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SOME STABLE OPERATOR IDEALS

ROSHDI KHALIL AND MAJEDA AZIZAbstrat. Let Π be an operator ideal in the sense of Pietsch. Then Π is called
stable if whenever T1 and T2 ∈ Π then T1

∨

⊗ T2 ∈ Π. In this paper we study the
stability of some operator ideals. In particular we prove that the ideals of r-nuclear
and r-integral operators are stable. Further, we study the stability of some hulls of
some operator ideals. Using these results we give a new proof for the stability of
p-summing operators.

Introduction

For Banach spaces X and Y , let L(X,Y ) denote the space of bounded linear
operators fromX into Y . Let L = UL(X,Y ), where the union runs over all Banach
spaces X and Y . Let Π be a subclass of L. The set Π(X,Y ) = Π ∩ L(X,Y ) is
called a component of Π. Following Pietch [5], a subclass Π ⊆ L is called an
operator ideal if:

(i) Each component Π(X,Y ) is a vector space that contains the finite rank
elements of L(X,Y ).

(ii) For all Banach spaces E,X, Y , and F , we have L(Y, F )◦Π(X,Y )◦L(E,X)
⊆ Π(E,F ).

If X and Y are Banach spaces then X
∨
⊗ Y denotes the completion of the

injective tensor product of X with Y . For Ti ∈ L(Ei, Fi) we let T1

∨
⊗T2 denote the

tensor product map of T1 and T2. An operator ideal Π is called stable if whenever

Ti ∈ Π(Ei, Fi), i = 1, 2, then T1

∨
⊗ T2 ∈ Π

(
E1

∨
⊗E2, F1

∨
⊗ F2

)
. We refer to [4] and

[5] for more on tensor product of Banach spaces and tensor product of maps.
In [1] and [2] Holub proved that the ideals of p-summing operators, 1-nuclear

operators and 1-integral operators are stable. It is the object of this paper to
discuss the stability of other operator ideals. Indeed, we prove that r-nuclear
operators and r-integral operators are stable. Further, we prove that if an operator
ideal Π is stable, then the injective hull of Π is stable. This gives another proof
for the stability of p-summing operators. Some other results are presented.
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1. Preliminaries and Notations

Let X and Y be Banach spaces and T ∈ L(X,Y ). Then:

(i) T is called p-summing operator if there exists λ > 0 such that:

(
n∑

i=1

‖Txi‖
p

) 1

p

≤ λ sup
‖x∗‖≤1

(
n∑

i=1

|〈xi, x
∗〉|p

) 1

p

for all finite sequences {x1, x2, x3, . . . , xn} ⊆ X.
Let Πp(X,Y ) be the space of p-summing operators from X into Y , and Πp be

the operator ideal of p-summing operators.

(ii) T is called r-nuclear, r ≥ 1, if T has a representation of the form

Tx =

∞∑

i=1

〈x∗n, y
∗〉yn, x∗n ∈ X, yn ∈ Y,

(
∞∑

i=1

‖x∗n‖
r

) 1

r

<∞

and

sup
‖y∗‖≤1

(
n∑

i=1

|〈yn, y
∗〉|r

∗

) 1

r∗

<∞,

(
1

r
+

1

r∗
= 1

)
.

It is well known, [5], that T is r-nuclear if and only if T has a factorization,
T = BT0A, where B ∈ L(ℓr, Y ), A ∈ L(X, ℓ∞) and T0 ∈ L(ℓ∞, ℓr) is of the form
T0(ai) = (aiσi), (σi) ∈ ℓ∞.

Let Nr(X,Y ) denote the space of r-nuclear operators from X into Y , and Nr

the operator ideal of r-nuclear operators.

(iii) T is called r-integral operator if T admits a factorization JY T = BIrA,
where B ∈ L(Lr(Ω, µ), Y ), A ∈ L(X,C(Ω)), JY is the natural embedding of Y into
Y ∗∗ and Ir is the inclusion map of C(Ω) into Lr(Ω, µ) where Ω is some compact
Hausdorff space, and µ a probability measure on Ω.

Let Lr(X,Y ) denote the space of r-integral operators fromX into Y , and Lr the
operator ideal of r-integral operators. We refer to Pietsch [5] for a full discussion
of these ideals of operators.

An operator T ∈ L(X,Y ) is said to belong to Πs, the surjective hull of the
operator ideal Π, if TQX ∈ Π(Xsur, Y ), where Xsur = ℓ1(B1(X)), B1(X) is the
unit ball of X, and QX is the canonical surjection of ℓ1(B1(X)) onto X, [5].

The operator T is said to belong to Πi, the injective hull of Π, if JY T ∈
Π(X,Y inj), where Y inj = ℓ∞(B1(Y

∗)), and JY is the canonical surjection of Y
onto ℓ∞(B1(Y

∗)). It is known,[5], that Πs and Πi are operator ideals.

2. The Stability of Some Operator Ideals

In this section we establish the stability of r-nuclear and r-integral operators,
r ≥ 1.
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Theorem 2.1. The ideal Nr is stable.

Proof. Let Ti ∈ Nr(Ei, Fi), i = 1, 2. Then Ti has a factorization

Ei
Ai−→ ℓ∞

Si−→ ℓr
Bi−→ Fi

where Si is a diagonal operator, Si(ηn) = (σi(n)ηn), where σi ∈ ℓr, i = 1, 2.

Hence T1

∨
⊗ T2 has a factorization:

T1

∨
⊗ T2 = (B1

∨
⊗B2) ◦ (S1

∨
⊗ S2) ◦ (A1

∨
⊗A2) .

Consider

J1 : ℓ∞
∨
⊗ ℓ∞ → ℓ∞(N ×N)

J2 : ℓr(N ×N) → ℓr
∨
⊗ ℓr ,

where J1 and J2 are the inclusion maps. Let ℓr ⊗
αr

ℓr denote the r-nuclear tensor

product of ℓr with itself, [3]. It is well known that ℓr ⊗
αr

ℓr ∼= ℓr(N ×N), [3]. Let

S : ℓ∞(N ×N) → ℓr(N ×N)

S(a(n,m)) = (σ1(n)σ2(m) a(n,m)) ,

with σ1 · σ2 ∈ ℓ∞(N ×N).

Consequently S1

∨
⊗ S2 has the factorization

ℓ∞
∨
⊗ ℓ∞

J1−→ ℓ∞(N ×N)
s

−→ ℓr(N ×N)
J2−→ ℓr

∨
⊗ ℓr

and so T1

∨
⊗ T2 has the factorization

T1

∨
⊗ T2 = J1 ◦ (A1

∨
⊗A2) ◦ S ◦ (B1

∨
⊗B2) ◦ J2 .

Since S is a diagonal operator, T1

∨
⊗ T2 is r-nuclear. This ends the proof. �

Theorem 2.2. The ideal Lr is stable.

Proof. Let Ti ∈ Lr(Ei, Fi), i = 1, 2. Then JFi
Ti has the factorization

Ei
Ai−→ C(Ki)

Ir−→ Lr(Ki, µi)
Bi−→ F ∗∗

i .

Since C(K1)
∨
⊗ C(K2) = C(K1 × K2), and Ir : C(Ki) → Lr(Ki, µi) is just the

inclusion map, it follows that

Ir
∨
⊗ Ir : C(K1)

∨
⊗ C(K2) → Lr(K1, µ1)

∨
⊗ Lr(K2, µ2)
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is the inclusion map of C(K1 ×K2) into Lr(K1, µ1)
∨
⊗ Lr(K2, µ2) with range in

Lr(K1 ×K2, µ1 ⊗ µ2) = Lr(K1, µ1) ⊗
αr

Lr(K2, µ2) .

Since ‖ · ‖∨ ≤ ‖ · ‖αp
, it follows that for any ψ ∈ C(K1 ×K2)

∥∥∥∥
(
Ir

∨
⊗ Ir

)
(ψ)

∥∥∥∥
∨

≤

∥∥∥∥
(
Ir

∨
⊗ Ir

)
(ψ)

∥∥∥∥
αp

.

But by Theorem 17.3.3 and Proposition 17.3.8 of [5] we get by

∥∥∥∥
(
Ir

∨
⊗ Ir

)
(ψ)

∥∥∥∥
∨

≤ λ

(∫

K1×K2

|ψ(x, y)|r d(µ1 ⊗ µ2)

) 1

r

,

for some λ > 0. Hence Proposition 17.3.8 of [5],

Ir
∨
⊗ Ir ∈ Πr

(
C(K1 ×K2), L

r(K1)
∨
⊗ Lr(K2)

)
.

Consequently [5], Ir
∨
⊗ Ir has the factorization:

Ir
∨
⊗ Ir = D ◦ Ĩr : C(K1 ×K2)

eIr−→ Lr(K1 ×K2, µ1 ⊗ µ2)
D
−→ Lr(K1)

∨
⊗ Lr(K2)

where Ĩr is the inclusion map. Hence we have

J ◦KF1

∨
⊗KF2

◦ T1

∨
⊗ T2 = J ◦B1

∨
⊗B2 ◦ Ir

∨
⊗ Ir ◦A11

∨
⊗A2

= J ◦B1

∨
⊗B2 ◦D ◦ Ĩr ◦A1

∨
⊗A2

where J is the natural inclusion of F ∗∗
1

∨
⊗ F ∗∗

2 into

(
F1

∨
⊗ F2

)∗∗

. But

J ◦

(
KF1

∨
⊗KF2

)
= K

F1

∨

⊗F2

.

Hence K
F1

∨

⊗F2

◦ T1

∨
⊗ T2 has a factorization K

F1

∨

⊗F2

◦ T1

∨
⊗ T2 = B1

∨
⊗B2 ◦D ◦ Ĩr ◦

A1

∨
⊗A2. Hence T1

∨
⊗ T2 is an r-integral. This ends the proof. �

3. Hull Stability of Operator Ideals

In this section we prove the stability of the hulls Πi and Πs for any stable
operator ideal Π.
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Theorem 3.1. Πi is stable for any stable operator ideal Π.

Proof. Let Π be a stable operator ideal and Ti ∈ Πi(Ei, Fi), i = 1, 2. Consider

J
F1

∨

⊗F2

◦ T1

∨
⊗ T2 : E1

∨
⊗ E2 → F1

∨
⊗ F2 → ℓ∞

(
B1

(
F1

∨
⊗ F2

)∗)
.

Let JFi
: Fi → ℓ∞(B1(F

∗
i )) be the canonical embedding, i = 1, 2. Since JFi

is an
injection, then the operator

JF1

∨
⊗ JF2

: F1

∨
⊗ F2 → ℓ∞(B1(F

∗
1 ))

∨
⊗ ℓ∞(B1(F

∗
2 ))

is an injection. But ℓ∞(B1(F1

∨
⊗ F2)

∗) has the metric extension property, [5].
Consequently, J

F1

∨

⊗F2

has the factorization

F1

∨
⊗ F2 wJF1

∨
⊗ JF2 ℓ∞(B1(F1)

∗)
∨
⊗ ℓ∞(B1(F2)

∗) ws ℓ∞(B1(F1

∨
⊗ F2)

∗)

for some bounded linear operator S. Hence

J
F1

∨

⊗F2

◦ T1

∨
⊗ T2 = S ◦

(
JF1

∨
⊗ JF2

)
◦ T1

∨
⊗ T2

= S ◦

[
(JF1

◦ T1)
∨
⊗ (JF2

◦ T2)

]
.

Since Π is assumed to be stable, then (JF1
◦ T1)

∨
⊗ (JF2

◦ T2) ∈ Π. This implies

that J
F1

∨

⊗F2

◦ T1

∨
⊗ T2 ∈ Π. This ends the proof. �

As a corollary we give a different proof for the stability of the ideal Πr:

Corollary 3.2 (Holub, [1]). Πr is a stable ideal.

Proof. By Theorem 19.2.7 of [5], we have Πr = (Lr)
i. Theorem 2.2 implies that

Lr is stable. Hence by Theorem 3.1, Πr is stable. This ends the proof. �

Stability with respect to the projective tensor product is defined as that with
respect to the injective case. In that respect we prove:

Theorem 3.3. Let Π be a stable operator ideal with respect to the projective tensor

product. Then Πs is similarly stable.

Proof. Let Ti ∈ Πs(Ei, Fi), i = 1, 2, and Q
E1

∧

⊗E2

be the canonical surjection of

ℓ1(B1(E1

∧
⊗ E2)) into E1

∧
⊗ E2. QEi

is defined similarly, i = 1, 2. Since QEi
:

ℓ1(B1(Ei)) → Ei is a surjection, [6], then

QE1

∧
⊗QE2

: ℓ1(B1(E1))
∧
⊗ ℓ1(B1(E2)) → E1

∧
⊗ E2
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is a surjection. Since ℓ1-spaces have the lifting property [5], it follows that Q
E1

∧

⊗E2

has a factorization

ℓ1(B1(E1

∧
⊗ E2)) wS ℓ1(B1(E1))

∧
⊗ ℓ1(B1(E2)) wQE1

∧
⊗QE2 E1

∧
⊗ E2

for some bounded linear operator S. Hence

Q
E1

∧

⊗E2

◦ T1

∧
⊗ T2 = (QE1

∧
⊗QE2

) ◦ (T1

∧
⊗ T2) ◦ S

= [(QE1
◦ T1)

∧
⊗ (QE2

◦ T2)] ◦ S .

By the assumption on Π we get

(QE1
◦ T1)

∧
⊗ (QE2

◦ T2) ∈ Π(Esur
1

∧
⊗ Esur

2 , F1

∧
⊗ F2) .

Consequently Πs is stable. This ends the proof. �
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