
Časopis pro pěstování matematiky

Karel Čulík
A note on comparison of Turing machines with computers

Časopis pro pěstování matematiky, Vol. 100 (1975), No. 2, 118--128

Persistent URL: http://dml.cz/dmlcz/108770

Terms of use:
© Institute of Mathematics AS CR, 1975

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/108770
http://project.dml.cz

Časopis pro pěstování matematiky, roč. 100 (1975), Praha

A NOTE ON COMPARISON OF TURING MACHINES
WITH COMPUTERS

KAREL £UL[K, Praha

(Received October 25, 1973)

Computers are devices using only functions the domain and range of which is
perfectly determined (the movement of a scanning head in Turing machine is no
function in this sense) and they are classified by the types and properties of functions
used. Two sorts of tape-computers with suitable modifications of addresses are pre
sented which simulate the activity of Turing machines.

1. ADDRESSED TURING MACHINES

A definition of Turing machine has two parts: the first concerns the syntax and
the second the semantics, i.e. its activity.

With respect to the syntax (according to e.g. M. DAVIS [3]) a Turing machine is
determined by a finite set Z of quadruples which have one of the following three
forms

(1) (q9a9q*9a*)9

(2) (q9a9q*9R)9

(3) (q,a9q*9L)

and which satisfy the following requirement

(4) no two different quadruples from Z have the same first and second member,

where q9 q* e Q; a9 a* e A; A n {R9 L} = 0 and |Q| = n. The elements of Q9 A are
called inner states, basic symbols respectively. There is one inner state qte Q
distinguished and called initial and one basic symbol a0e A called blank space.

The activity of Turing machine concerns a two-way-infinite tape divided into
squares on which certain basic symbols are printed. Assuming well known deter
mination of the activity in [3] a little modified way is used here. Let 1V = {..., —2,

118

- 1 , 0 , -fl, +2,. . .} be the set of all positive and negative integers, inclusively
zero, which are assigned to the individual squares of the tape as their coordinates.
The numbers from N may be considered as symbolic addresses of the corresponding
squares-memory cells, because the tape plays a role of storage in any case. This is
the reason why we are speaking about an addressed Turing machine.

Let TD be the set of all tape descriptions which are functions t such that

(5) Domain t = N, Range t a A and there is only a finite number of integers
xeJV satisfying the inequality t(x) ^ a0.

With respect to (5) let N, be the shortest interval of N such that if x e N — Nt

then t(x) = a0. Then t\Nt is called finite tape description.
In virtue of (4), the following two binary functions may be determined for the given

set Z (by the enumeration of the corresponding triples):

(6) cp = {((q, a); q*); there exists a quadruple in Z such that q, a, q* is its first,
second, third member respectively},

and

(7) \j/ = {((q, a); a*); there exists a quadruple in Z of the form (1) such that q, a, a*
is its first, second, fourth member respectively} .

Now each instantaneous description (see [3]) of the Turing machine Z is determined
by a triple [t, x, q\ where t e TD, xeN and q e Q, because by x is determined
which square is scanned and by t(x) which symbol is printed in the square scanned.
The next instantaneous description [t*, x*, q*] is defined recurrently as follows:

a) if q, t(x) is the first, second member respectively, in a quadruple of T which has
the form (p) where 1 ^ p ^ 3, then the condition (p*) holds, where

(1*) t*(i) = t(i) for each i j - x where i = 0 , ±1 , ±2, . . . , and

**(x) = \l/(q9 t(x)) ; x* = x and q* = <p(q, t(x)) ;

(2*) t* = t; x* = x 4- 1 and q* = <p(q, t(x)) ;

(3*) t* = t; x* = x - 1 and q* = cp(q, t(x)) ;

b) if there does not exist a quadruple of Z such that q, t(x) is its first, second member
respectively, then the activity is stopped and t is called final tape description;

c) the initial instantaneous description \t, x, q\ satisfies q = qx.

The machine Z computes the string function Fz = {(t0\Nf, t\N^; t0 is an initial
instantaneous description and t is the corresponding final state description} because,
obviously, by t0\Nt and t\Nt a pair of finite strings over A is uniquely determined.

If a number function should be computed by a Turing machine Z then all the
required numbers must be expressed in well known way by repeating one distinguished
symbol, i.e. certain coding and decoding is assumed such that one number may

119

occupy many neighbouring squares, or, one number is stored at many addresses
simultaneously. If also negative integers, rational numbers and r-tuples of such
numbers are required further coding and decoding conventions must be added.

2. COMPUTERS AND THEIR PROGRAMS

Using sligthly modified and simplified definitions and notations of [1] and [2],
a computer may be characterized as follows: Cptr = {Obj, Adr, Fct>, where Obj is
a set of basic objects the computer is dealing with, Adr is a set of basic addresses (or
names, or identifiers etc.) and Fct is a set of basic functions such that if fe Fct then
Domain f <z Objn x Adrm for certain integers 0 = n, m, and Range f cz Obj u Adr.
If there exists a function f e Fct with n = 1 and m = 1 then the computer is called
of a mixed type, otherwise, i.e. if always either n = 0 or m = 0, of a pure type.
If fe Fct then there are the following four possibilities in computers of a pure type:

(8) Domain f cz Objn, n = 1, and Rangef cz Obj (then f is called operation) ;

(9) Domainf cz Objn, n = 1, and Rangef cz Adr (then f is called condition) ;

(10) Domainf cz Adrm, m ^ 1, and Rangef cz Adr (then fis called address mo-
dification) ;

and finally

(11) Domainf cz Adrm, m = 1, and Rangef cz Obj.

In [l] the computer is said to be simple if Fct = Opr where Opr is the set of all
operations, and it is called conditional if Fct = Opr u Cond where Cond ?- 0 and
Cond is the set of all conditions. Here the conditional computers with address
modifications (i.e. if Fct = Opr u Cond u Mod, where Mod ^ 0 and Mod is the
set of all address modifications) will be considered.

Further the following derived concepts must be added to the characterization of
a computer:

Com is the set of all commands which are strings of symbols of one of the following
forms:

(12) f(xj, x 2 , . . . , xn) = : x0, where "f" 6 SymbOpr and xt e Adr for

i = 0, 1, . . . , n ;

(13) x = : y, where x, y e Adr ;

(14) Stop ;

(15) g(xx, x2,..., x„), where "#" e SymbCond and xt e Adr for

i = 1,2,..., n ;

(16) x, where x e Adr;

120

(17) h(xx, x2,..., xn) = : x0, where "ft" e SymbMod and x re Adr for

i = 0, 1,..., n ;

(18^ a(x) -=: y, where x, y e .Adr and a is a new symbol,

(182) y =: <r(x), where x ,ye Adr, <r is a new symbol,

where SymbOpr, SymbCond, SymbMod is the set of names of all elements in
Opr, Cond, Mod respectively such that always there is a one-to-one correspondence
between names and functions, and " = :" is usual assignement symbol.

In simple computers only commands of forms (12) — (14) are required, in con
ditional computers the commands of the form (15) and (16) are added (which are
conditional and unconditional jumps respectively), and if some modifications of
addresses are admitted also the commands of forms (17) and (18) are necessary.

Further

Sta = {a; a is a function such that Domain a = Adr and Range a c Obj u
u Adr u Com} is the set of all states of storage (in simple and conditional com
puters it is possible to restrict the states a to a special case when Range a c Obj);

Adr Com is the set of strings called addressed commands, which are couples
<a; C>, where a e Adr and C e Com (such that the address "a" does not occur in
the command "C"; for this reason in [1] and [2] a special set of labels or markers
is introduced by which the command are labelled and which are the only values of
conditions);

Prog is the set of all programs which are finite sequences P of the form P =
= (K(1), K(2),..., K(p)), where K(0 e Com u AdrCom for each i = 1, 2,.. . , p.

The activity of the computer Cptr under consideration for the program P and for
an initial state of storage a0 e Sta consists in an iterative application of commands
(or addressed commands) occurring in P to the current state of storage in the order
from the left to the right unless by conditional commands (15) and (16) a new address,
and therefore a new addressed command, is determined. It is sufficient to define the
next state of storage at = Ciai^i for the current state ax to which the command Ct

is applied (or executed), and the next command C i + 1 where i > 0. The cases
(12)-(18) must be distinguished:

(12*) Ct = (f(xu x2,..., xn) =: x0) and Ct is contained in Ku\ where 1 g j < p
(if j = p then after application of Ct the activity is finished, because no C i + 1

is determined); if (<Ti-i(xi), <Ti~i(x2),• .., ^i-ifc,,)) 6 Domain/(otherwise the
activity is finished) then at(z) = df0i-i(z) for each zeAdr-{x0} and
ffi(*o) = df/(^i-i(*i)> ^ h ^ - ' ^ - M and C{+1 is that command
contained in Ka+i);

121

(13*) C| = (x =: y) and Ct is contained in Ku\ where 1 ̂ ; < p (if j = p then
after application of C* the activity is finished); then at(z) = dfffi-i(-0 for
each zeAdr'— {y} and at(y) = df^f-iv*), a nd Ci+i is that command con
tained in Ku+1);

(14*) Ci = Stop; then the activity is finished and stopped and the state <7i_1 is
called final or resulting state of storage;

(15*) Ct = (g(xu x2,..., x„)); if (c r , - ^) , <xi_1(x2),..., ^^(x,,)) e Domain g and
if there exists Ku\ 1 <Z j <± p, which contains the address g(ai-x(xi),...
..., ai^t(xn)) (otherwise the activity is finished) then Ci+1 is that command
contained in Ku\ and at = <r.-_i;

(16*) Ci = (x); if there exists Ku\ 1 _5 j _J P, which contains the address x (other
wise the activity is finished), then Ci+l is that command contained in Ku\
a n d <7j = cTf-i;

(17*) arises from (12*) by replacement of " / " by "h";

(18*) Cj = (<r(x) =: y) and Ct is contained in Ku\ where 1 ^ j < p (if j = p
then after application of Ct the activity is finished); if a^^x) e Adr (other
wise the activity is finished) then a{(z) = df^i-iOO for each z e Adr — {j/}
and at(y) = df^i-iC^i-iW) = <r?-i(*)» anc* Q+i 1s t n a t command which is
contained in Ku+1);

(18*) Ct = (y =: <T(X)) and Cf is contained in Ku\ where 1 g j < P (if j = p
then after the application of C(the activity is finished); if <rJ_1(x)e-4dr
(otherwise the activity is finished) then at(z) = df î-iv-O f° r e a c n z G ^dr —
— {cr^^x)} and o,

r-(c74_1(x)) = df^-iOO* a n - ^i+i 1s t n a t command con
tained in the Ku+1\

Although the commands of the form (18) are sufficient for our simulation of all
Turing machines it should be noted that they may be generalized in a natural way
to the form

(19) ak(x) = : y, where x, y e Adr, a is a new symbol as in (18x) and k ^ 2 is an
arbitrary integer.

It is conjectured that this general case is close to the "ref "-mechanism in ALGOL68

[5]-
The computer Cptr computes the state function FCptrP = {(a0; a); at is the final

state of storage of Cptr which corresponds to the initial state a0 in accordance with
the program P}, because it assigns states of storage again to states of storage.

Usually there are prescribed input and output addresses to each program P,
e.g. IP = {xl9 x2,..., xr} c. Adr and 0P = {yu y2,..., ys} <z Adr respectively, and
therefore another function fCptr,p = {(̂ ol/pJ ai\o^ (ao> 0i)eFCptrP} is called

122

computable in Cptr by P, under the condition that Range <70|/p c Obj and
Range ai\0p cz Obj, which means that s r-ary functions (---operations) in Obj
are computed (if, e.g. the order of input and output addresses is fixed).

Thus the crucial theoretical question is to decide whether or not an arbitrary
function f* such that Domain f* a Objr and Range f* cz Obj (i.e. if s = 1) is
computable in the prescribed Cptr, i.e. whether or not there exists a program P
such that f* —fcPtr,p> anc* if the answer is positive, to construct the required
program P. In fact, always the function f* under consideration must be determined
by a "program" or by an "algorithm" using some other functions assumed as known
and computable, and therefore the crucial practical question is to "translate" the
given "program" for one "computer" into program for the second computer.

3. DIFFERENCES BETWEEN TURING MACHINES AND COMPUTERS

(i) A computer has finite storage represented by the set Adr but an addressed
Turing machine has an infinite storage represented by the set N.

(ii) The storage of a computer has no structure, i.e. all addresses are equivalent
each to other because they are all available in any instant (the differences between
the registers and other memory cells of main storage of real computers and differences
between different sorts of storage as magnetic tape, drum, digs, etc. can but need not
be taken in account here), but in each Turing machine its memory has tape structure
where in next instant only two neighbouring addresses, and the current address
itself, are available.

(iii) The basic objects which are stored at the addresses in computers may be
essentially more complex than the basic symbols stored at the addresses of a tape in
Turing machines, where also basic objects are stored at many neighbouring addresses.
Here is a deep difference in the concept of address.

(iv) In computers it is possible to admit an infinite number of basic objects without
any change of the programs, but it has different meaning to admit infinite number of
basic symbols in Turing machines.

(v) There is distinguished the computer from its programs, but in Turing machine
both these concepts are mixed up in a set of quadruples Z.

In other words, in computers the determination of basic functions (which belong
to hard-ware) is separated from that of programs (which belong to soft-ware), but
in Turing machines both these parts are mixed up.

(vi) The string functions Fz and the state functions FCptrP or fCptFtP cannot be
compared in any reasonable way because of (iii), i.e. Fz concerns the sequences of
addresses of arbitrary lengths but fcPtr,p concerns fixed sets of addresses.

(vii) In computers the basic operations and conditions may be arbitrary functions
of many variables (in real computers they are binary functions usually), i.e. the

123

objects stored at many different addresses must be used simultaneously, but in Turing
machines only unary operations are used, because only one square is scanned.

It follows by (vii)rthat it is impossible to replace a computer by one single Turing
machine; it would be necessary to have several Turing machines together with their
composition, or to have a universal Turing machine.

By (iii) it is also impossible to replace a Turing machine by one computer, unless
a specialized storage is required, i.e. which have the same tape structure as that of
Turing machines has.

Therefore in the following sections certain specialized tape-computers are con
sidered. Then FCptrP will be a string function and it may be compared with Fz for
the Turing machine Z.

4. THE FIRST TAPE-COMPUTER AND ITS SIMULATING PROGRAM

Now to an arbitrary addressed Turing machine Z with the tape N the tape-com
puter Cptrt = <Objl5 Adru Fctx> of mixed type is constructed in the following
way.

First of all in accordance with Sect. 1 let us introduce the following unary relation
in 4-valued logic (i.e. a decomposition of a set into 4 subsets) with values ml9 m2, m3,
m4 e Adr:

(20) Q = df {((<?> a)l m
P)l there exists a quadruple in Z of the form (p), where 1 = p :g

^ 3, such that q, a is its first, second member respectively} u {((q, a); m4);
there does not exist a quadruple in Z such that q, a is its first, second member
respectively}.

In other words Q is a function such that Domain Q = Q x A, Range Q C {ml5 m2,
m3, m4} and such that a decomposition of Q x A in at most four classes is deter
mined. Three of these classes correspond to the cases (l), (2) and (3) mentioned in
Sect. 1, and the fourth class contains pairs (q, a) for which neither q> nor \j/ is defined.

Thus we define: Objt = AKJ Q; Adrx = N u {rN, r'N, rQ, r'Q} u {m0, ml5 m2, m3,
m4}, i.e. to the tape-store N some auxiliary addresses — e.g. registers — are added;
Fctt a= {<p, i/r, Q, -f-1, —1}, where " + 1" and " - 1 " means the addition of plus one
and minus one defined in N respectively; Stat = {a; there exists t e TD such that
a(x) = t(x) for each x e N, a(rN) e N, a(r'N) e A, a(rQ) e Q, a(r'^) e Q and a(mp) e
e Com for p = 0, 1, 2, 3, 4}; the initial state a0 satisfies <r0(rQ) = qv Finally let us
take the following program:

pi = «m0; a(rN) ==: r'Ny , Q(rQ, r'N) ,
<m1; <p(rQ9 r

f
N) =: r'Qy , il/(rQ, r'N) =: r'N, r'Q=: rQ, m0

<m2; (f>(rQ,r'N) = : r Q >,
<m3; <f>(rQ,r'N) = : r c >, .
<m4; Stopy).

124

*(> '"ß. r'rÒ •• = :rŃ, r'Q

rN
+1 •-» ̂ j y , m0,

rN
- 1 = ̂ w. Wo?

Lemma 1. The tape-computer Cptr1 by the program Pl simulates the activity
of the Turing machine Z and therefore FCptri Pl = Fz.

Proof. If [t9 x, q\ is an initial instantaneous description of the addressed Turing
machine Z, i.e. q = ql9 then as the corresponding initial state <r0 for Cptr^ the fol
lowing one must be chosen: <r0(rN) = x and <r0(y) = t(y) for ^eJV. Further the
simulation is clear step by step.

The unsufficiency of this tape-computer consists in the fact, that we are interested
in a string function Fz such that the strings on N consist only of the basic symbols
from A and the inner states from Q are not addmitted. Therefore an other tape-
computer will be introduced.

5. THE SECOND TAPE-COMPUTER AND ITS SIMULATING PROGRAM

The tape-computer Cptr2 = <Ob/2, Adrl9 Fct2> differ from Cptrl by considering
of Q as a subset of the set of addresses, by which follows the necessity to modify the
set of functions as follows:

(6*) gq = {(a; q*); there exists a quadruple in Z such that q9 a9 q* is its first, second,
third member respectively} for each qe Q;

(7*) fq = {(a; a*); there exists a quadruple in Z of the form (1) such that q9 a, a*
is its first, second, fourth member respectively} for each qe Q;

(20*) hq = {(a; mq
p)); there exists a quadruple in Z of the form (p)9 where 1 g p ^

_ 3, such that q9 a is its first, second member respectively} u {(a; m*4));
there does not exist a quadruple in Z such that q9 a is its first, second member
respectively} for each q e Q.

It is important to mention explicitely, that the functions gq9fq9 hq for q e Q arised
by suitable partialization of the function <p9 \j/9 Q respectively.

Let Qg9 Qf9 Qh be the set of all states q e Q such that gq 9- 0, fq # 0, hq ^ 0
is valid respectively. Therefore Qg n Qh = 0 and Qf c: Qg%

Thus we define: Obj2 = A; Adr2 = J V u g u {rN9 r'N} u {mq
p); qe Q a p =

= 1, 2, 3, 4}; Fct2 = Opr2 u Cond2 u Mod29 where Opr2 = {fq; q e Qf}9 Cond2 =
= {gq\ <l e Qg} u {fc«; 4 e &>} and *Mod2 = { + 1, - 1 } ; Sto2 = {<r; there exists
t G TD such that a(x) = f(x) for each x e N9 <r(rN) e N9 a(rN) e N9 <r(q) e Com for
each qe Q and <r(mq

p)) e Com for each qe Q and p = 1, 2, 3, 4}; the initial state <r0

satisfies <r0(x) = t.

125

Finally let us take the following program, if (2 = {qu q2, •••, q„}:

P2=«Qu'(rN)=:r'Ny, *, .(-*),

«) ; f ,K)=: f f M>, gqi(r'N),
<mq

2
l
h,rN + 1 = : r j v > , 0 4 l (r ;) -

<m^;rN- 1 ==r J V >, £itI(
rw) »

<m£>; STOP> ,

<02;<KrA) = : ^ > , hq2(r'N),

«1);fJ^)=:ff(rJv)>» *«fa).

<<>_.; STOP> ,

<«.;*(»•*)-*•»•;>, Kn(r'N),
<<) ; f j^)= : f f (^)> ' ffJr»)»
« V N + i = : '•JV>» ^ K) ,
« ' ; t« - - = : ' N > > tfj'w),

<m£;STOPy),

where each group of commands starting with <gf; ̂ (rjy) = : r'N} is superfluous if

Lemma 2. The tape-computer Cptr2 by the program P2 simulates the activity
of the Turing machine Z and therefore FCptr2>Pl = Fz.

Proof. If [f, x, qt~\ is an initial instantaneous description of the addressed Turing
machine Z, then the corresponding initial state <r0 for the Cptr2 must be chosen as
follows: a0(rN) = x and <r0(y) = t(y) for each y eN. Further if, e.g. the quadruple
(qi> au <?2> ai) of the type (l) is applied to [f, x, q{\, where t(x) = au then by (1*)
the next instantaneous description [**, x*, q*] satisfies: **(i) = f(i) for i e N — {x}
and f*(x) = ^(^t, at) = a2 (which follows by (7)); x* = x and q* = <?((_/!, at) = q2

(which follows by (6)). On the other hand according to the P2 the first command
a(rN) = : rN must be applied, where a = <r0 (as the current state at the beginning is
the initial state <x0) and therefore by (18*) one gets ax(z) = dftr0(z) for each z e
eAdr — {r'N} and <Xi(rN) = df°o(rN) = av Further the next conditional command
hqx(rN) is applied and therefore by (15*) a2 = at and by (20*) hqi(ax) = m[\\ Thus
the next command to be executed is fqi(r'N) = : a(rN), where by (7*) fqi(

ai) = a2

and a2(rN) = cr^r^) = a0(rN) = x. Therefore by (12*) a3(z) = a2(z) for each
z e Adr — {x} and <x3(x) = dffqx(a2(rNy) = a2. Now the next command to be executed
i s 9qXrN)> where according to (6*), gqi(

ai) = <?2> and by (15*) <r4 = <r3, which means
that as the next command will be executed that one addressed by "q2\ Moreover it is

126

clear that aA(i) = f*(i) for each ieN and a4(rN) = x =- x* again. Taking all other
possibilities one establishes the required simulation correspondence step by step.

It follows by the lemmas:

Theorem. Each function computable by a Turing machine is computable by
a tape-computer of the type Cptrx and also of the type Cptr2.

The reason for giving this theorem (and both preceeding lemmas also) is to clarify
deep differences between computers and Turing machines. It is shown by them that
for the simulation purpose of Turing machines the computers must be provided
not only by an infinite memory but moreover by a tape-structured infinite memory
which requires two infinite functions = address modifications " + 1" and " — 1 ' \
It seems to be highly unconstructivistic and, of course not realizable, to allow any
infinite function in the base of a computer itself. Moreover both tape-computers
show explicitely that during the computation several functions a e Sta must be
used, although not explicitly, which probably may have unpredictible properties.
This is also no support for the strict constructivistic point of view.

6. CONCLUSIONS

In order to underline the differences between Turing machines and computers it
shoulded be remind a note concerning certain classifications of computers in Sect. 2.
In general it is unclear how important role is played by the commands of the types
(18x) and (182). In any case there is a conjecture that these types of commands arc
necessary in each complete simulation of Turing machines and therefore that they
represent a special tool in constructing of functions. These commands are not expres
sible using the usual flow-diagrams and therefore it may be conjectured that the func
tions computed by Turing machines cannot be simulated by flow-diagrams only.

On the other hand it remains open to extend the above mentioned simulation to
the universal Turing machine too.

With respect to a classification concerning the functions required by the computer
it is clear, that there are many Turing machines simulated by just one-tape-computer
using many different programs. The value of these classifications remains unclear
because it is easy to provide each tape-computer by all possible unary operations
which may be defined in the set A (if A is finite).

The fact that in Cptr2 only unary operations (and in fact also only unary conditions
and modifications) are required, shows that within all the frame of Turing machines
or of mentioned tape-computers some important tools are included, or are added
by further conventions, if the functions of unary variables should be evaluated.

Moreover in [4] even a more extremal case occurs if all the operations are constant
functions, i.e. functions without any variable.

127

For all the mentioned differences between Turing machines and computers a strong
feeling must arise that the recent computer problems cannot be solved using the con
cepts concerning Turing machines but that the new direct concepts of computers
are necessary to introduce and investigate.

References

[1] Čulík, K and M. A. Arbib, Sequential and Jumping Machines and their relation to computers,
Acta Infoгmatica 2 (1973), 162—171.

[2] Čulík, K.. Structural similarity of programs and some concepts of algorithmic method, Lecture
Notes in Economics and Mathematical Systems 75, Springer 1972.

[3] Davis, M., ComputabШty and UnsolvabШty, McGraw-HШ, N.Y. 1958.
[4] Wagner, È. G., On the structure of programming languages, or, six languages for Turing

Machines, 45—53, IEEE conference record of 1967 eight annual symposium on switching
and automata theory,

[5] Wijngaarden, A. van, Mailloux, B. J., Peck, J. E. L., Koster, C. H. A., ALGOL 68, Math.
Centrum, Amsterdam 1968.

Authoťs address; 602 00 Brno, Čápkova 31.

128

		webmaster@dml.cz
	2012-05-12T06:48:09+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document

