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Coloring digraphs by iterated antichains

Svatopluk Poljak

Abstract. We show that the minimum chromatic number of a product of two n-chromatic
graphs is either bounded by 9, or tends to infinity. The result is obtained by the study of
coloring iterated adjoints of a digraph by iterated antichains of a poset.
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This note is motivated by a conjecture by Hedetniemi on the chromatic number
of the product of two graphs. (The product G×H of two unoriented graphs G and
H is the graph on the vertex set V (G)×V (H) and with the edges ((u1, u2), (v1, v2))
for u1v1 ∈ E(G1) and u2v2 ∈ E(G2).) Hedetniemi [H] conjectured that

χ(G × H) = min(χG, χH)

for any pair G and H of graphs. The conjecture is also sometimes called the Lovász–
Hedetniemi conjecture. The inequality ‘≤’ in the conjecture is obvious, and it is
also easy to see that the conjecture is valid for 1-, 2-, and 3-chromatic graphs. The
validity for 4-chromatic graphs has been proved in [ES]. On the other hand, no
lower bound on χ(G×H) is known. It is even not known whether the function f(n)
defined by f(n) = min{χ(G × H) | χG = χH = n} tends to infinity for n → ∞.
However, it has been proved in [PR] that if the function is bounded, then f(n) ≤ 16
for all n. The purpose of this note is to decrease the bound from 16 to 9.
A survey of other known results on Hedetniemi’s conjecture can be found in [DSW],

and some further related results have been published in [HHMN]. A special case was
proved also in [T].
The result here is obtained by extending the technique of coloring digraphs by

antichains (see [HE] and [PR]) to coloring iterated adjoints of digraphs by iterated
antichains.
Let L be a poset and let A(L) be the set of all (not necessarily maximal) an-

tichains of L. We introduce a partial order on A(L) as follows. For a, a′ ∈ A(L),
we write a < a′, if for every x ∈ a there is some y ∈ a′ such that x < y. It is easy
to check that if a < a′ and a′ < a, then a = a′, and a < a′ and a′ < a′′ give a < a′′.
For i > 0, we define Ai(L) = A(Ai−1(L)). (Note that our construction of a poset
on antichains slightly differs from that of Dilworth [D], where only maximum sized
antichains were considered.)
Let G = (V, E) be a digraph. We say that a mapping f from V to a poset L is

a homomorphism, if f(u) < f(v) for every edge uv ∈ E.
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The adjoint δG of a digraph G is the digraph whose vertex set is E(G), and edges
of δG are the pairs of consecutive edges of G, i.e. E(δG) = {(uv, vw) | uv, vw ∈
E(G)}. For i > 0, we define the i-th adjoint δiG = δ(δi−1G).

Lemma 1. Let G be a digraph and L be a poset. Then there is a homomorphism

f from G to A(L), if and only if there is a homomorphism φ from δG to L.

Proof: Let f be a homomorphism from G to A(L). We define φ as follows. Given
e = uv ∈ V (δG), where e is an edge of G, choose an arbitrary x ∈ f(u) for which
{x} < f(v), and set φ(e) = x. (A suitable x must exist since f(u) < f(v).) We
check that the mapping φ is a homomorphism from δG to L. Let ee′ ∈ E(δG),
where e = uv and e′ = vw are edges of G. We have φ(e) < φ(e′) since φ(e) ∈
f(u), φ(e′) ∈ f(v) and {φ(e)} < f(v).
Conversely, let φ be a homomorphism from δG to L. We define a homomorphism

f as follows. Given u ∈ V (G), let S(u) = {φ(uv) | uv ∈ E(G)}. Since S(u) is not
necessarily an antichain, we define f(u) as the set of the maximal elements of S(u).
It is straightforward to check that f(u) < f(v) for uv ∈ E(G). �

The chromatic number χG of a digraph G is the chromatic number of the graph
obtained from G after forgetting the orientation of the edges. Equivalently, it is the
minimum k for which there is a homomorphism from G to Dk, where Dk denotes
the discrete poset on k elements. A digraph G = (V, E) is said to be symmetric, if
for every edge uv it contains also the reversed edge vu. For a poset L, α(L) denotes
the size of the maximum antichain in L.

Theorem 2. Let G be a symmetric digraph, and i a nonnegative positive integer.

Then χ(δiG) is equal to the minimum k for which χG is less or equals α(Ai(Dk)).

Proof: Let χ(δiG) = k. Then there is a homomorphism f from δiG to Dk, and
hence also a homomorphism φ from G to Ai(Dk) by the repeated use of Lemma 1.
Since G is symmetric, φ(u) and φ(v) are incomparable elements of Ai(Dk) for every
edge uv of G. Let H be the complement of the comparability graph of Ai(Dk). The
existence of φ implies that χ(δiG) ≤ χH . Since H is a perfect graph, χH equals
the size of the maximum clique of H , which is the size of the maximum antichain
in Ai(Dk). Hence the inequality χG ≤ α(Ai(Dk)) is established.

Conversely, let χG ≤ α(Ai(Dk)). Then there is a homomorphism φ from δiG to
Ai(Dk). By a repeated use of Lemma 1, there is a homomorphism f from δiG to
Dk. Clearly, f is a coloring of δ

iG since Dk is discrete. Hence χ(δiG) ≤ k. �

We recall that Dk is a discrete poset. Then A(Dk) is the set of all subsets of
{1, 2, . . . , k} ordered by inclusion, and A2(Dk) is the set of the Sperner systems on
the underlying k-element set.

Lemma 3. We have α(A2(D3)) = 4.

Proof: The following four sets {{1, 2}}, {{2, 3}}, {{1, 3}} and {{1}, {2}, {3}} form
an antichain in A2(D3). It is easy to check that it is an antichain of the maximum
size. �
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Lemma 4 ([HE]). We have χ(δG) ≥ log2 χG.

The product G1 × G2 of two digraph G1 and G2 is the digraph with the vertex
set V (G1)× V (G2) and the edges ((u1, u2), (v1, v2)) for u1v1 ∈ E(G1) and u2v2 ∈
E(G2).
We define g(n) as the minimum chromatic number of the product of two n-

chromatic digraphs. It has been proved in [PR] that the function g is either bounded
by 4, or tends to infinity. Here we present an improvement of that result.

Theorem 5. The function g(n) is either bounded by 3, or tends to infinity.

Proof: Assume that the function g is bounded by a constant c, i.e. for all n

sufficiently large, say n > n0, we have g(n) = c. It has been proved in [PR] that

c ≤ 4. For a contradiction, assume that c = 4. Let n > 22
n0 , and G1 and G2 be

a pair of n-chromatic digraphs for which χ(G1×G2) = χH = 4, whereH = G1×G2.
Since αA2(D3) = 4 by Lemma 3, we have χ(δ2H) ≤ 3 by Theorem 2.
On the other hand, we have χ(δ2G1), χ(δ

2G2) > n0 by Lemma 4, and hence
χ(δ2G1 × δ2G2) ≥ 4 by our assumption on g. Since δ2H = δ2(G1 × G2) = δ2G1 ×
δ2G2 (the latter equality is easy to see, cf. Proposition 2.2 of [PR]), we get χ(δ2H)
= 4, which is a contradiction. �

Let h(n) = min{max(χ(G1 × G2), χ(G1 × G−1
2 )) | G1 and G2 are digraphs with

χG1 = χG2 = n}, where G−1
2 denotes the digraph obtained from G2 by reversing

the edges. Quite analogously as above, it is possible to show that h(n) is either
bounded by 3 or tends to infinity. However, it is not yet excluded that g(n) is
bounded, while h(n) is not.

Theorem 6. The minimum chromatic number of a product of two n-chromatic

graphs is either bounded by 9, or tends to infinity.

Proof: Let f(n) be the minimum chromatic number of a product of two (undi-
rected) n-chromatic graphs. The statement follows from the inequality h(n) ≤
f(n) ≤ h2(n) established in the proof of Theorem 3.6 of [PR]. �

I have been recently informed by V. Rödl that the possibility of improving the
construction of [PR]was also observed by J. Schmerl.
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