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ON SUMMABILITY IN CONVERGENCE /-GROUPS 
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Summary. In connection with two questions on convergence groups proposed by J. Novak 
there are constructed convergence /-groups which have some rather pathological properties 
concerning the summability of sequences. 
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Convergence groups were studied by J. Novak [13], [14], [15]; cf. also R. Fric 
[2], [33], R. Fric and V. Koutnik [4], C. Kli£ [10], V. Koutnik [12], C. Schwartz [17] 
and F. Zanolin [18]. 

Let s4 be the class of all convergence groups G containing a sequence (xn) which 
converges to 0 but each subsequence (yn) of which is not summable. (A sequence (zn) 

00 

is summable if the series £ zn converges.) 

Next, let 0b be the class of all convergence groups G containing a sequence (x,,) 
such that each subsequence (yn) of (xn) contains a subsequence which is summable 
and another subsequence which is not summable. 

Problems 14 and 16 proposed by J. Novak [15] consist in asking whether the class s/ 
(or the class &, respectively) is nonempty. 

Problem 14 was solved affirmatively by F. Zanolin [18] and by R. Fric and V. 
Koutnik [4]. C. Schwartz [17] found a normed linear space belonging to the class J / . 

C. Kli§ [10] solved Problem 15 affirmatively by appliyng orthonormal vector 
measures with values in the Hilbert space Z2. 

The notion of the convergence /-group was introduced by M. Harminc [6]; 
cf. also Harminc [7], [8], and the author [9]. While in [6] a convergence a on an 
/-group G is a subset of GN x G consisting of pairs ((xn), x) where xn converges 
to x, here we understand by a convergence a a subset of GN consisting of sequences 
(xn) converging to 0. 

Each convergence /-group is a convergence group. A natural question arises 
whether there exists a convergence /-group belonging to the class &0\ a similar question 
can be asked for the class J1. 

For an /-group G we denote by Conv G the set of all convergences a on G such 
that (G, a) turns out to be a convergence /-group. If H is an /-subgroup of G and 
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a e Conv G, then a(H) = a n HN is a convergence on H induced by a; in such 
a case (H; oc(H)) is a convergence /-group as well. The /-group G is said to be 
of infinite breadth if there exists an infinite disjoint subset of G (a subset M of G 
is called disjoint if xt A X2 = 0 whenever x1 and x2 are distinct elements of M, 
and x > 0 for each x e M). For example, each direct product of an infinite number 
of nonzero /-groups is of infinite breadth. 

In the present note it will be shown that convergence /-groups belonging to the 
class sf occur rather frequently. Also, there exists a convergence /-group which 
belongs to the class 0&. Namely, the following results will be established: 

(A) Let G be an abelian lattice ordered group of infinite breadth. There exist 
am e Conv G (m = 1, 2, . . .) and convex l-subgroups Gm (m = 1, 2, ...) Of G such 
that 

0) am(i) + am(2) and Gm(1) n Gm(2) = {o} whenever m(l) and m(2) are distinct 
positive integers; 

(ii) for each positive integer m, (Gm, am(Gm)) belongs to the class s&. 
(B) There exists a linearly ordered group G such that 
(i) (G, a 0 ) e ^ , where a0 is the set of all sequences (xn) in G which o-converge 

to 0 in G; 
(ii) G is a subgroup of the lexicographic product of linearly ordered groups Gn 

(n e N), where each Gn is isomorphic to Z. 
(Here, Z denotes the additive group of all integers with the natural linear order.) 

L PRELIMINARIES 

For the terminology and notation concerning linearly ordered groups and lattice 
ordered groups ( = /-groups) cf. L. Fuchs [5] and V. M. Kopytov [11]. The group 
operation will be denoted additively. Throughout the paper we assume that all 
/-groups under consideration are abelian. 

We recall some relevant notions on convergence /-groups. 
Let N be the set of all positive integers and let G be an /-group. The direct product 

YlneN Gn> where Gn = G for each neN, will be denoted by GN. The elements of GN 

are denoted by (gn)neN, or simply (gn). If there exists g e G such that gn = g for each 
neN , then we put (gn) = const g. 

(gn) is said to be a sequence in G. The notion of a subsequence has the usual 
meaning. 

For each /-group G we set G+ = {g e G: g ^ 0}. Let a be a convex subsemigroup 
of (GN)+ such that the following conditions are satisfied: 

(I) If (gn) e a, then each subsequence of (gn) belongs to a. 
(II) Let (gn)e(GN)+. If each subsequence of (gn) has a subsequence belonging 

to a, then (gn) belongs to a. 
(Ill) Let g e G. Then const g belongs to a if and only if g = 0. 
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Under these assumptions a is said to be a convergence in G. The system of all 
convergences in G will be denoted by Conv G. 

For (gn) e GN, a e Conv G and g e G we put gn ->a g if and only if (\gn — a|) e a. 
If (x„), (>>„) e GN, xn ->a x and yn ->. j , then xn + yn ->a x + y and - x „ ->a - x . 

If a G Conv G, then the pair (G, a) will be called a convergence /-group. It is clear 
that each convergence /-group is a convergence group. 

Let H be an /-subgroup of G and let a e Conv G. Put a(H) = a n if*. Then a(H) 
belongs to Conv H\ it is said to be induced by a. For a sequence (hn) in H and for 
/i e if we often write x„ ->a x instead of xn ->a(//) x. 
Let A be a nonempty subset of (GN)+. We denote by 5A the system of all sub
sequences of sequences belonging to A. The symbol [A] will denote the convex 
closure of the set A u {const 0} in GN. Let <̂ 4> be the subsemigroup of GN generated 
by the set A. Next, A* will denote the set of all sequences (xn) in G such that each 
subsequence (yn) of (xn) has a subsequence belonging to A. 

1.1. Proposition. (Cf. [8], Theorem 1.18 or [6], Theorem 2.) Let 0 4= A = (GN)+. 
Then the following conditions are equivalent: 

(a) IfgeG, const g e [<5A>], fhe/i g = 0. 
(b) [<(5.4>]* e Conv G. 
For K c G we put 

K1 = {g e G: \g\ A \X\ = 0 for each x e K} . 

If a nonempty subset A of (GN)+ satisfies the condition (a) from 1.1, then A will 
be said to be regular. 

The following two assertions are easy consequences of 1.1 (cf. also [8] for related 
results): 

1.2. Lemma. Let (xn)e(GN) + . Assume that xn A xm = 0 whenever n and m are 
distinct elements of N. Then the one-element set (xn) is regular. 

1.3. Lemma. Let A be regular. Let (xn) be a sequence in G such that all xn belong 
to A1 and (xn)e [<5A>]*. Then there is meN such that xn == 0 / o r each n > m. 

2. THE CLASS tf 

Proof of Theorem (A). Let G be an /-group of infinite breadth. Hence there exists 
an infinite disjoint subset X in G. Thus there is a system S == {X„}neN such that 
each Xn is a countably infinite subset of X and Xn n Xm = 0 whenever n and m 
are distinct elements of N. 

Let meN. Arrange the elements of Xm into a one-to-one sequence (xn)nsN in G. 
In view of 1.2, the set ( x ^ ) ^ is regular. Denote am = [ ^ { ( x ^ ^ y ] * . According 
to 1.1, am belongs to Conv G. 
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Let m(l) and m(2) be distinct elements of N. Then we have 

(Xn JneN G a m ( l ) > 

but in view of 1.3, (xm(2))neN does not belong to am(1). Hence aw(1) + aw(2). 
We denote by Gm the convex /-subgroup of G generated by the set {xm}neN. Since 

(*n UN e am, we have xm - a m 0. Let {zm}neN be a subsequence of (xm)neN. Put ym = 
= zm + z2 + ... + zm for each neJV. Assume that there is ym e Gm such that 

We have ym > 0 for each n e N. Hence 

ym = y™ v 0 ->amym v 0 , 

thus ym
 = 0. Let k e N. Consider the sequence (zm)k^neN. For each n e N with n ^ k 

we have y™ = j > z™, thus 

yfl - * « m y v zk -

therefore 

(1) 2 ^ y m for each keN. 

Since j ; m e Gm, there \s t e N such that 

(2) 0 = ym ^ cxx7 + c2x^ + ... + ctx
m , 

where clyc29..., cf are positive integers. Choose keN, k > t. Then zJJ1 A x^ = 
= 0, . . . , zm A xm = 0, which in view of (2) implies zm A ym = 0. Taking (l) into 

ao 

account, we arrive at a contradiction. We have proved that £ zm does not exist in the 
n = l 

convergence /-group (Gw, am(Gm)). According to the construction of Gm we have 
Gm(i) n Gm(2) = {0} whenever m(l) and m(2) are distinct elements of N. Hence we 
have proved Theorem (A). 

3. THE CLASS St 

In this section, Theorem (B) will be established. 
Let Q be the additive group of all rationals (with the natural linear order). For 

each m e N let Gm = Q. Consider the lexicographic product. 

H — FmeN Gm 

(cf., e.g., Fuchs [5]). Then H is a linearly ordered group. The elements of H will 
be denoted as h = (hm)meN. 

For r e Q and h e H we put rh = (rhm)meN. Then H turns out to be a linear space 
over Q. 

For each n e N let en = (e!T)me/Y be the element of H such that em = 1 for m = n 
and ĉ 1 = 0 otherwise. 
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Let Hl be a subgroup of H (with the induced linear order). Assume that en e Hl 

for each neN. Let rn + 0 be a rational number for each n e N. Denote yn = rie1 + 
+ r2^2 + ... + rnen. There exists >> e if with j ; m = rm for each me N. Further, let a0 

be the set of all sequences (xn) in H such that (xn) o-converges to 0 in Hx. 

From the fact that all elements en (n e N) belong to Ht we obtain 

3.1. Lemma. Assume that rnen e Hl for each neN. If y e Hl9 then y = Vn*=i yn-
Ify does not belong to Hl9 then V.T=i y« does not exist in Hx. 

Since yx —^ y2 ;= y3 ^ ... , Lemma 3.1 yields 

3.2. Lemma. Assume that rnen e G for each neN. If y e Hl9 then yn -*0 y in G 
00 

(hence £ /•„£,, is summable in Hx with respect to the o-convergence). If y does not 
n=l oo 

belong to Hl9 then (yn) is not o-convergent in Ht (hence £ rnen fails to be summable 
in Ht with respect to the o-convergence). n==l 

We define a mapping m: 2N -+ H as follows: for each 0 =t= A £ 2N we put 
m(A) = h, where hm = 1 if m e A, and hm = 0 otherwise; next we set m(0) = 0. 

By applying the results established in [10], Part II we obtain the following as
sertion as a particular case: 

3.3. Lemma. There exists a linear subspace E of the linear space H with the 
property that for each infinite subset A of N there are elements ueE, veH\E 
with 

m"1(u),m"1(v) c A . 

3.4. Lemma. Let E be as in 3.3 and let (en) be as above. Let E be viewed as a con
vergence group with respect to the o-convergence. Then 

(i) eneE for each neN; 

(ii) each subsequence of (en) contains a subsequence which is summable in E, 
and another subsequence which is not summable in E. 

Proof, (i) follows from the proof of Theorem in [10] since, in the notation of [10], 
en e K0 c £ for each neN. The assertion (ii) is a consequence of 3.2 and 3.3; in 3.2 

n 

we put rn = 1, neN, and hence yn = £ e{. 
i = i 

Let G = {h e E: hm is an integer for each m e N}. Then G is a subgroup of E; 
it is linearly ordered by the induced linear order. It is obvious that the assertion of 3.4 
remains valid if E is replaced by G. Moreover, G is a subgroup of TmeM Gm, where 
Gm = Z for each meN. Thus Theorem (B) is proved. 
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Súhrn 

O SUMOVATEENOSTI V KONVERGENČNÝCH /-GRUPÁCH 

JÁN JAKUBiK 

V súvislosti s dvoma otázkami o konvergenčných grupách položenými J. Novákom zostrojujú 
sa v tomto článku konvegenčné zvázovo usporiadené grupy s určitými „patologickými" vlast-
nosťami týkajúcimi sa sumovateínosti radov. 
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Резюме 

О СУММИРУЕМОСТИ В РЕШЕТОЧНО УПОРЯДОЧЕННЫХ 
ГРУППАХ СХОДИМОСТИ 

Л̂N ^Ак^в^к 

В связи с двумя вопросами о сходимости, поставленными Й. Новаком, конструируются 
решеточно упорядоченные группы сходимости с „патологическими" свойствами, касающи
мися суммируемости рядов. 

Ашког*5 аййгем: Ма1ета11ску й$1ау 8АУ, 2с1апоуоуа 6, 040 01 Ко<псе. 
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