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ARCHIVUM MATHEMATICUM (BRNO)
Tomus 44 (2008), 149–158

ASYMPTOTIC PROPERTIES OF TRINOMIAL DELAY
DIFFERENTIAL EQUATIONS

Jozef Džurina and Renáta Kotorová

Abstract. The aim of this paper is to study asymptotic properties of the
solutions of the third order delay differential equation

(∗)
( 1
r(t)

y′(t)
)′′
− p(t) y′(t) + g(t) y

(
τ(t)
)

= 0 .

Using suitable comparison theorem we study properties of Eq. (∗) with help
of the oscillation of the second order differential equation.

We consider the third order delay differential equation

(1)
( 1
r(t) y

′(t)
)′′
− p(t) y′(t) + g(t) y

(
τ(t)

)
= 0

and the corresponding second order differential equation
(2) v′′(t) = p(t) r(t) v(t) .

We always assume that
(i) r(t), p(t) and g(t) ∈ C

(
[t0,∞)

)
, p(t) > 0, r(t) > 0, g(t) > 0.

(ii) τ(t) ∈ C1([t0,∞)
)
, τ(t) 6 t, τ ′(t) > 0 and τ(t)→∞ as t→∞.

Differential equations of the third order has been subject of insensitive studying
in the literature (see enclosed references).

Lazer in [16] has shown that particular case of (1), namely differential equation
without delay
(3) y′′′(t)− p(t) y′(t) + g(t) y(t) = 0
has the following structure of the nonoscillatory solution:

Lemma A. Let y(t) be a nonoscillatory solution of (3). Then there exists t1 > t0
such that either

y(t) y′(t) < 0(4)

or

y(t) y′(t) > 0(5)
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for t > t1 and more over if y(t) satisfies (4) then also
(6) (−1)iy(t) y(i)(t) > 0 , 0 6 i 6 3, t > t1 .

It is known that (3) always has a solution satisfying (6). For simplifying formu-
lation of our theorems we say that (3) has property (P0) if every nonoscillatory
solution of (3) satisfies (6).

Lazer presented a sufficient condition for property (P0) of (3) (see [16]). This
result has been improved by several authors (see e.g. [6], [9], [11], [18] and [19]).

We define corresponding property (P0) of (1). For this reason we introduce the
following notation. We denote

D0y = y , D1y = 1
r

(D0y)′ , D2y = (D1y)′ , D3y = (D2y)′ .

We say that (1) has property (P0) if every nonoscillatory solution y(t) of (1) satisfies
(7) (−1)iy(t)Diy(t) > 0 , 0 6 i 6 3 .

We present a general technique, based on suitable comparison theorem, that
enables us to study property (P0) of (1) with help of asymptotic properties of the
second order differential equation.

Lemma 1. The operator Ly ≡
(

1
r(t) y

′(t)
)′′
− p(t)y′(t) can be written as

Ly ≡ 1
v

(
v2
(1
v

y′

r

)′)′
,

where v(t) is a positive solution of (2).
Proof. Straightforward computation shows that

Ly ≡ 1
v

(
v2
[
− v′

v2
y′

r
+ 1
v

(y′
r

)′])′
=
(y′
r

)′′
− v′′

v

y′

r
=
( 1
r(t)y

′(t)
)′′
− p(t) y′(t) .

�

Corollary 1. If v(t) is a positive solution of (2), then equation (1) can be rewritten
as

(8)
(
v2
( 1
vr
y′
)′)′

+ v(t) g(t) y
(
τ(t)

)
= 0 .

In the sequel we shall study properties of (1) with help of its binomial represen-
tation (8). For this reason it is useful for (8) to be in the canonical form because
properties of canonical equations are well known. We remind that equation (8) is
in the canonical form if

∫∞
v−2(t) dt =

∫∞
v(t)r(t) dt =∞.

Now we present some useful properties of solutions of (2) (see Corollary 6.4 in
[10]).
Lemma 2. Eq. (2) possesses the following couple of solutions

v(t) > 0 , v′(t) ≤ 0 and v′′(t) ≥ 0(9)

and

v(t) > 0 , v′(t) > 0 and v′′(t) ≥ 0 ,(10)
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for all t large enough.

We say that v(t) is the solution of degree 0 of (2) when it satisfies (9), on the
other hand v(t) is said to be the solution of degree 2 of (2) if it satisfies (10).

The following lemma permits to obtain a solution of degree 0 of (2) if the
corresponding solution of degree 2 is known.

Lemma 3. If v2(t) is a solution of (2) of degree 2 then

v1(t) = v2(t)
∫ ∞
t

v−2
2 (s) ds

is also solution of (2) and v1(t) is of degree 0.

Proof. It is easy to see that since v2(t) is of degree 2 then
∫∞

v−2
2 (s) ds <∞ so

v1(t) is well defined. Simple computation shows

v′′1 (t) = v′′2 (t)
∫ ∞
t

v−2
2 (s) ds = p(t) r(t) v2(t)

∫ ∞
t

v−2
2 (s) ds = p(t) r(t) v1(t)

and so v1(t) is another solution of (2). On the other hand,

v′1(t) = v′2(t)
∫ ∞
t

v−2
2 (s) ds− 1

v2(t) .

Since v2(∞) =∞, we have
1

v2(t) =
∫ ∞
t

v′2(s)v−2
2 (s) ds ≥ v′2(t)

∫ ∞
t

v−2
2 (s) ds .

Thus we conclude that v′1(t) < 0. So v1(t) is of degree 0. �

Lemma 4. If v(t) is a solution of degree 0 of (2) then
∫∞

v−2(t) dt =∞.

Proof. It is easy to see that v(t) satisfies c > v(t), eventually which implies
assertion of the lemma. �

A solution v1(t) of degree 0 is the key solution of (2) because if it satisfies

(11)
∫ ∞

v1(t) r(t) dt =∞

then Eq. (1) can be represented in the canonical form of (8).

Remark 1. It is useful to notice that if v(t) is a solution of degree 0 of (2) then
condition (11) implies

(111)
∫ ∞

r(s) ds =∞ .

We present sufficient condition for every solution of degree 0 of (2) to satisfy
(11). Let us denote P̃r(t) =

∫∞
t
p(s) r(s) ds (we suppose that

∫∞
p(s) r(s) ds <∞).

Lemma 5. Assume that

(12)
∫ ∞
t0

r(t) e−
∫ t
t0
P̃r(s) ds

dt =∞ .

Then every solution of degree 0 of (2) satisfies (11).
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Proof. Let v(t) satisfy (9). Integrating (2) from t to ∞, one gets

v′(∞)− v′(t) =
∫ ∞
t

p(s) r(s) v(s) ds ,

where v′(∞) = lim
t→∞

v′(t). We claim that lim
t→∞

v′(t) = 0. If not then lim
t→∞

v′(t) = `,
` < 0. Then v′(t) ≤ `. Integrating from t1 to t, we have v(t) ≤ v(t1)+`(t−t1)→ −∞
as t→∞. This is a contradiction. Thus we conclude that

−v′(t) =
∫ ∞
t

p(s) r(s) v(s) ds ≤ v(t)
∫ ∞
t

p(s) r(s) ds = v(t) P̃r(t) .

Then integrating from t1 to t, we have

v(t) ≥ v(t1) e−
∫ t
t1
P̃r(s) ds

.

Multiplying by r(t) and integrating from t to ∞ we get in view of (12) the desired
property. �

To simplify our notation, we set

L0y = y , L1y = 1
vr

(L0y)′ , L2y = v2(L1y)′ , L3y = (L2y)′ .

We present structure of nonoscillatory solutions y(t) of (8) provided that (8) is in
canonical form (see e.g. [8] or [13]).

Lemma 6. Let (8) be in canonical form then every positive solution of (8) satisfies
either

L0y(t) > 0 , L1y(t) < 0 , L2y(t) > 0 , L3y(t) < 0 ,(13)

or

L0y(t) > 0 , L1y(t) > 0 , L2y(t) > 0 , L3y(t) < 0(14)
for large t.

Following Kiguradze we say that Eq. (8) has property (A) if every positive
solution y(t) of (8) satisfies (13).

In the sequel we shall assume that v(t) a solution of degree 0 of (2) satisfies
(11). Then (8) is a canonical representation of equation (1). Therefore any positive
nonosillatory solution y(t) of (1) is also a solution of (8) and it satisfies either

L0y > 0 , L1y > 0

or

L0y > 0 , L2y < 0 .

It means that either

y > 0 , y′ > 0 ,

or

y > 0 , y′ < 0 .
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So (1) has the same structure of nonoscillatory solutions like (3).

Lemma 7. If v(t) is solution of degree 0 of (2) satisfying (11). Then a positive
solution of (8) satisfies (13) if and only if it satisfies (7).

Proof. ⇒ : Assume that y(t) satisfies (13). Therefore L0y = y > 0, L1y = 1
rv

y′ < 0, eventually. From this D0y > 0 and D1y = 1
r y
′ < 0 and y′ < 0. It follows

from (1) that D3y =
( 1
ry
′)′′ < 0. So D2y is of constant sign. If we admit D2y < 0

then D1y = 1
ry
′ is decreasing so 1

r y
′(t) 6 1

r(t1) y
′(t1) = −c1 < 0. Integrating from

t1 to t and taking Remark 1 into account, we see y(t) < y(t1)−c1
∫ t
t1
r(s) ds→ −∞

as t→∞. A contradiction with the positivity of y(t). So we conclude D2y > 0 and
y satisfies (7).
⇐ : Now, D0y > 0 and D1y < 0 implies L0y > 0 and L1y < 0. It follows

for (8) that L3y < 0. Then L2y(t) is decreasing. If we admit L2y(t) < 0 for
t ≥ t1, then L1y(t) 6 −` < 0 and integrating from t1 to t one gets y(t) <

y(t2)− `
∫ t
t1
r(s) v(s) ds→ −∞ as t→∞. �

Lemma 7 can be now reformulated as:

Theorem 1. If v(t) is solution of degree 0 of (2) satisfying (11). Then Eq. (1)
has property (P0) if and only if (8) has property (A).

Now we are prepared to provide main results.

Theorem 2. Let v(t) be a positive solution of degree 0 of (2) satisfying (11). If
the differential inequality

(15)
(
v2z′(t)

)′ + [v(τ(t)
)
r
(
τ(t)

)
τ ′(t)

∫ ∞
t

v(s) g(s) ds
]
z
(
τ(t)

)
6 0

has no positive solution then (1) has property (P0).

Proof. Assume that (1) has not property (P0). It follows from Theorem 1 that
(8) has not property (A). Therefore a solution y(t) exists that satisfies (14).

Integrating (8) from t to ∞, we have

(16) L2y(t) = c+
∫ ∞
t

v(s) g(s) y
(
τ(s)

)
ds

where c = lim
t→∞

L2y(t). Since

y(t) = y(t1) +
∫ t

t1

v(x) r(x)L1y(x) dx ,

then it follows from (16) that

L2y(t) >
∫ ∞
t

v(s) g(s)
(∫ τ(s)

t1

v(x) r(x)L1y(x) dx
)
ds .

We may assume that τ(t) > t1, so

L2y(t) >
∫ ∞
t

v(s) g(s)
∫ τ(s)

τ(t)
v(x) r(x)L1y(x)dx ds .
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Changing the order of integration leads to

L2y(t) >
∫ ∞
τ(t)

v(x) r(x)L1y(x)
∫ ∞
τ−1(x)

v(s) g(s)ds dx =
∫ ∞
τ(t)

L1y(x)G(x) dx ,

where
G(x) = v(x) r(x)

∫ ∞
τ−1(x)

v(s) g(s) ds ,

and τ−1(t) is the inverse function to τ(t). Integrating from t1 to t, we get

(17) L1y(t) > L1y(t1) +
∫ t

t1

1
v2(s)

∫ ∞
τ(s)

L1y(x)G(x) dx ds .

Let us denote the right hand side of (17) by z(t). Then z(t) > 0 and

0 =
(
v2z′(t)

)′ + L1y
(
τ(t)

)
G
(
τ(t)

)
τ ′(t) >

(
v2z′(t)

)′ +G
(
τ(t)

)
τ ′(t) z

(
τ(t)

)
so z(t) is a positive solution of (15). A contradiction. �

Using the fact that differential inequality (15) has no positive solution if and
only if the corresponding differential equation is oscillatory (see [8] or [13]) the
previous theorem can be reformulated as:

Corollary 2. Let v(t) be a positive solution of degree 0 of (2) satisfying (11). If
the second order differential equation

(18)
(
v2z′(t)

)′ + [v(τ(t)
)
r
(
τ(t)

)
τ ′(t)

∫ ∞
t

v(s) g(s) ds
]
z
(
τ(t)

)
= 0

is oscillatory then Eq. (1) has property (P0).

Theorem 3. Let v(t) be a positive solution of degree 0 of (2) satisfying (11). If

(19) lim inf
t→∞

(∫ τ(t)

t1

1
v2(s) ds

)
×
(∫ ∞

t

v
(
τ(x)

)
r
(
τ(x)

)
τ ′(x)

∫ ∞
x

v(s) g(s) ds dx
)
>

1
4

then Eq. (1) has property (P0).

Proof. Condition (19) guaranties oscillation of (18) (see e.g. [8]). �

Example 1. Let us consider delay differential equation

(E1)
(1
t
y′(t)

)′′
− 2
t3
y′(t) + g(t) y(αt) = 0 , 0 < α < 1 .

Now v(t) = 1
t is a solution of degree 0 of equation v′′(t) = 2

t2 v(t). It follows from
Theorem 3 that (E1) satisfies (P0) if

(E2) lim inf
t→∞

α4t3
∫ ∞
t

g(s)
(

1− t

s

)
ds >

3
4 .

For the partial case of (E1), namely for

(E3)
(1
t
y′(t)

)′′
− 2
t3
y′(t) + b

t4
y(αt) = 0 , b > 0
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condition (E2) reduces to bα4 > 9.

Employing additional condition presented in the next theorem our results here
concerning property (P0) can be formulated in stronger form

Theorem 4. Let all assumptions of Theorem 3 hold. If moreover

(20)
∫ ∞
t0

v(s3) r(s3)
∫ ∞
s3

v−2(s2)
∫ ∞
s2

v(s1) g(s1) ds1 ds2 ds3 =∞

then every nonoscillatory solution of (1) tends to zero as t→∞.

Proof. Let y(t) > 0 be a solution of (1). Theorem 3 insures that y(t) satisfies (7),
so y′(t) < 0 and there exists lim

t→∞
y(t) = ` ≥ 0. If we admit ` > 0 then y

(
τ(t)

)
> `.

Integrating (8) twice from t to ∞ and then from t1 to t, we have

y(t) = y(t1)−
∫ t

t1

v(s3)r(s3)
∫ ∞
s3

v−2(s2)
∫ ∞
s2

v(s1) g(s1) y
(
τ(s1)

)
ds1 ds2 ds3

≤ y(t1)− `
∫ t

t1

v(s3) r(s3)
∫ ∞
s3

v−2(s2)
∫ ∞
s2

v(s1) g(s1) ds1 ds2 ds3 → −∞

as t→∞. Consequently, lim
t→∞

y(t) = 0. �

Remark. If nonoscillatory solution y(t) of (1) tends to zero as t → ∞ then
moreover lim

t→∞
Di y(t) = 0 for i = 0, 1, 2.

Example 2. We consider once more differential equation (E3). Since (20) holds
for (E2) then Theorem 4 implies that every nonoscillatory solution of (E2) tends to
zero as t→∞ provided that bα4 > 9. One such nonoscillatory solution is y(t) = tβ ,
where β is a negative solution of β(β − 1)(β − 4) + bαβ = 0.

Employing additional conditions to coefficients of (2), we can essentially simplify
our results. At first we say that ṽ(t) is an asymptotic expression of a function v(t)
as t→∞ if lim

t→∞
v(t)
ṽ(t)

= 1. We will denote this fact by v ∼ ṽ. It is useful to observe
that for any λ ∈ (0, 1), we have

(21) λṽ(t) ≤ v(t) ≤ 1
λ
ṽ(t) ,

eventually.

Lemma 8. Assume that

(22)
∫ ∞

s r(s) p(s) ds <∞ .

Then there exists a solution v(t) of degree 0 of (2) such that v(t) ∼ 1.

Proof. Let t1 ≥ t0 is such that
∫∞
t1
s r(s) p(s) ds < 1. In the proof of Lemma 5

we have shown that if v1(t) is a solution of degree 0 of (2) then lim
t→∞

v′1(t) = 0.
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Moreover lim
t→∞

v1(t) = ` ≥ 0. At first we need to show that ` > 0. We assume the
contrary. Then integrating (2) twice from t ≥ t1 to ∞, one gets

v1(t) =
∫ ∞
t

∫ ∞
x

p(s) r(s) v1(s) ds dx =
∫ ∞
t

(s− t) p(s) r(s) v1(s) ds

≤
∫ ∞
t

s p(s) r(s) v1(s) ds ≤ v1(t)
∫ ∞
t

s r(s) p(s) ds < v1(t) .

A contradiction. Then v1 ∼ ` 6= 0 and so v = 1
` v1 is required solution. �

Remark. Assertion of the Lemma 8 can be found also in [4].

Roughly speaking, Lemma 8 says that if p(t) is “small enough” then we have an
estimate of required solution of (2).

Theorem 5. Assume that
∫∞

sr(s)p(s) ds <∞ and
∫∞

r(s) ds =∞. If

(23) lim inf
t→∞

τ(t)
(∫ ∞

t

r
(
τ(x)

)
τ ′(x)

∫ ∞
x

g(s) ds dx
)
>

1
4

then (1) has property (P0). If moreover

(24)
∫ ∞
t0

r(s3)
∫ ∞
s3

∫ ∞
s2

g(s1) ds1 ds2 ds3 =∞

then every nonoscillatory solution of (1) tends to zero as t→∞.

Proof. It is clear from (23) that there exists λ ∈ (0, 1) such that

(25) lim inf
t→∞

λ2τ(t)
(∫ ∞

t

λr
(
τ(x)

)
τ ′(x)

∫ ∞
x

λg(s) ds dx
)
>

1
4 .

Since v(t) ∼ ṽ(t) ≡ 1 then (11) reduces to
∫∞

r(s) ds =∞ and moreover (21) takes
the form

(26) λ ≤ v(t) ≤ 1
λ
,

eventually. Applying (26) to (25), it is easy to see that (19) is satisfied and
Theorem 3 guarantees has property (P0) of (1).

On the other hand, in view of (24), we have

(27)
∫ ∞
t0

λr(s3)
∫ ∞
s3

λ2
∫ ∞
s2

λg(s1) ds1 ds2 ds3 =∞ .

Applying (26) to (27), we get (20) and the second part of the assertion follows
from Theorem 4. �

Theorem 5 implies that if p(t) is “small enough” then we can replace required
solution of (2) by constant 1.

Example 3. Let us consider delay differential equation

(E4)
(1
t
y′(t)

)′′
− c

t4
y′(t) + b

t4
y(αt) = 0 , c > 0 , b > 0 , 0 < α < 1 .

Theorem 5 guarantees property (P0) of (E4) provided that bα3 > 3
4 . Moreover, (24)

is satisfied and so every nonoscillatory solution of (E4) tends to zero as t→∞.
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Remark. Theorem 3 permits to deduce property (P0) of (1) from the absence
of positive solutions of the corresponding second order differential equation. This
comparison theorem generalizes earlier ones of Džurina [8], Parhi and Padhi [18].

Theorems 3, 4 and 5 present easily verifiable criteria for desired property of
(1) and are applicable for a wide class of equations. Propositions of Theorem 5
includes only coefficients τ(t), p(t) and g(t), no solving of (2) is needed and results
of this type are not known for property (P0) of (1).
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