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Locally convex topologies

in linear orthogonality spaces

Jerzy Ka̧kol, Pekka Sorjonen

Abstract. In this paper, we investigate the existence and characterizations of locally convex
topologies in a linear orthogonality space.
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1. Introduction.

Let (E,⊥) be a linear orthogonality space (for the terminology, see below). We
show that if (E,⊥) has a vector space topology, which gives the same closed sub-
spaces as the linear orthogonality relation, then there exists always a locally convex
topology with the same property. On the other hand, even in a Hilbert space there
exist non locally convex topologies with this property.
Furthermore, we characterize those topologies which give the same closed sub-

spaces as the linear orthogonality relation with the aid of Hahn-Banach property.
In a special case, this gives us a necessary and sufficient condition for a topology to
be locally convex. As a by-product, we achieve new characterizations of a Hilbert
space.

2. Terminology.

In this paper, the symbol E denotes always a vector space over the field K, which
is either the real numbers R or the complex numbers C. We suppose further that E
is infinite dimensional. If nothing else is said, τ is a Hausdorff vector space topology
of the vector space E. Especially, the pair (E, τ) means a Hausdorff topological
vector space. The algebraic dual of E is denoted by E∗ and the topological dual

by E
′

or (E, τ)′. The set of all τ -closed vector subspaces is denoted by Lτ (E).
A vector space E = (E,⊥) is called a linear orthogonality space, if ⊥ is a binary

relation on E such that

1. x ⊥ y if and only if y ⊥ x,
2. {x}⊥ := {y ∈ E | y ⊥ x} is a subspace for all x ∈ E,
3. x ⊥ y for all y ∈ E implies x = 0.

For the general theory of linear orthogonality spaces, see [3]. Recall that every
indefinite and definite inner product space is a linear orthogonality space in a natural
way, but the converse does not hold.
Let (E,⊥) be a linear orthogonality space. The orthogonal X⊥ of a set X

in E is the subspace {y ∈ E | y ⊥ x ∀x ∈ X}. A vector subspace M of E is

called orthoclosed , if M = M⊥⊥. Orthoclosed subspaces form a lattice L⊥⊥(E).
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The orthodual (E,⊥)′ of a linear orthogonality space E consists of orthocontinuous
linear functionals f , i.e. f ∈ E∗ and the kernel ker f is orthoclosed.

3. Existence of a locally convex topology.

Theorem 3.1. Let (E,⊥) be a linear orthogonality space endowed with a Haus-
dorff vector space topology τ . If Lτ (E) = L⊥⊥(E), then there exists a locally
convex vector space topology α on E such that Lα(E) = Lτ (E).

Proof: The assumptions imply that (E, τ)′ = (E,⊥)′ and that the relation ⊥ has
the Mackey property

M ∈ L⊥⊥(E)& x ∈ E =⇒ M + 〈x〉 ∈ L⊥⊥(E);

here 〈·〉 denotes the vector subspace spanned by {·}. This in turn implies that the
space (E,⊥) is a quadratic space, i.e., there exists an automorphism ν of the fieldK
and a non-degenerate orthosymmetric ν-sesquilinear form [· | ·] on E. Furthermore,
[x | y] = 0 if and only if x ⊥ y = 0; see [3].
The Fréchet–Riesz representation theorem [4] implies that the orthodual (E,⊥)′

consists of the functions of the form [· | x] with x ∈ E. This together with the

relation (E,⊥)′ = (E, τ)′ = E
′

means that (E, E
′

) is a dual pair. The weak
topology α induced by this duality is a locally convex vector space topology on E
such that (E, α)′ = (E, τ)′.
As the weak topology α is the coarsest topology on E for which the forms f ∈

(E, τ)′ are continuous, we have the relation Lα(E) ⊂ Lτ (E). Thus Lα(E) ⊂
L⊥⊥(E).

To prove the opposite inclusion, note first that the subspaces of the form {x}⊥ are
orthoclosed hyperplanes which in turn are all of the form ker fx with fx ∈ (E,⊥)′.
Using this, we get for all subspaces M ∈ Lτ (E) = L⊥⊥(E)

M =M⊥⊥ =





⋃

x∈M⊥

{x}





⊥

=
⋂

x∈M⊥

{x}⊥ =
⋂

x∈M⊥

ker fx ∈ Lα(E),

because fx ∈ (E,⊥)′ = (E, α)′. Thus Lα(E) ⊃ L⊥⊥(E). �

Corollary 3.2. Let (E, τ) be a topological vector space. Suppose that there is
a mapping ′ on Lτ (E) with the properties

1. M ⊂ N implies M ′ ⊃ N ′,

2. M ′′ =M for all M ∈ Lτ (E).

Then there exists a locally convex vector space topology α on E such that
Lα(E) = Lτ (E).

Proof: Define a relation ⊥ by the rule x ⊥ y if 〈x〉 ⊂ 〈y〉′. It is easy to see that

the space (E,⊥) is a linear orthogonality space with the property {x}⊥ = 〈x〉′ for
all x ∈ E. A little calculation shows then that Lτ (E) = L⊥⊥(E). Thus we can
apply the previous theorem. �
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As an immediate corollary to this corollary, we get Theorem 3.3 of [7], where it
is supposed that the mapping ′ is an orthocomplementation.
Theorem 3.1 shows that if a linear orthogonality space has a topology which gives

the same closed vector subspaces as the linear orthogonality relation, we can always
find a locally convex topology with the same property. But we can also always find
a non locally convex topology with this property even in the Hilbert space case:

Theorem 3.3. Let E be a Hilbert space considered as a linear orthogonality space,
and let τ be the topology induced by the inner product. There exists a non locally

convex vector space topology γ on E such that Lγ(E) = Lτ (E) and σ(E, E
′

) <

γ < τ ; here σ(E, E
′

) denotes the weak topology of E.

Proof: From [1, Theorem 2], it follows that there exists a non locally convex vector

space topology γ on E such that σ(E, E
′

) < γ < τ . Furthermore, one can easily
show that Lγ(E) = Lτ (E). �

4. Characterization of locally convex topologies.

Let (E,⊥) be a linear orthogonality space and let τ be a vector space topology
on E. In this section, we consider under what conditions τ is locally convex.

Theorem 4.1. Let (E,⊥) be a linear orthogonality space which has the Hahn–
Banach separation property (HBSP ):

(HBSP )











M ∈ L⊥⊥(E)& x /∈ M

=⇒

there exists f ∈ (E,⊥)′s.t. ker f ⊃ M & x /∈ ker f.

Let τ be a Hausdorff vector space topology on E such that (E, τ)′ = (E,⊥)′.
Then Lτ (E) = L⊥⊥(E), if and only if the topology τ has the Hahn–Banach

separation property (HBSP )τ :

(HBSP )τ











M ∈ Lτ (E)& x /∈ M

=⇒

there exists f ∈ (E, τ)′s.t. ker f ⊃ M & x /∈ ker f.

Proof: As the scalar field is eitherR orC, the topology τ has the Mackey property

M ∈ Lτ (E)& x ∈ E =⇒ M + 〈x〉 ∈ Lτ (E).

Theorems 5.4 and 5.5 of [6] imply now the result. �

Corollary 4.2. In addition to the assumptions of the previous theorem, suppose

that the topology τ is metrizable and complete. Then τ is locally convex, if and
only if Lτ (E) = L⊥⊥(E).

Proof: If τ is locally convex, then it has the Hahn–Banach separation property
(HBSP )τ , which implies the result by the previous theorem.
Conversely, we get from the previous theorem that τ has the Hahn–Banach sep-

aration property (HBSP )τ , which implies that it has also the Hahn–Banach exten-
sion property (HBEP )τ . Then a result of Kalton, see e.g. [2, Theorem 4.8], implies
that τ is locally convex. �

Note that Theorem 3.3 implies that this corollary fails to be true without the
assumption of the metrizability of the topology τ .
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Corollary 4.3. Let a linear orthogonality space (E,⊥) be also a p-Banach space
with 0 < p ≤ 1, and let τ be the topology induced by the p-norm. If the linear
orthogonality relation ⊥ is definite, i.e., x ⊥ x implies x = 0, and Lτ (E) = L⊥⊥(E),
then E is a Hilbert space with the natural norm equivalent to the p-norm of E.

Proof: By Corollary 4.2, the topology τ is locally convex. Thus we must have p = 1
and hence the p-Banach space E is a usual Banach space. Now [5, Corollary 3.6]
implies the result. �

The following result is an extension of a theorem of S. Kakutani and G.W. Mackey
characterizing lattice-theoretically Hilbert spaces among Banach spaces. Recall that
an orthocomplementation on Lτ (E) is a mapping

′ on Lτ (E) with the properties

1. M ⊂ N implies M ′ ⊃ N ′,
2. M ′′ =M for all M ∈ Lτ (E),
3. M ∩ M ′ = {0} for all M ∈ Lτ (E).

Corollary 4.4. Let E be a p-Banach space with 0 < p ≤ 1, and let τ be the
topology induced by the p-norm. If Lτ (E) admits an orthocomplementation, then
E is a Hilbert space with the natural norm equivalent to the p-norm of E, and the
orthocomplementation is the usual one.

Proof: Defining a linear orthogonality relation as in the proof of Corollary 3.2,
one can apply the previous corollary. �
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