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CONDITIONAL OSCILLATION
OF HALF-LINEAR DIFFERENTIAL EQUATIONS

WITH PERIODIC COEFFICIENTS

Petr Hasil

Abstract. We show that the half-linear differential equation

(∗)
[
r(t)Φ(x′)

]′
+
s(t)
tp

Φ(x) = 0

with α-periodic positive functions r, s is conditionally oscillatory, i.e., there
exists a constant K > 0 such that (∗) with γs(t)

tp
instead of s(t)

tp
is oscillatory

for γ > K and nonoscillatory for γ < K.

1. Introduction

In this paper we study oscillatory properties of the half-linear equation

(1.1)
[
r(t)Φ(x′)

]′ + s(t)Φ(x) = 0 , Φ(x) = x|x|p−2 ,

where r and s are α-periodic (α > 0) positive continuous functions and p > 1 is
a real number conjugated with q, which means, that

1
p

+ 1
q

= 1 .

Our research is motivated by the paper of K. M. Schmidt [2]. In that paper, the
author studies oscillatory properties of the linear differential equation

(1.2)
[
r(t)x′

]′ + γs(t)
t2

x = 0 , t > 0

where r, s are positive α-periodic functions and γ is a real parameter. The main
result of [2] (after a minor reformulation) reads as follows.

Theorem 1.1. Let

K = 1
4

( 1
α

α∫
0

dτ
r

)−1( 1
α

α∫
0

sdτ
)−1

,

then (1.2) is oscillatory for γ > K and nonoscillatory for γ < K.
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The result presented in the previous theorem is interesting from the following
point of view. It is known that the Euler equation

(1.3) x′′ + γ

t2
x = 0

is conditionally oscillatory (i.e. there exists a constant γ0 such that equation is
oscillatory for γ > γ0 and nonoscillatory for γ < γ0) with the oscillation constant
γ0 = 1

4 . Theorem 1.1 shows that constant coefficients in (1.3) can be replaced by
periodic functions and resulting equation remains conditionally oscillatory.

In our paper we show that a similar situation we have for half-linear equations.
The Euler type half-linear differential equation

(1.4)
[
Φ(x′)

]′ + γ

tp
Φ(x) = 0 ,

is conditionally oscillatory (with γ0 =
(
p−1
p

)p). The main result of our paper shows
that also in half-linear case constant coefficients can be replaced by periodic ones,
i.e., the equation [

r(t)Φ(x′)
]′ + γs(t)

tp
Φ(x) = 0

with periodic functions r, s remains conditionally oscillatory.
The basic difference between linear and half-linear differential equations is the

fact that the solution space of half-linear equations is not additive (but remains
homogeneous). The missing additivity (more or less) induces further differences
as the absence of Wronskian-type identity, transform theory or reduction of order
formula. Despite that, many results from linear equations may be extended to (1.1)
(see e.g. [1]).

2. Preliminary results

We start with elements of oscillation theory of half-linear equation (1.1). It is
known, see e.g. [1], that the linear Sturmian theory extends verbatim to half-linear
equations. In particular, we have the following statements.

Proposition 2.1 (Sturmian separation theorem). Let t1 < t2 be two consecutive
zeros of a nontrivial solution x of (1.1). Then any other solution of this equation,
which is not proportional to x, has exactly one zero in (t1, t2).

Proposition 2.2 (Sturmian comparison theorem). Let t1 < t2 be two consecutive
zeros of a nontrivial solution x of (1.1) and suppose, that

(2.1) S(t) ≥ s(t) , r(t) ≥ R(t) > 0

for t ∈ [t1, t2]. Then any solution of the equation

(2.2)
[
R(t)Φ(x′)

]′ + S(t)Φ(x) = 0

has a zero in (t1, t2) or it is a multiple of the solution x. The last possibility is
excluded if one of the inequalities in (2.1) is strict on a set of positive measure.
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If (2.1) are satisfied in a given interval I, then (2.2) is said to be the majorant
equation of (1.1) on I and (1.1) is said to be the minorant equation of (2.2) on I.

Proposition 2.1 implies that (1.1) can be classified as oscillatory or nonoscillatory.
Recall, that points t1, t2 ∈ R are said to be conjugate relative to equation (1.1), if
there exists a nontrivial solution x of this equation, such that x(t1) = x(t2) = 0.
Then, equation (1.1) is said to be disconjugate on an interval I, if this interval does
not contain two points conjugate relative to equation (1.1). In the opposite case,
equation (1.1) is said to be conjugate on I.

Now, let us recall the definition of oscillation and nonoscillation of equation (1.1)
at zero and infinity.

Definition 1. Equation (1.1) is said to be nonoscillatory at 0, if there exists ε > 0
such that equation (1.1) is disconjugate on [0, ε]. In the opposite case, equation (1.1)
is said to be oscillatory at 0.

Definition 2. Equation (1.1) is said to be nonoscillatory at ∞, if there exists
T0 ∈ R such that equation (1.1) is disconjugate on [T0, T ] for every T > T0. In the
opposite case, equation (1.1) is said to be oscillatory at ∞.

If equation (1.1) is nonoscillatory at zero, then there exists a solution vmax of
the Riccati equation

(2.3) v′ + s(t) + (p− 1)r1−q(t)|v|q = 0

associated to equation (1.1) such that vmax(t) > v(t) for t from a right neighbour-
hood of 0 for any other solution v of (2.3) which is defined in a right neighbourhood
of 0. If equation (1.1) is nonoscillatory at infinity, then there exists a solution vmin
of Riccati equation (2.3) such that vmin(t) < v(t) for any other solution for large t.
We call vmax the maximal solution of (2.3) and vmin the minimal solution of (2.3).

Then, we define the principal solution of (1.1) at zero [infinity] as the nontrivial
solution of the equation

x′ = Φ−1
(vmax(t)

r(t)

)
x ,

[
x′ = Φ−1

(vmin(t)
r(t)

)
x
]
.

Now, let us briefly recall some basic facts concerning the half-linear Euler
equation (1.4).

As mentioned in Introduction, equation (1.4) is conditionally oscillatory both at
t = 0 and t =∞ with the oscillation constant γ0 =

(
p−1
p

)p (see [1]).
Let 0 < γ < γ0, then (1.4) is not only nonoscillatory at 0 and ∞ but also

disconjugated on (0,∞). Substituting x(t) = tλ into (1.4), we obtain an algebraic
equation for λ

|λ|p − Φ(λ) + γ

p− 1 = 0 .

and solving this equation, we find, that its roots λ2 < λ1 satisfy

0 < λ2 <
p− 1
p

< λ1 < 1 .
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The principal solution of (1.4) at zero is tλ1 , principal solution of (1.4) at infinity
is tλ2 , maximal and minimal solutions of the associated Riccati equation

w′ + γ

tp
+ (p− 1)|w|q = 0

are
wmax = Φ(λ1)t1−p, wmin = Φ(λ2)t1−p ,

respectively.
Using the change of independent variable t = es, s ∈ R, we convert equation (1.4)

into the equation with constant coefficients

(2.4)
[
Φ(y′)

]′ − (p− 1)Φ(y′) + γΦ(y) = 0 .
The corresponding Riccati equation is
(2.5) u′ − (p− 1)u+ (p− 1)|u|q + γ = 0 .
Denote

F (u) := γ − (p− 1)u+ (p− 1)|u|q .
Following lemmas and theorems will be useful in the next section of our paper.

Lemma 2.1. Consider the Riccati equation

(2.6) w′ + γ

tp
+ (p− 1)|w|p = 0 , γ <

(p− 1
p

)p
associated with the nonoscillatory Euler half-linear equation (1.4). If w(T ) ≥ 1 for
some T > 0, then there exists τ ∈

(
T e−

∫∞
1

du
F (u) , T

)
such that w(τ+) =∞.

Proof. We convert equation (1.4) into equation (2.4) with associated Riccati
equation (2.5). Suppose, by contradiction, that there exists a solution u of (2.5)
extensible to −∞ which satisfies u(S) ≥ 1, where S = log T , and integrate equa-
tion (2.5) on the interval [s, S], where S ∈ R is fixed. Any solution, different from
maximal and minimal ones (for which is F (u) = 0), is implicitly given by the
formula

−
u(S)∫
u(s)

du
F (u) =

u(s)∫
u(S)

du
F (u) = S − s .

Hence
∞∫

1

du
F (u) > S − s = log T − log t = − log t

T
,

i.e., t > T e−
∫∞

1
du
F (u) which implies the existence of τ ∈

(
T e−

∫∞
1

du
F (u) , T

)
such that

w(τ+) =∞. �

Lemma 2.2. Consider Riccati equation (2.6) associated with the nonoscillatory
half-linear Euler equation (1.4). If v(T ) ≤ 0 for some T > 0, then there exists

τ ∈
(
T, T e

∫ 0

−∞
du
F (u)

)
such that v(τ−) = −∞.
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Proof. Similarly as in the Proof of Lemma 2.1, we use conversion to equations (2.4)
and (2.5). Suppose the existence of a solution u of (2.5) extensible to∞ that satisfies
u(S) ≤ 0 and integrate equation (2.5) on the interval [S, s], where S ∈ R is fixed.
Any solution, different from maximal and minimal ones, is implicitly

(2.7)
u(S)∫
u(s)

du
F (u) = s− S .

Again, this contradicts the existence of such a solution u, because the left hand side
of equation (2.7) is bounded and the right hand side tends to infinity as s→∞. �

We finish this section with formulating a couple of lemmas and theorems without
proofs (see e.g. [1]).

Lemma 2.3. Consider a pair of equations
v′ + C(t) + (p− 1)|v|q = 0 ,(2.8)

w′ + c(t) + (p− 1)|w|q = 0 ,(2.9)
where C(t) ≥ c(t) > 0 for t ∈ (a, b). If τ, T ∈ (a, b), τ < T , and a solution w
of (2.9) exists on (τ, T ] and satisfies w(τ+) =∞, then there exists τ̃ ∈ [τ, T ) such
that the solution v of (2.8) given by the initial condition v(T ) = w(T ) satisfies
v(τ̃+) =∞.

Lemma 2.4. Consider a pair of equations (2.8), (2.9). If τ, T ∈ (a, b), T < τ ,
and a solution w of (2.9) exists on [T, τ) and satisfies w(τ−) = −∞, then there
exists τ̃ ∈ (T, τ ] such that the solution v of (2.8) given by the initial condition
v(T ) = w(T ) satisfies v(τ̃−) = −∞.

Following theorems compare solutions of a pair of Riccati equations associated
with nonoscillatory half-linear differential equations.

Theorem 2.1. Consider a pair of half-linear differential equations[
r(t)Φ(x′)

]′ + c(t)Φ(x) = 0 ,(2.10) [
R(t)Φ(y′)

]′ + C(t)Φ(y) = 0(2.11)
and suppose that (2.11) is a Sturmian majorant of (2.10) for large t, i.e., there
exists T ∈ R such that 0 < R(t) ≤ r(t), c(t) ≤ C(t) for t ∈ [T,∞). Suppose that the
majorant equation (2.11) is nonoscillatory and denote vmin, wmin minimal solutions
of

v′ + c(t) + (p− 1)r1−q(t)|v|q = 0 ,(2.12)

w′ + C(t) + (p− 1)R1−q(t)|w|q = 0 ,(2.13)
respectively. Then vmin(t) ≤ wmin(t) for large t.

Theorem 2.2. Consider a pair of half-linear differential equations (2.10), (2.11)
and suppose that (2.11) is a Sturmian majorant of (2.10) for t from a right
neighbourhood of 0, i.e., there exists ε ∈ R such that 0 < R(t) ≤ r(t), c(t) ≤
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C(t) for t ∈ (0, ε]. Suppose that the majorant equation (2.11) is nonoscillatory
and denote vmax, wmax maximal solutions of (2.12), (2.13), respectively. Then
vmax(t) ≥ wmax(t) for t from a right neighbourhood of 0.

3. Conditional oscillation of equations with periodic coefficients

The main result of our paper reads as follows.

Theorem 3.1. Consider the equation

(3.1)
[
r(t)Φ(x′)

]′ + γ
s(t)
tp

Φ(x) = 0 ,

where r and s are α-periodic (α > 0) positive continuous functions, and γ ∈ R. Let

K := q−p
( 1
α

α∫
0

dτ
rq−1

)1−p( 1
α

α∫
0

sdτ
)−1

.(3.2)

Then equation (3.1) is oscillatory if γ > K and nonoscillatory if γ < K.

Proof. Let γ > K. Suppose, by contradiction, that (3.1) is nonoscillatory. It
means that the associated Riccati equation (2.3) has a solution, which exists on
some interval [T,∞). Because r and s are α-periodic, positive and continuous, the
equation [

rmaxΦ(x′)
]′ + γ

smin

tp
Φ(x) = 0 ,

where

rmax = max
{
r(t), t ≥ 0

}
,

smin = min
{
s(t), t ≥ 0

}
.

is a minorant of (3.1), hence it is also nonoscillatory.
Denote µ := smin

rmax
. Solving the Euler-type equation

(3.3)
[
Φ(x′)

]′ + γ
µ

tp
Φ(x) = 0 ,

with µγ ≤
(
p−1
p

)p we find, that the principal solutions at zero and infinity are tλ1 ,
tλ2 , respectively, where 0 < λ2 < λ1 < 1 are roots of the equation

|λ|p − Φ(λ) + γ
µ

p− 1 = 0 ,

see Section 2.
Denote the maximal solution near t = 0 of the Riccati equation associated to

equation (3.3) by
vmax(t) := t1−pΦ(λ1) ,

and the minimal solution for large t by

vmin(t) := t1−pΦ(λ2) .
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Introducing the function w = rΦ(x′)
Φ(x) , we may transform equation (3.1) to the

Riccati equation

w′ + γ
s(t)
tp

+ (p− 1)r1−q(t)|w|q = 0

with the maximal solution (at t = 0) wmax and the minimal solution (at t =∞)
wmin and denote

ζ(t) := −wtp−1 , ξ(t) := 1
α

t+α∫
t

ζ(τ) dτ .(3.4)

First, suppose that there exists tn →∞ such that ζ(tn) ≤ −1, i.e.,

w(tn) = −t1−pn ζ(tn) ≥ t1−pn > Φ(λ1)t1−pn = vmax(tn) ≥ wmax(tn) .

Consider the solution of (3.3) given by the initial condition v(tn) = t1−pn , i.e.,

v(tn)− vmax(tn) = [1− Φ(λ1)]t1−pn .

Then, by Lemma 2.1, there exists τn →∞, τn < tn, such that v(τn+) =∞. But
this means, by Lemma 2.3, that w(τ̃n+) = ∞ for some τn ≤ τ̃n < tn, which is
a contradiction.

Next, suppose that there exists a sequence t̂n →∞ such that ζ(t̂n) ≥ 0, i.e.,

w(t̂n) ≤ 0 < vmin(t̂n) = Φ(λ2)t̂1−pn ≤ wmin(t̂n) .

This means (from Lemma 2.2 and Lemma 2.4), that there exists τ̂n > t̂n such that
w(τ̂n−) =∞, which contradicts the fact, that w(t) exists on [T,∞).

Hence, there exists T0 > T such that

vmin = Φ(λ2)t1−p ≤ w ≤ Φ(λ1)t1−p = vmax

for t ≥ T0. Multiplying the last inequality by −tp−1, we obtain

0 > −Φ(λ2) ≥ ζ(t) ≥ −Φ(λ1) > −1 .

Let us denote

A := (p− 1)
( p
α

α∫
0

1
rq−1(τ) dτ

)− 1
q

, B :=
∣∣ξ(t)∣∣( p

α

α∫
0

1
rq−1(τ) dτ

) 1
q

.

We have

ζ ′(t) =
[
− w(t)tp−1]′ = −

[
w′(t)tp−1 + (p− 1)w(t)tp−2]

= 1
t

[
(p− 1)ζ(t) + s(t)γ + (p− 1) |ζ(t)|q

rq−1(t)

]
.
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Next, for t ≥ T0

(3.5)

t+α∫
t

∣∣ζ ′(τ)
∣∣dτ ≤ 1

t

t+α∫
t

∣∣∣(p− 1)ζ(τ) + γs(τ) + (p− 1) |ζ(τ)|q

rq−1(τ)

∣∣∣dτ
≤ 1
t

t+α∫
t

[
(p− 1) + γs(τ) + p− 1

rq−1(τ)

]
dτ = C

t
,

where

C :=
t+α∫
t

[
(p− 1) + γs(τ) + p− 1

rq−1(τ)

]
dτ .

Hence, for every t > T0 and τ1, τ2 ∈ [t, t+ α] we have

∣∣ζ(τ1)− ζ(τ2)
∣∣ ≤ t+α∫

t

∣∣ζ ′(τ)
∣∣dτ ≤ C

t
.

Due to the continuity of the function ζ, there exists τ0 ∈ [t, t+ α] such that

ξ(t) = ζ(τ0) ⇒ |ζ(τ)− ξ(t)| ≤ C

t
,

where τ ∈ [t, t+ α].
Now, we estimate the value of the function ξ′.

ξ′(t) = 1
α

[
ζ(t+ α)− ζ(t)

]
= 1
α

t+α∫
t

ζ ′(τ) dτ

= 1
α

t+α∫
t

1
τ

[
(p− 1)ζ(τ) + s(τ)γ + (p− 1) |ζ(τ)|q

rq−1(τ)

]
dτ

≥ 1
t+ α

[
(p− 1)ξ(t) + γ

α

α∫
0

s(τ) dτ + p− 1
α

t+α∫
t

|ζ(τ)|q

rq−1(τ) dτ
]

+ (p− 1)α
t(t+ α) ξ(t)

= 1
t+ α

[
(p− 1)ξ(t) + Ap

p
+ Bq

q
+ γ

α

α∫
0

s(τ) dτ − Ap

p
+ (p− 1)α

t
ξ(t)

+ p− 1
α

t+α∫
t

|ζ(τ)|q

rq−1(τ) dτ − Bq

q

]
.
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Denote

(3.6)

X := (p− 1)ξ(t) + Ap

p
+ Bq

q
,

Y := γ

α

α∫
0

s(τ) dτ − Ap

p
+ (p− 1)α

t
ξ(t) ,

Z := p− 1
α

t+α∫
t

|ζ(τ)|q

rq−1(τ) dτ − Bq

q
.

Next, we estimate quantities appearing in (3.6). It follows from Young’s inequality,
that Ap

p + Bq

q −AB ≥ 0, so (using ξ ≤ 0)

X = Ap

p
+ Bq

q
+ (p− 1)ξ = Ap

p
+ Bq

q
− (p− 1)|ξ| = Ap

p
+ Bq

q
−AB ≥ 0 .

As for the term Y , we denote

Kγ := Y = γ

α

α∫
0

s(τ) dτ − Ap

p
+ (p− 1)α

t
ξ(t)

and show, that Kγ ≥ 0.

Kγ = γ

α

α∫
0

sdτ − (p− 1)p

p

( p
α

α∫
0

1
rq−1 dτ

)− pq + (p− 1)α
t

ξ

= γ

α

α∫
0

sdτ − q−p
1
α

α∫
0
sdτ(

1
α

α∫
0

1
rq−1 dτ

) p
q 1
α

α∫
0
sdτ

+ (p− 1)α
t

1
α

t+α∫
t

ζ dτ

≥ 1
α

α∫
0

sdτ
[
γ − q−p

( 1
α

α∫
0

1
rq−1 dτ

)− pq ( 1
α

α∫
0

sdτ
)−1]

− p− 1
t

= 1
α

α∫
0

sdτ(γ −K)− p− 1
t

> 0 ,

for t ≥ T1, because γ > K.
Finally, to estimate the last expression in (3.6), let us introduce the function

F (x, y) :=
{
|x|q−|y|q
|x|−|y| , x 6= y, [x, y] ∈M ,

qΦ−1(|x|) , x = y ,

where M := [−1, 0]× [−1, 0].
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Then, we have

Z = p− 1
α

t+α∫
t

|ζ|q

rq−1 dτ − Bq

q
= p− 1

α

t+α∫
t

|ζ|q

rq−1 dτ − |ξ|
q

q

q(p− 1)
α

t+α∫
t

1
rq−1 dτ

= −p− 1
α

t+α∫
t

|ξ|q − |ζ|q

rq−1 dτ ≥ −p− 1
α

t+α∫
t

|ξ − ζ| |ξ|
q − |ζ|q

|ξ| − |ζ|
1

rq−1 dτ

≥ − (p− 1)CD
αt

α∫
0

1
rq−1 dτ ,

where we have used (3.5) and D := max
M

F (ξ, ζ) <∞.
Altogether for t ≥ T := max{T0, T1, T2}, where

T2 := 2CD(p− 1)
αKγ

α∫
0

1
rq−1(τ) dτ ,

we obtain

ξ′(t) ≥ 1
t+ α

[
Kγ −

CD(p− 1)
αt

α∫
0

1
rq−1(τ) dτ

]
≥ 1
t+ α

(
Kγ −

Kγ

2

)
= Kγ

2(t+ α) ,

which means, that

ξ(t) ≥ ξ(T ) + Kγ

2 log t+ α

T + α
→∞ as t→∞ ,

which is a contradiction. Thus, equation (3.1) is oscillatory for γ > K.
In the next part of the proof, we show, that (3.1) is nonoscillatory for γ < K.

Denote µ := smax
rmin

. Equation (3.3) is now a majorant equation of equation (3.1).
We show that the majorant equation (3.3) is nonoscillatory, which implies, that
equation (3.1) is also nonoscillatory.

Denote

ξ0 := −
[ p

α(p− 1)

α∫
0

1
rq−1(τ) dτ

]1−p
.

We will show that there exists T such that ξ(t) defined by (3.4) in the previous
part of the proof satisfies ξ(t) ≤ ξ0, (t ≥ T ). By contradiction, assume that

t0 := sup{t ≥ T, ξ(τ) ≤ ξ0, τ ∈ [T, t]} <∞ .
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Then ξ′(t0) ≥ 0 and ξ(t0) = ξ0. We estimate the value of ξ′(t0). We obtain

ξ′(t0) = 1
α

t0+α∫
t0

1
τ

[
(p− 1)ζ(τ) + γs(τ) + (p− 1) |ζ(τ)|q

rq−1(τ)

]
dτ

≤ 1
t0

[
(p− 1)ξ(t0) + γ

α

α∫
0

s(τ) dτ + p− 1
α

t0+α∫
t0

|ζ(τ)|q

rq−1(τ) dτ
]

− (p− 1)α
t0(t0 + α)ξ(t0)

= 1
t0

[
(p− 1)ξ(t0) + Ap

p
+ Bq

q
+ γ

α

α∫
0

s(τ) dτ − Ap

p
− (p− 1)α

t0 + α
ξ(t0)

+ p− 1
α

t0+α∫
t0

|ζ(τ)|q

rq−1(τ) dτ − Bq

q

]
.

Again, we denote

(3.7)

X := (p− 1)ξ(t0) + Ap

p
+ Bq

q
,

Y := γ

α

α∫
0

s(τ) dτ − Ap

p
− (p− 1)α

t+ α
ξ(t0) ,

Z := p− 1
α

t0+α∫
t0

|ζ(τ)|q

rq−1(τ) dτ − Bq

q
,

with A, B given by

A := (p− 1)
( p
α

α∫
0

1
rq−1(τ) dτ

)− 1
q

, B := |ξ(t0)|
( p
α

α∫
0

1
rq−1(τ) dτ

) 1
q

,

and we estimate quantities appearing in (3.7).
Since Ap = Bq, we have

Ap

p
+ Bq

q
= Ap

(1
p

+ 1
q

)
= A1+ pq = A(Bq)

1
q = AB = −(p− 1)ξ ,

which means, that X = 0 in (3.7).
Next, we denote

−Kγ := Y = γ

α

α∫
0

sdτ − Ap

p
− (p− 1)α

t0 + α
ξ .
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Then

−Kγ = γ

α

α∫
0

sdτ − (p− 1)p

p

( p
α

α∫
0

1
rq−1 dτ

)− pq − (p− 1)α
t0 + α

ξ

≤ 1
α

α∫
0

sdτ
[
γ − q−p

( 1
α

α∫
0

1
rq−1 dτ

)− pq ( 1
α

α∫
0

sdτ
)−1]

+ p− 1
t0 + α

= 1
α

α∫
0

sdτ(γ −K) + p− 1
t0 + α

< 0 ,

because γ < K, i.e., Kγ > 0.
Finally, similarly as in the previous computation, we have

Z = p− 1
α

t0+α∫
t0

|ζ|q

rq−1 dτ − Bq

q

= p− 1
α

t0+α∫
t0

|ζ|q

rq−1 dτ − |ξ|
q

q

q(p− 1)
α

t0+α∫
t0

1
rq−1 dτ

= p− 1
α

t0+α∫
t0

|ζ|q − |ξ|q

rq−1 dτ ≤ CD(p− 1)
αt0

α∫
0

1
rq−1 dτ .

Altogether for t0 ≥ T := max{T0, T1, T2}, where T0, T1, T2 are defined earlier,
we obtain

ξ′(t0) ≤ 1
t0

[
−Kγ + CD(p− 1)

αt0

α∫
0

1
rq−1(τ) dτ

]
≤ 1
t0

(
−Kγ + Kγ

2

)
= −Kγ

2t0
< 0 ,

which is a contradiction.
�

Remark 1. It is still an open problem to decide whether equation (3.1) is oscillatory
or not in the case, γ = K, with K given by (3.2).

Remark 2. For r(t) ≡ 1 ≡ s(t), equation (3.1) reduces to Euler equation (1.4)
and our oscillation constant K defined by (3.2) reduces to the well known constant
γ0 =

(
p−1
p

)p.
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