysis. Now we shall prove the continuity
of ¥. Let uy € X be fixed and let a = min {|F(t, uo)|; t € J}. Let &€ > 0 be arbitrary
and choose 7 € (0, a) such that

2 arcsin 1 <e.
a

Then there exists a neighborhood U(uo, ) = X of the point u, such that |F(t, u) —
— F(t, uo)| < n for each t € J and u € U(uo, n) (this is true in virtue of the continuity
of F and the compactness of J). For an arbitrary u € U(uo, n) there exists a continuous
function ¥,(t) € Arg F(t, u), t € J such that

(2.17) [¥.(0) — ¥,,(0)| < arcsin I
a

where ¥, is an arbitrary continuous function on J such that V¥, (f) € Arg F(t, u,),
t e J. We shall prove that

I'//u(t) - '//ug(t)l < arcsin n
a

for each te J and u e U(uy, n). Suppose that there exist ¢, € J and u, € U(uo, 1)
such that |y, (t;) — ¥,(t;)| 2 arcsin (n/a). With respect to (2.17) there exists
to € (0, ;) such that |y,,(fo) — Y(to)| = arcsin (n/a) and thus

|F(to, u1) — F(to, uo)| =
= ||F(to, u1)| = |F(t0, uo)| exp (—i(¥uo(t) — Vu ()| 2

z |F(to, uo)| [sin (Yuolto) — ¥u,(to)] 2 Z“ =1
which is a contradiction. So we have |
|#() = #(uo)] = Vult) = u(0) + Y1) = ¥iuf0)] < 2arcsin T <¢

for an arbitrary u € U(uo, ).
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According to Lemma 4 there exists o > 0 such that |V, (¢, u)| 2 1 for arbitrary
teJ,|u| 2 ro,feMand |p| < g. Let us denote

-

X'O = {uERz; Iul g ro} .

It follows from Lemma 5 that for any fe M, pe L,(J), |p| < 7 and u e X, there
exists a continuous function ¢, ,, on the interval J such that

(2'18) Vf.p(t’ ") = lVf.p(t’ u)l [COS (pf.p.u(t)’ — sin (o.r,p.u(t)]
and the real valued function
(2'19) _ D, ,p(u) = Q5 .p,u(l) - 95 ,p.u(o)

is continuous on X, .

Lemma 6. Let p € Ly(J). Then
lim &, (u) = + 0

fu] -

umformly with respect to f € M.

Proof. Let p, € C(J) be such a sequence that lim " p. — p| = 0. Thus

| Sup le,,(s)l ds =g < +.

Let ue X, and let ¢, , , be a continuous real valued function defined on J such
that (2.18) holds. Then it is easy to see that ¢, , , is continuously differentiable on J
and satisfies the differential equation

(2'20) (P} .p,..u(t) =4y ,pmu(t’ ‘pf.pmu(')) - r; .;...u(t) p,,(t) CoS @y .p...u(t) ’

where g, (t, @) =sin? ¢ + r;) (8) f(rsp..(t) cos @) cos ¢ and 1., (1) =
= |V, (t, u)| (hence r,, ()=d,, (u)),(te ], ¢ €R,). Further, let us denote by
%y pnu the function defined by

Rs poalW) = inf {s™ f(s cos Y) cos y; s = d, , (u)} .

An easy calculation shows that also the function %, , , is continuous. For d , (u) .
. |cos Y| = &, we have by the above

%s pnuW) Z 71(dy,p, (1) |cos Y]) cos? §r .

If d; , (u) [cos Y| S & then for se<d,,, (u), cos Y|t &) it holds [s™f(s cos ¥).
.cos Y| < mdj} (u), where m > 0 is a constant from the condition (iii) in the
definition of the set M. Since for s 2 &;|cos Y| ™" itis s~ f(s cos ) cos Y = cos®.y =
2 0 we conclude that for d, , (u) |cos Y| < & it holds x,, (V) = —mdy} (u).
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Thus we obtain the following relations:
a) For dy,,(u) [cos Y| < &, we have
S+ s, (0) 21— E472(0) — md7hu)
b) For dy,,(u) [cos Y| = &, we have
sin? 4+ 2,5, (0) 2 1.
In other words, there exist r, > r, and ¢ > 0 such that
sin? § + %, (¥)—c2c>0

for each ]ul 2r,YeRy, feMand n=1,2,.... Let us compare the differential
equation (2.20) with the equation

(221)  Wjpualt) = sin® Yy g ult) + Kp.paVs.pual)) — € — d75(u) [Pa0)]

with the initial condition ¥, , (0) = ¢, , (0). An elementary comparison theorem
from the theory of differential equations yields

(222) 21,50l 1) = 91,5,0) Z Vs.p0i1) = ¥i5.5,.0) -
However, from (2.21) we have the simple relation
¥z, pmu(1) dy
f ¥rpna® SN Y+ 3p S(Y) — € )

. f 475, ()] s

0 Sinz lpf,pmll(t) + xf,p,,.u(wfd’n,u(t)) = ¢
which implies

(223) ot d 21—tz f :lp,(t)l @)z

wfvpmu(o) Sinz ll’ + xf,p”,u(.#) =-c

21 —ctd;,()q

forlu| = ri,fe Mandn = 1,2, ... . Since ¥y p,«and sin are 2 — periodic functions,
it follows from (2.23) that

(2'24) ll’_/‘,p,.,u(l) - 'pf,p..,u(o) 2 27[(1 ~-ct d;.;n(u) q) :

(e o
o Sin® Y + %, ) — ¢
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for arbitrary fe M, [u] =r,and n =1,2,.... Hence we shall show that for any
€ > 0 there exists 7, > r, such that

- 2 dy
(2:25) .[o sin? 4+ %, J(Y) — ¢ =

provided |u| = r;, fe M and n = 1,2, .... Let & > 0 be arbitrary but fixed. There
exist 7 > 0 and &, > &, such that

(2.26) dy < J. 1d|,h < %
{

<2
(¥e(0,27); Jcosy| <) SN~ Y + "f,p,.,u(‘l’) - ¢ we(0,2n); [cosy| <t} €

for [u| 2 r,, feM, n=1,2,..., and
2 4r
(2'27) n '}’1(51) —c=2 _8-

Thus for ¥ € (0, 2n) such that |cos | = #, for |u| 2 ry with d, , () = n~'¢; and
for n = 1,2,... we have sin® ¢ + %, , (V) —c = n*y,(¢;) — ¢ and hence

(2.28) I a4 <
{

Ye(0,2n); |cosy| 2} Sinz ‘l’ + xf,p,‘,u(d’) - - ’12 ’}’1(51) -

Let r, 2 r, be such that d, ,(u) 2 n~'¢; for n =1,2,..., feM and [u| = 7.
The relations (2.25)—(2.28) imply

27 dlﬁ
- <eée
J.o sin® Y + ;W) ~ ¢

for arbitrary n = 1,2, ..., f e M and |u| = r,, which together with (2.24) and (2.22)
implies:
For an arbitrary K > 0 there exists r, > 0 such that

QJ:Pn(u)>K for fGM’ n=1,2,..., and lulgrz_

Now it is easy to see that to complete the proof it is sufficient to show that
lim &, , (u) = @, ,(u) for each |u| = r, and f € M. This fact follows from Lemma 5
n—o .

for if |u| 2 ro, f € M then the mapping

[1, p] = V(1 )

is continuous and non-vanishing on J x L,(J) and thus (with respect to the assertion
of Lemma 5) the mapping

p g Qf -P(u)
is continuous on L,(J).
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Lemma 7. Let ¢ > r,. Denote
K(e) = sup {D; ,(u); fe M, pe Ly(J), |p|rw) <o u€R;, 1o < Ju| < 0}
and 7,(¢) = max {y,(s); |s| < K(e)}. Then

O, (0) S 1+ 7,(0) + m + f :]p(s)l ds

provided fe M, ry < |u| < o, [4|p(s)| ds <o.

Proof. Let p, € C(J) be such that lim ” Dn — p“ = 0. Let the notation introduced
in (2.20) be observed. Then "
9t pmills 9) = 77,5,4(F) Po(t) cOs @ <

P <
drp4)  dpp(u)

<1+ 7,00 + m+ o).

< 1+ 72(dgp,(w) [cos o) +

Comparing the differential equation (2.20) with the initial problém

Copailt) =1+ F2(e) + m + [py(1)]
s ,pmu(o) =@y .pn.u(o)
we conclude

1
1+ 7a(e) + m +j Ip,,(t)l dt = Cf.pmu(l) - Cf,p..,u(o) 2
0

= (pf:l’n-“(l) - ‘Pf.pmu(o) = (pf,pn(“) .

Letting n tend to infinity we obtain our assertion.

3. BOUNDARY VALUE PROBLEM

Let pe LI(J) be fixed. Let a, b, ¢, d be real numbers and consider the boundary
value problem

(3.1), x'(6) + f(x(t)) = p(t) ,
ax(0) + bx'(0) =0, cx(1) + dx'(1) =0,
where fe M.
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We shall suppose that both vectors w, = [4, b], w, = [¢, d] are nonzero (in
the other cases the existence of (3.1), a solution of in the sense of Carathéodory is
obvious). Let ¥y, ¥/, € R, satisfy

o, = || [cos ¥,, —siny,], ©, = |w,][cosy¥,, —siny,].

It is easy to see that the set of all solutions (in the sense of Carathéodory) of the

boundary value problem (3.1), equals to the set of all solutions x(t) of the initial
problem

(.2, x'(1) + f(x(9)) = p(),
‘ [x(0), x'(0)] = u = |u| [cos ¢, —sin ¢,]
such the}t (Vy,5(t, u) is defined by the relation (2.7))

Ve 1, w) = |V, (1, u)| [cos @;, —sin @,],
where @4, ¢, satisfy the relations

o=V, +(2n + 1)%: @, =¥y + (2n, + l)g

for some integers n,, n,.
Let ry be a positive number defined above Lemma 6.

Lemma 8. There exists a positive integer ny, with the following property: For
each n = ny and fe M there exists s, , 2 ro such that if fe M then (3.1), has
a solution x, ; , (in the sense of Carathéodory) with

*n.r.0(0), %0,7,50)] = 50,z [COS (‘Pl + g‘)’ —sin ('/’1 + g)] = Us,s

and it is ®; (u, ;) =Yy — Yo + nm, n 2 ny, fe M.

Proof. Set u, = s[cos (Y, + 4n), —sin(¥; + 37)]. The function s — @, (u,)
is defined and continuous on {r, oo) and it is

V,,p(.l, u,) = [V, (1, uy)| [cos (llll + % + dif_p(u,)) , —sin (\bl + —;E + dif,p(us))].

This means (with respect to the note before Lemma) that any u, for which ¢, (u,) =
=Yy — Y, +nn(nis an integer) defines a solution in the sense of Carathéodory
of the boundary value problem (2.29),.

Let n, be such an integer that &, (u,) < ¥, — ¥, + non for each fe M (this
is possible according to Lemma 7). Since lim @, ,(u,) = oo uniformly with respect

S a0
to fe M, for each n = n, and fe M there exists u;,,, such that
qjl.p(“s,.,f) =y, — ¥, +nn.
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Proof of Theorem 1. Let n, be the positive integer the existence of which is
guaranteed by Lemma 8. Let n > n, be fixed. Then for each g, defined by (2.1)
there exists a solution X, 4, , Of (2.29),, satisfying

[x”"h»P(O)’ x”'-ﬂh-P(O)] = Usygn s
(pﬂh,p(“s,..y;.) =Y, — Y, + nn.

With respect to the assertion of Lemma 7 the set {#, 4,}re(0,1) is bounded. Now from
Remark 1 it follows that {x,,, }i0,1) is @ bounded set in the space C'(J). Thus
there exists a sequence h; v 0 such that

Xp = Xpg, p =% in C(J)

and

Uy = Uy, g, — U in R, .

Moreover, the functions s - g,,(x,(s)) are bounded independently of k = 1,2, ...
and lim g,,(xi(s)) = g(x(s)) for each s € J. If in the relation
k=

x(t) = [ + usl + j ;(: = ) (2(6) — gm((s)) ds

k tends to infinity we obtain (using Lebesgue’s Dominated Convergence Theorem)
that x € C'(J) and this verifies (1.2) witha = Oand I = J.

The proof of Theorem 1 is complete.

4. PERIODIC PROBLEM

If K = Ry is a compact set denote by Gm(K) the unbounded component of the
et Ry \K. ‘

Lemma 9. Let F : Ry - Ry be a continuous mapping defined on Ry. Let M be
a compact subset of Ry. Suppose

a) 0¢ M, ’

b) 0¢ Gw(‘.m),

c) for each ue M it is '
()

F(u) (u,u) '

where (.,.) denotes the usual inner product in Ry.
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Then there exists at least one point x, € Ry such that F (xo) = X,.
(Note that from the assumption b) it immediately follows that 9t is nonempty.)

Proof. Let us denote

m=§mm F(u) = %”f mnozmw}

M, = {u eM; F(u) = (F((u) )u) (F(u), u) < (u, u)}

If M, N M, =+ O then F has clearly a fixed point in . Hence let us suppose that
M, AM, =0.

First let us show that 0 ¢ G,(M;) at least for one j = 1, 2. Indeed, let U be such
a component of the set Ry \ M which contains 0. Since U <« M, oU = H, u H,,
where H; =0U n M, j = 1,2. If 0 G,(M;) (j = 1,2) then 0e G (H)) (j = 1,2)
and hence there exist continuous functions v; on J with values in Ry, such that v,(0) =
=0, vt)¢ H; for teJ and |vj(1)| > sup {|u|; ue M} (j = 1,2) and, moreover,
v,(1) = v,(1) = v. Let us define a function h from J x U into Ry \ {0} by

h(t, u) = {

—v,() teJd, ueH,
u—uv,(t) telJ, ueH,.

Then h is a homotopy in Ry \ {0} between the identity mapping E and the mapping
E — v and hence by the well-known theorem from the theory of Brouwer’s topological
degree (see e.g. [1]) it is d(E, U, 0) = d(E — v, U, 0) = 0 which is a contradiction
with the assumption 0 ¢ G, (M). Let us suppose for the sake fo brevity that 0 ¢
¢ G (M) (the other case may be proved in the same way). Let ¥ be a component
of the set Ry \ M, for which 0 € V. Let us define the mapping h, from J x dV into

Ry~ {0} by
ma(t, ) = tu — (1 = 1) (u = F(w).

It is easy to see that h, is a homotopy in Ry\ {O} between the mappings E and
F — E and hence d(F — E,V,0) = d(E, ¥, 0) = 1. Since Brouwer’s degree of the
mapping F — E is nonzero there exists u, € V such that F(u,) = u,.

Proof of Theorem-2. Let g satisfy locally the Lipschitz condition. Let us denote
by F the mapping from R, into R, defined by F(u) =V, ,(1, u). The mapping F is
continuous on R,. Since lim @, (u) = + oo there exists ¢ > 7o such that

lu] -0

inf {®,,,(u); [u] = e} — sup {P,,,(v); I“I =ro} 2 27.
Further let us set

M = {ueRz, ro<|u/se and F(u) = (F(E:)u)u) }
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It is clear that 9 is a compact subset of R, and the assumptions a) and c) of Lemma 9
are satisfied. Let us show that 0 ¢ Gw(ﬂll). Let v be an arbitrary continuous function
from J into R, such that v(0) =0 and |v(1)] > ¢. Let us set t, =sup {teJ;
[o())] = ro}, t, =inf{teJ; t > t,, |o(t)] =e}. Then for tet;, t,) it is ry <
< |o(t)] £ o. The function t ~ @, (v(?)) is continuous on <ty, t,), D, (v(t2)) —
— &, (v(t;)) = 2n and hence there exists t, € {t;, t,» and an integer n, such that
?, (v(to)) = 2mno. If v(ty) = |v(to)| [cos @, —sin @o]; then F(v(ty)) = |F(v(to)] .
[€05 (90 = B, ,(6(t0))). —sin (9o — @,,(o(t0))] = |F(o(to))| o(to)] ™ o(ts) and so
(o) € M.

Thus every continuous curve connecting 0 and a point outside of M with the norm
at least g intersects the set 9. This fact implies 0 ¢ G ,(9M).

According to the assertion of Lemma 9, the mapping F has at least one fixed point
which proves Theorem 2 in the case of locally lipschitzian function g. If g is a conti-
nuous function we can use the same procedure as in the end of Section 3.
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