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Sets invariant under projections onto

two dimensional subspaces

Simon Fitzpatrick, Bruce Calvert

Abstract. The Blaschke–Kakutani result characterizes inner product spaces E, among
normed spaces of dimension at least 3, by the property that for every 2 dimensional sub-
space F there is a norm 1 linear projection onto F . In this paper, we determine which
closed neighborhoods B of zero in a real locally convex space E of dimension at least 3
have the property that for every 2 dimensional subspace F there is a continuous linear
projection P onto F with P (B) ⊆ B.
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1. Introduction.

As mentioned in the summary, if B is the closed unit ball in a normed space E
and for every 2 dimensional subspace F there is a linear projection P of E onto F
with P (B) ⊆ B, then the norm is given by inner product, as explained in Chapter 12
of Amir’s book [1]. A natural question is to see, if there are other sets B such that
for every 2 dimensional F there is a linear projection onto F under which B is
invariant, or whether we characterize the ball in an inner product space by this
property, among a wider class of sets B.
Restricting ourselves to closed neighborhoods of zero, we find B is the inverse

image under a continuous linear map of: a closed neighborhood of 0 in R, a unit
ball in R2, or a unit ball in an inner product space.

The reader will note that a similar problem motivates the paper [3].

2. Two dimensional results.

The following result appears as Theorem 8 of [3].

Lemma 2.1. Let B be a closed nonempty subset of R2 and suppose there is w ∈
R2, w 6= 0 and λn → ∞, such that λ−1n w ∈ B or λnw /∈ B. For every one
dimensional subspace m, there exists a linear projection P : R2 → m with P (B) ⊆
B iff B is one of:

(a) a subset, containing 0, of a line through 0,
(b) a union of parallel lines, containing 0,
(c) a bounded convex symmetric neighborhood of 0.
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Lemma 2.2. Let B be a closed subset of R2 such that for any vertical line x = c
there is a v ∈ R2 such that projecting affinitely onto x = c along Rv takes B to B.
Then B is either

(a) a union of lines, all parallel, or
(b) the epigraph of a convex function h : R → R, or the negative of such a set.

Proof: One possibility is that B is empty. Otherwise, we consider two cases,
depending on whether cocl(B) is equal to R2 or not.

(a) K = cocl(B) 6= R2. Suppose u is an extreme point of K. We claim u ∈ B.
For if not, take B(u, r) ⊆ B′, r > 0, with ∂B(u, r) intersecting ∂K in two points
u and w, noting K 6= {u} since B intersects every vertical line. Now u /∈ aff v, w,
since it is extreme, so u is in the open half space given by aff{v, w}which does not
intersects B. This contradicts u ∈ cocl(B).
Suppose (a, b) ∈ R2 is a point in ∂K. To fix ideas, suppose c < b implies

(a, c) /∈ K, by relabelling the y axis. Suppose there is a nonempty open interval
(e, f) ⊆ (b,∞) with (a, g) /∈ B, if g ∈ (e, f). Then projecting onto {(x, y) : x = a}
along a line of slope α(a) gives the open strip {(x, y) ∈ R2 : y ∈ (e, f) + α(a)(α −
a)} ⊆ B′.
Suppose for the purpose of obtaining a contradiction that this intersects ∂K.

Points in the intersection must be nonextreme points, giving a nonempty open
line interval in ∂K ∩ B′, having slope β say. Taking (p, q) ∈ R2 in this interval,
a projection onto x = p taking B to B must be along the line with slope β. But
there is an end of the closed line segment in ∂K with slope β which must be an
extreme point, hence in B, and which projects onto (p, q), a contradiction.
Hence either ∂K has slope α(a), or (a, c) ∈ B for all c > b. In the first case,

projecting onto any line x = c, taking B to B, must take ∂K to ∂K and be along
the line slope α(a), giving B as the union of lines with slope α(a). In the second
case, B being closed is equal to K, which is the epigraph of a convex function from
R to R. Without our assumption that the lower half of x = a was in B′ we could
reverse the direction of the y axis to give B as the negative of such an epigraph.

(b) cocl(B) = R2. If a whole vertical line is in B, then B = R2. Suppose now
that for all c ∈ R, if S(c) = {y : (c, y) ∈ B} then S(c) 6= R. Note for all c, S(c) is
not bounded above or below. We have for all c, α(c) such that for all d,

(1) S(d) + α(c)(c − d) ⊆ S(c).

We take two cases, depending on whether α is either nondecreasing or nonincreasing,
or not. If α is nonincreasing, by renaming we may assume it is nondecreasing.

(b1) α is nondecreasing. We define p(x) =
∫ x
0 α(x) dx, which gives the epi-

graphH of p of a closed convex set such that for all c and d, S(d)+α(c)(c−d) ⊆ S(c).
Since S(c) 6= R and S(c) is not bounded above or below for all c, S(c) has more

than one component, so that there is a bounded open interval (d, e) in S(c)′, with
the points (c, d) and (c, e) in B. Let Hb be a vertical translate of H with (c, d) ∈ Hb.
Now Hb ∩ B is invariant under projections onto lines x = c along lines with slope
α(c), and by (a), since (c, (d + e)/2) /∈ B, Hb ∩ B is a union of lines, with slope α
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say. Thus the line through (c, d) with slope α is in ∂K, and so α(d) = α for all d.
Hence, by (1), since S(d) + α(c − d) ⊆ S(c) and S(c) + α(d − c) ⊆ S(d), we have
S(d) + α(c − d) = S(c) and B is a union of lines with slope α.

(b2) There are z, y, w ∈ R, z < y < w, such that α(z) > α(y) < α(w). (If we had
α(z) < α(y) > α(w), we could relabel the y axis to obtain this assumption.)
By (1), S(w) + α(y)(y − w) ⊆ S(y), and S(y) + α(w)(w − y) ⊆ S(w), so S(y) +
(α(w) − α(y))(w − y) ⊆ S(y). Let x1 = (α(w) − α(y))(w − y) > 0. Let x2 =
(α(z)− α(y))(z − y) > 0. We have two cases; x1/x2 is rational or irrational.

(b2a) x1/x2 ∈ Q. Let x1 = kd, x2 = hd, k, h ∈ N, d > 0. Then s(y) − khd ⊆
S(y) and S(y) + khd ⊆ S(y). Hence the map x → x + khd is onto S(y), since
x ∈ S(y) gives x = (x − khd) + (khd). Now let g : S(y) → S(w) be given by
z = g(z)+α(y)(w−y), and let f : S(w)→ S(y) be given by x = f(x)+α(w)(y−w).

The map x → x+ khd is the composite (f ◦ g)k, so g and f are bijections,

(2) S(w) = S(y) + α(y)(w − y).

(b2b) x1/x2 = α /∈ Q. There are sequences ni, mi in N with |niα−mi| ≤
1
ni
. So

y → y+αx2 and y → y−x2 take S(y) to S(y). Hence for y ∈ S(y), yi = y−mix2+
(ni−1)x1 ∈ S(y) and yi → y−x1, giving y−x1 ∈ S(y) since S(y) is closed. Hence,
as in (b2a), the map g : S(y)→ S(w) is a bijection, or S(w) = S(y) + α(y)(w − y),
so (2) holds for all x1 and x2. We either have: (c) for all z < y, α(z) > α(y), or
(d) there is z0 < y, α(z0) < α(y). In case (d) we have for all w > y, (2) holds,
by using z above, if α(w) > α(y) and z0, if α(w) < α(y), and noting (2) holds, if
α(w) = α(y). And in case (c), we replace (2) by S(z) = S(y) + α(y)(w − y) for
all z < y. In case (d), we have α(w) = α(y) for w > y and in case (c) we have
α(z) = α(y) for all z < y, a contradiction to (b2). �

3. Three dimensional results.

Lemma 3.1. Let B be a closed subset of R3, N a two dimensional subspace,

d ∈ N, d 6= 0. Suppose any plane M containing 0 but not Rd is the range of
a projection P with P (B) ⊆ B and P (N) ⊆ N . Then B is a union of translates
of Rd, or B ⊆ N .

Proof: Let b ∈ B \ N . Any line m in b+N not parallel to Rd is the range of an
affine projection in b+N . By Lemma 1.2, B ∩ (b+N) is a union of parallel lines or
a convex set Kb 6= b+B intersecting every translate of m in b+N . Supposing the
latter and not the former, we have a contradiction by taking m to be a supporting
line to Kb not parallel to Rd. Hence B ∩ (b+N) is a union of translates of a line k
in b+N . If k is not parallel to Rd and B∩(b+N) 6= b+N , we may take a translate
of k contained in the complement of B in b+N , to obtain a contradiction. �

The following result of Blaschke is proved simply in [2, Lemma 1] except that p
is assumed to be a norm.
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Lemma 3.2. Let X be a real three dimensional normed space with the basis

{e1, e2, e3}, where ei is a unit vector. Suppose every two dimensional subspace which

contains e1 is the range of a nonexpansive projection along a vector in span {e2, e3}.
Then there is a function F : R2 → R such that for all xi ∈ R, ‖x1e1+x2e2+x3e3‖ =
F (x1, ‖x2e2 + x3e3‖).

Theorem 3.3. Let B be a closed neighborhood of 0 in R3. For all planes M
through 0, there exists a linear projection P of R3 onto M with P (B) ⊆ B iff B is
one of:

(a) the closed unit ball given by an inner product,
(b) a union of parallel planes,
(c) K + Rv, where K is a bounded convex symmetric neighborhood of 0 in
a plane M through 0 and Rv is a line not in M .

Proof: We let C = cocl(B) and consider four distinct cases:

(i) C contains no lines,
(ii) C contains a line but no planes,
(iii) C contains a plane by not R3,
(iv) C = R3.

(i) LetD = C∩−C. ThenD is a closed convex bounded symmetric neighborhood
of 0, invariant under projections onto all 2 dimensional subspaces, and hence the
unit ball given by an inner product, by the Blaschke–Kakutani theorem.
Take any 2 dimensional subspace M , and consider ∂D∩M and ∂C ∩M . Let Re

be perpendicular toM under the inner product. Any plane through Re is the range
of a projection taking C to C, hence D to D, hence is along a direction in M . We
can parametrize ∂D ∩M and ∂C ∩M to give radius d(θ) and c(θ) say as functions
of angle θ; these functions are absolutely continuous and their derivative is equal for
angles, where d(θ) and c(θ) have a unique tangent, i.e. almost everywhere. Hence,
if d(θ) and c(θ) are equal to θ0, they are equal near θ0, andM ∩∂C ∩∂D is open in
M ∩∂D. Since M ∩∂C ∩∂D is also closed in M ∩∂D, and nonempty, andM ∩∂D
is connected, M ∩ ∂C =M ∩ ∂D. Hence C = D.
We claim B = D. If x ∈ ∂D, but x /∈ B, then x /∈ cocl(B), a contradiction,

giving ∂D ⊆ B. If x ∈ int(D), take P a projection onto M , a 2 dimensional
subspace containing x, with P (B) ⊆ B. Then x ∈ P (∂D) ⊆ B. Hence D ⊆ B,
giving B = D.

(ii) C may be represented as K + Rv, where K is a closed convex set, not
containing a line, in a plane M , and v /∈ M . All projections onto planes not
containing Rv are along Rv, so B \ Rv is a union of lines parallel to Rv. Let
B1 = B ∪ Rv. Now in R3/Rv, we have all lines through 0 being the range of
a projection taking the quotient B1/Rv to itself.
By Lemma 1.1 and our hypotheses, it must be a closed bounded convex symmet-

ric neighborhood of 0. Hence B1 = K + Rv, with K a closed bounded symmetric
convex neighborhood of 0 in M , v /∈ M . Hence, Rv ⊆ B, and B = K + Rv.

(iii) Let N be a plane through O with a translate of N contained in c. Now any
plane M through O, M 6= N , is the range of projection along a direction in N .
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Hence for b ∈ B \ N , any line b + N is the range of an affine projection in b + N
taking B to B.
By Lemma 1.2, B ∩ (b + N) is a convex set not equal to b +N but meeting all

lines, which is impossible, or is a union of parallel lines. Hence b+N ⊆ B.

(iv) We assume B is not a union of parallel lines.

(a) We claim that for any line Rw, w 6= 0, and anyM ∈ R, B intersects [M,∞)w.
For, take a plane Rw + Rv, and project onto it along u. Suppose we project onto
Rw+Ru along y. B intersects [M,∞)w+Ry+Ru. Projecting onto Rw+Ru gives
[M,∞)w intersecting B.

(b) Since B 6= R3, take a ∈ B′, a 6= 0. Take a plane N through Ra, and project
along b, so B(a, δ) +Rb ⊆ B′. Take the plane Ra+ brb and project along c onto it.
For δ > 0 small, B(a, δ) + Rb + Rc ⊆ B′. Let us call the set between two parallel
planes a “slice”.

(c) We claim there is a basis (f1, f2, f3) and a nonempty open ball B(c, δ) with
the three slices B(c, δ) + Rf1 + Rf2, B(c, δ) + Rf2 + Rf3, B(c, δ) + Rf1 + Rf3 all
contained in B′. Since we are assuming B not a union of parallel lines, take the slice
B(a, δ) +M ⊆ B′, δ > 0, M on a plane through 0 and by Lemma 3.1 take N 6= M
a plane through 0 with projection along r /∈ M . By Lemma 3.1, take Q another
plane through 0, not containing N ∩ M , with projection along s /∈ M . Let c be
the point of intersection of a +M, N and Q. We take the three planes through c:
c+M, c+Rr+(M ∩N), c+Rs+(M ∩Q). These are all contained in B′, together
with slices containing them, and the intersection is {c}. Together they give fi as
required.

(d) We claim there is a sequence of projections Pn onto planes through 0 with
‖Pn‖ → ∞. Assume by renaming that c is the positive octant. For δ > 0, let
fδ = f∗

3 − δ(f∗
1 + f∗

2 ), where (f
∗
1 , f

∗
2 , f

∗
3 ) is the dual basis to (f1, f2, f3).

Suppose there is δ > 0 with {x = (fδ, x) ≥ 0}∩B∩{x : x1 ≥ c1, x2 ≥ c2, x3 ≤ c3}
nonempty. Then by compactness there is a maximal such δ, d(max), and an e ∈ B
with (fδ(max), e) = 0, e1 ≥ c1, e2 ≥ c2, e3 ≤ c3. For δ > δ(max) there is no such e.

If there is no δ > 0, take δ(max) = 0 and in this case by (a) there is e ∈ B with
e1 ≥ c1, e2 ≥ c2 and e3 = 0.
Let δ(n) → δ(max)+ and let Pn be a projection on N(fδ(n)). If Pn(m) is

a bounded subsequence, then Pn(m)e → e, giving Pn(m)e in B, with (Pn(m)e)1 ≥

c1, (Pn(m)e)2 ≥ c2, (Pn(m)e)3 ≤ c3, contradicting the maximality of δ(max). Hence

‖Pn‖ → ∞.

(e) We derive a contradiction, showing B is a union of parallel lines. Since
‖Pn‖ → ∞, and Pn(B) contains the symmetric convex set PnB(0, ε) for some
ε > 0, we have Pn(B) intersecting c+ Rfi + Rfj for n large, for some i and j.

(f) We claim B is a union of parallel planes. Since B is a union of parallel lines,
there is q 6= 0, so B is a union of translates of Rq. By 2.1 applied to R3/Rq, we
have B/Rq a union of parallel lines, since its convex closure is R3/Rq, and it is
a neighborhood of 0. This gives B a union of parallel planes. �
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4. Higher dimensions.

Theorem 4.1. Suppose B is a closed neighborhood of 0 in a real locally convex
topological vector space X of dimension ≥ 3. For all two dimensional subspaces M
there is a continuous linear projection P of X onto M with P (B) ⊆ B, iff B is the
inverse image under a continuous linear map T of:

(a) the closed unit ball in an inner product H ,
(b) the closed unit ball given by a norm on R2, or

(c) a closed neighborhood of 0 in R.

Proof: =⇒ (1) We suppose that for al 3 dimensional subspaces F of X F ∩ B is
a union of parallel planes. We claim B is a union of parallel closed hyperplanes, so
(c) holds.
For H a closed subspace of codimension ≥ 2 with H ⊆ B, we claim there is

a closed subspace H+1 with H+1 ⊆ B and H of codimension 1 in H+1. Let H−1 be
a closed subspace of H of codimension 1 and let E be a three dimensional subspace
of X with E ∩ H−1 = {0}. Let M be a two dimensional subspace of E contained
in B. Given h ∈ H−1, h 6= 0, (Rh + M) ∩ B is a union of translates of M , so
h +M ⊆ B, giving H−1 +M ⊆ B. Take H+1 = H−1 +M . By Zorn’s lemma,
a closed subspace H of codimension ≤ 1 in X is contained in B. If x ∈ B \H , and
h ∈ H , let E be a three dimensional space containing x, h and a two dimensional
subspaceM of H . Then x+M ⊆ B, giving x+h ∈ B. Thus for x ∈ B, x+H ⊆ B,
and the claim is proved, B = ∪{x+H : x ∈ B}.

(2) We now suppose there exists a 3 dimensional subspace F0 such that F0 ∩ B
contains no plane, and we suppose that for all three dimensional subspaces F, F ∩B
contains a line. We claim B is convex, contains a 2 codimensional closed sub-
space E, and with E2 a complementary subspace, B ∩ E2 is a bounded symmetric
neighborhood of 0 in E2. We take E2 ⊆ F0 with E2 ∩ B a bounded symmetric
neighborhood K of 0. Let e ∈ E2, e 6= 0, B ∩ Re = {λe : |λ| ≤ 1}.

B is convex since if a, b ∈ B, we take a 3 dimensional space G, containing a, b
and e, and note that if B ∩G is a union of planes, it is of the form M +λe, |λ| ≤ 1,
and hence B ∩ G is convex.
Let H be a closed subspace of X , of codimension > 2, with H ⊆ B. Take

f /∈ E2 +H . Now (E2 + Rf) ∩ B contains a line Re say, giving B ⊇ H + Re since
it is closed and convex. Hence, by Zorn’s lemma there is a closed subspace E of
codimension 2 with E ⊆ B.
Since B is closed and convex, K + E ⊆ B. Let b ∈ B, with b = b2 + be, b2 ∈

E2, be ∈ E. We claim b2 ∈ K. If bE 6= 0, B ∩ (E2 + RbE) is projected onto E2
taking B to B, hence along bE , and b2 ∈ K = B∩E2. Thus B = K+E, giving (b).

(3) We suppose there exists a three dimensional subspace E0 such that E0 ∩ B
contains no line. Now as in (2) we find B is convex, and the same idea gives B
symmetric. By Zorn’s lemma, there is a maximal closed subspace E ⊆ B. Let
Q : X → X/E be the projection. We see Q(B) is convex, symmetric, and radial. If
p is its Minkowski functional, by maximality of E, if p(Qx) = 0, then Rx ∈ B and
x ∈ E, so p is a norm.
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We claim p is given by an inner product, by the Blaschke–Kakutani theorem. Let
M be a 2 dimensional subspace of x/E and take N a two dimensional subspace of
X with QN =M . Let R be a continuous projection of X onto N with R(B) ⊆ B.
We define P : X/E → M by P (Qx) = QR(x); this is well defined for if Qx = 0,
then x ∈ E giving Rx ∈ E and QRx = 0. We see P maps X/E → M and is the
identity on M and maps Q(B) to Q(B). Hence Q(B) is the closed unit ball in an
inner product space, Q : X → X/E is continuous and linear, and B = Q−1(Q(B))
giving (a).

⇐= (a) Suppose (a) holds. Let M be a 2 dimensional subspace of X .

(i) Let TM be a 2 dimensional subspace of H . Let R be the projection on
TM under which the unit ball B[0, 1] in H is invariant. Let T |M be the
restriction, and define P = (T |M )

−1RT . One checks P takes X to M , is
the identity on M , is a continuous linear map and maps B = T−1(B[0, 1])
to itself.

(ii) Let TM be a 1 dimensional subspace of H . Take (e1, e2) a basis of M, Te1
= 0. Let S : X → M be a continuous projection, Sx = x1(x)e1 + x2(x)e2.
Define Px = (T |Re2)

−1RTx+ x1(x)e1, where R is the projection on TM
leaving B[0, 1] invariant.

(iii) Let TM be 0 dimensional. Let S : X → M be as in (ii) and take P = S.

(b) Suppose (b) holds. LetM be a 2 dimensional subspace ofX . Let T : X → R2

be given, B[0, 1] the unit ball in R2, and B = T−1B[0, 1].

(i) Let TM = R2. Define P = (T |M )
−1T .

(ii) Let TM be 1 dimensional. Let R be the projection on R2 of TM leaving
B[0, 1] invariant, and define P as in (a)(ii).

(iii) Let TM be 0 dimensional. Define P as in (a)(iii).

(c) Suppose (c) holds. Let M be a two dimensional subspace of !X. Let T : X →
R2 be given, A a closed neighborhood of 0 in R and B = T−1(A).

(i) Let T (Rm) = R, m ∈ M . Define P = (T |Rm)
−1T .

(ii) Let T (M) = 0. Define P as in (a)(ii).

�
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