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In differential geometry of higher order, one deals with
some interesting algebraical structures possessing partial
operations. Here we shall investigate the simplest ¢f them -
double vector spaces and their morphisms. The category 3L
of double linear morphisms has been introduced by J.Pradines
in [1]. Analogous investigations in double affine and affine-
linear case have been studied by I.Kola® in [2]. In this paper
we shall show a slightly more general point of view. Thée ca-
tegory X will be described geometrically.

1. Preliminary notions

X and Y are (non-empty) sets and p: Y—+X is a projection.
The set X is called a basis of the S-fibration, Y is a total
space of the S-fibration, and the set Y, = p—l(x) for x € X
will be called a fibre of the S-fibration é over a point x.

Remark. Let € be a category. A morphism in a category € will
be called a € -morphism. A € -isomorphism is an isomorphism in
€ in the sense of the theory of categories. The identical
morphism on an object X will be denoted by 1y-
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Definition 1.2. Let ¢ = (Y,p,X), $'= (Y,p,X) be two S-fibra-
tions. A morphism_of é to ¢ is a mapping f:Y—Y such that there

exists a mapping g:X—sX so that the following diagram is com-
mutative:

f
—_—
9
—_———-

©
X — <
x| ~— <|
ol

Obviously, if g exists, then it is unique. We shall say
that f induces g, or that f is over g. It can be easily seen
that S-fibrations and their morphisms form a category. We shall
denote it by Y%

Definition 1.3. An S-fibration (Y,p,X) will be called a trivial

f:(XxZ,pry,X) —=(Y,p,X) such that the induced mapping g = 1x.
Trivial fibrations constitute a complete subcategory 7 %
in the category 7F.

Let K be a given field. Under a vector space we shall al-
ways understand a finite-dimensional vector space over K. Vector
spaces and their homomorphisms form a category which will be
denoted by rd

Definition 1.4. An S-fibration é = (Y,p,X) will be called a
with a structure of the vector space. Given two vector S-fi-
brations é , é ., @ morphism_of the vector S-fibration_ to_

56 is a F¥F - morphism f: é—> ; over g such that for every

x € X, the induced mapping fx: Y, —Y of vector spaces

9(x)
is an Qf—morphism.
Vector S-fibrations together with their.morphisms form

a category denoted by L YT,

Example 1.1. Let X be a set and let V be a vector space. Let
us define a structure of the vector space on each set {x}«xV,
x € X so that the natural bijection {x}XV—sV is an X -mor-
phism. Then the triple (XxV,prq,X) is a vector S-fibration,
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Definition 1.5. A vector S-fibration (Y,p,X) is a trivial vector
fibration if there exists a vector space V and an L SF -isomor-
phism over identity f:(X:(V,prl,X)————o(Y,p,X).

Again, trivial vector fibrations form a complete subcate-

gory TL 7% in the category LY¥.

Let us recall that an affine space Z with associated vector
space V is a set Z together with a free and transitive right
action of the additive group of the vector space V on Z. We
shall denote the operation Z x V—Z by +. That is, for v & Vv
and z € Z, the result of the action of the element v on z will
be denoted by z+v.

Definition 1.6. Let ¥ = (W,q,X) be a vector S-fibration. An

W, acts freely and transitively (or equivalently, l-transiti-
vely) on Y. In other words, the fibre Y, is an affine space
with associated vector space Wx'

Definition 1.7. Let é and ¢ be affine S-fibrations associated
with vector S-fibrations ¥ = (W,q,X) and ¥ = (W,q,X) respec-
tively. An .V.?-morphism f: ¢_..¢ over g:X — X is an affine
morphism if there is an Y% -morphism h: Vw—tf"over g such
that

f(y+w) = f(y) + h(w) for every y ¢ Yo WewWw, and x € X.

It can be easily seen that if the mapping h exists, then
it is specified uniquely. We shall say that h is associated
with f. The family of affine S-fibrations together with affine
morphisms form a category denoted ay¥.

Example 1.2. Let Z be an affine space with associated vector
space V. Further, let X be a set. Then (Xx2Z,pry,X) is clearly
an S-fibration, and (XeVv,pr,,X) is a vector S-fibration. For
every x € X, we define an action + of the group {x}x V on the
fibre {x]x z by the formula (x+z) + (x+v)=: (X,Z+Vv). Now
(X>Z,pry,X) is an affine S-fibration with associated vector
S~fibration (XxV,pry,X).




morphism f: (XxZ,prl,X)-——tsé over 1.

Remark 1.1. Let % be an affine S-fibration with associated
vector S-fibration V . It can be easily verified that ¢ is

a trivial affine fibration if and only if ? is a trivial
vector fibration.

Remark 1.2. A vector (affine) S-fibration is a trivial vector

(affine) fibration if and only if all fibres have the same
dimension.

Trivial affine fibrations form a complete subcategory

7213?3n Clyji )

2. Double vector s paces

Now let A,B be two vector spaces, and let C be a set. Let
T :c—sAxB be a given mapping. Denote by pry:AxB — A and

Pro:AxB——= B projections to the first and second component,
respectively. Further, let us denote

g”° a” G o
/L1=pr‘1 o . C—a, »/L2= pry © Jo .

and for a € A, b € B let
g -1 g -1 -1
¢, = T, (a), ¢y = N,7"(b), c, = T""(a,b)

Finally, denote

(7 - g . a- _ g

J‘l,b = l, | Cp : Cy—A, /‘z,a = /czlc C,—rB.
Definition 2.1, Let A,B,C T be as above. Let Cipr 171, weuy
k =1, ..., s be elements of C. We shall say that {cik{
is an_(r,s)-net_in C if the following is satisfied: i=l,...,r

k=1,...,s
Tylegp) =Tylesn)s Tplegy) = Toleyy) |

for all i,j =1, ..., r, k,1 =1, ..., s.

For an (r,s)-net {Cik} we set a, = Wl(cik)' b =¥45(cy )
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a mapping T : Cc— A x B, where A,B are vector spaces with zero
elements Oa and Og respectively, having the following properties:
(i) For every a € A (b € B), a structure of the vector

space is given on C_ (Cb).

(ii) (C,?Ti,A) and (C,OTE,B) are trivial vector fibrations
with addition and scalar multiplication in fibres denoted by
10 g and *tor o respectively.

(iii) ?r2,a : C,— B (j>i,b : G ——=A) is an epimorphism
of vector spaces for every a € A (b € B).

(iv) On the set V = C which is a subspace in C as
OA,OB OA

well as in CO , both vector structures coincide. So on V, we
B
may write merely +, ., and O.
(v) If {cik{ is a (2,2)-net in C then the following
i=1,2
k=1,2
condition is satisfied:
(G171 *1 C12) *5 (Cp1 *q Cpp) = (Cgq *+5 Cpq) +3 (15 +5 C5p) -
(vi) For every 2,,¢u € K, A .1(4A.2c) = /”'2( l.lc).
(vii) Let T ,(c) =T,(c"), Ty(c) =T(c’*), A € K. Then

A.l(c+zc') (a.lc)+2(ﬂ.1c')

and

H .2(c+1c'0

]

(A pe)eg (A et

gV o, . .
J is a projection.

Example 2.1. Let A,B,V be three vector spaces. Let us set
N~
C = AxBxC and define / :C—+ AxB as a natural projection.

For every a € A (b € B), assume a structure of the vector space
on C, (Cp) given as follows:

(a,b,v) +; (a,b,V) = (a,b+b,v+V),
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R‘l ('alblv) (a'Ab,AV),

(a,b,v) +, (3,b,V) = (a+3,b,v+V),

Pl .5 (a,b,v) = (Aa,b,Av).

The conditions (i) - (vii) required in pef.2.2. are satisfied.
The proof is straightforward. The double vector space AxB xC
(with the above projection and partial linear operations) is

Definition 2.3. Let C,C be double vector spaces with corres-
ponding projections 7' :C—AxB and # :C—A x5 respectively.

A mapping f:C—>TC is_a morphism of double vector spaces if
f, =W o f and f, = %Zif,fl:A——-)K,fZ:BF:—»E are & -morp-
hism, f:(C,7IV1,A)-—-—o(E, 77’1,K) is an X Y# -morphism and at
the same time, f:(C,.(I/VZ,B)—»(E, 7‘7—'2,5) is an ,Zy?\—’morphism.

We shall say that f,,f, are underlying Z—morphisms of
the oﬂx-morphism f.

Double vector spaces together with morphisms just defined form
a category B .

Let C éﬁx with the centre V.

formula
{,a(v) = v+20a (Lplv) = v+,0p)

is_an (Z-gsgmgrghisg.

Proof. Let v,v' € V. Then the elements v,v',Oa,Oa form a
(2,2)-net. By (v) of Def.2.2.,

(v+1v')+2(03+1oa) = (v+206) +1(v'+206) .
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’
Therefore

1]

Ca(v+v') Colvegvt) = (v#yv?')+,0, = (v#gv')+,(0,+,0 ) =

Lalv)+y L (V")
Further, let A € K,v € V. The property (vii) implies
LAV

AN A.v) = (4 .1V)+,0, = (A .1v)+2()..103) =

A g (v4,0) = Ay L (V).
Thus La is an &£ -morphism.

Now let v € V be such that Ca(v) =0,. That is, vi,0, =

= 0,. It follows v = 0, which proves that La is a monomor-

phism. Finally, choose an arbitrary c € C . Since ¢ and 0,

a,Ob

are in C there exists a unique v € C such that ¢ = v+,0_.
OB 0B 2 a

We have

a= T (c) = Tj(vey0,) = W)+ T70,) = T (v)+a

which gives gyi(v) = 0. Hence v € V, and Ca is an epimorphism.
For the mapping Cb' the proof is similar.

Lemma 2.2. Let v& V and c € C_ . Then _the following is

satisfied:

(v+10b) +5C = (v+203) +,C.

P r oo f. Clearly, the elements v,Ob,Oa,c form a (2,2)-net.
By (V).

(V+10b)+2(0a+1c) = (v+206)+1(0b+2c)
and consequently

(v+10b)+2c = (v+ZOa)+1c.
Now we may give the following definition:
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Definition 2.4. Let ¢ € C, v &€ V., We define

ctv = (Vi 0p)+p0 = (v+50,)+ ¢,

where a = Zvi(c), b = gré(c).

Theorem 2.1. A mapping CxV—C given by (c,v)r c+v is_a_

C freely and_its_orbits are just_the_sets Ca b with a € A,

b € B.

Proof. Let v,v' e V and suppose c € C with ?a(c) = a,
av

I ,(c) = b.

Then

(1) D(cHv)

]

o~ o o~
b ((vig0p)+5c)= Jrg (v, 0p)+ ﬁl(c) = Op+a = a

and

(2)  Tp(etv) = T((v4,0,)+,¢) =fﬁ§(v+20a)+ T,(c) = 0g+b = b.
Hence

(c+v)+v' = (v'+10b)+2((v+10b)+2c).

According to L.2.2. and (v) of Def.2.2. for a (2,2)-net {V,Ob,
v+208,c} we obtain

(c+v)+v' = (v'+10b)+2((v+203)+1c) = (v'+2(v+20a))+1

(Op*,c) = ((v+2v')+206)+1c ((v+v')+20a)+1c = c+(v+v').
Further,

c+0 = (0+, Ob)+2c

0b+20 = C.

At the beginning of the proof we have seen that if c € Cap

and v € V then c+v € C,  (see (1), (2)). We show that the
group V acts transitively on Ca p- Let c,c’ € Ca b* Since

c,c' € Cb' there exists a unique element d € Cp guch that

c! = d+2c. Moreover, ?“1(d) = Op, that is, d € COA,b‘ Therefore

by L.2.1., there exists v € V such that v+, 0p = d. We get
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¢’ = d+,c = (V440 )4,C = C + V.

It remains to prove that V acts freely. So let c € C, v € V be
elements satisfying c+v = c. We have

(v+,0p)+5c = c,
v+10b = Ob,
v = 0.

P roof. It follows immediately that % is an affine S-fi-
bration with associated trivial vector fibration V (Th.2.1.).
By Remark 1.1., 45 is also trivial.

3. Morphisms o f double vector
spaces

ons 77:C—sAxB and 7°:C —sAxB respectively. Let f:C—>C
e

i
be_a_dA & -morphisn, Then f is_an (QY#-morphism over f, X f,:
:AxB—>AxB with_associated Y¥F-morphism fyx fox (F]V):
:(AxBxV,pr,AxB)—>(AxB xV,pr,AXxB) over flez.

> ¢(/7/2, it follows
D ef = (fyx f,)eT7. Therefore f is a morphism of S-fibrations
over f, X f,. Let c & C, v& V. Then

P roof. Since (/7/1.f = flo(-’/vl and‘Tz.f = f2

f(c+v) f((v+208)+1c) = f(v+Oa)+1f(c) =

(F(1)+0¢ (a))*2f(0) = F(e) + £(v)
where a = Jli(c). This finishes the proof.
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Definition 3.1. basis of a double vector space C is an

A
ordered couple ({cikf, {vm{) where {cik} is an (r,s)-net
i=l, ..., r
K=1:...,s

such that {aiq is a basis for the vector space A,
i=1,...,r

{bk} is a basis of B and {vmi is a basis of
k=1,...,s m=1,...,t

the centre V.

. e A

S r_. t
¢ ’Z 1 Z 2 MeaCA505) +Z VoV =
m=

k=1 i=1

r S t
"Z ZZ 1)‘1'2((“k’1°ik) “Z VoV ¢

i=1 k=1 m=1

= 274 2772

- el m . . m am = - - PO e - = R

Proof. Clearly, there exist elements 21...,, 2r~é K such

that
r

‘Tl(c) "'Z__ A ey

i=1

r
Denote C = E 2 ai‘2 Cike k=1,...,8. It is clear that
)

(g -
-/ll(ck) = ?’1(c), 71\'2(c) = b, . There exist elements (“’1""'

(M% € K such that

S
T5(¢) =_§ Mby-
k=1
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We set

o

.S . .,:_én
=Zl Mk Gk =Zi ' MZ Ay
k=1 k=1
S r )
=Zl Zz /‘“k"1( Ais ooy
k=1 i=1

We have /ll(c') = Ti(c), /fz(c‘) = 4’12(0). By Th.2.1., there

is v € V such that ¢ = ¢’ + v. Writing v in the form

t
v=£\’mvm we get
m=1
°'ZaZz/m1(Alz k>+§:\? Yo

k=1 i=1

We show that the above expression is unlquely determined.

suppose ¢ = élaz(hk 1(11 i Cyi) +Z V oV

k
(o
Applying. /I1 on both sides of both sides of the previous
equality we obtain

£ 2 Taley) = & A T ey for ket,s..ys
i i ‘

and further

i;‘;iai ’Zr_ Xlai‘
i=1

i=t

L ) X ~
Thus —Ai = li for i=1,...,r. In a similar way, using ¥,

yields /4.lk = (ﬁ'k’ for k=1,...,s. Both this results give

> . ) i} 1 s .
%vam = vamvm' Therefore Vm = Vm for m=1,...,t which

= 49 =
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proves uniqueness of the expresion (3). By symmetry, we deduce
that there are unlquely determlned elements /1. R I

/"1'-- (14, "1'-“' VtéK such that ‘
(4) 2 é 1’2(2';|<'1Cik) + é -5 nVm
i k m

Application of (/v on (3) and (4) gives 2 A, 194 = é _iiai ,
_ i i

. L . o~ . e
;Li = 11, i=1,...,r. Similar using of /7, yields M © (Ak

for k=l,...,5.

Theorem 3.3. Let C, T:c—sAxB and T,7:C—AxE be e_two_
double vector spaces. Let ({ ; {v ; )
ik$ g

l<=1,...,s

o
@
o
o
o
o
=
»
=
S
(@]
T
c
S
+
>
®
S5
—
®
+
~—
o
"
~
——~
o
@
©
—
[}
-
3
®
pet

i=l,...,r 7 T T T 7 77
k=1,...,s

mg m=1,'...,t ______________

A& -morphism f:C—» T such_that ey

i=l,...,r, k=l,...,s, and f(vm) = Vv for m=1,...,t.

in C and let {V be elements in V. Then there
ue

P r oo f. Suppose c € C. According to the previous theorem,

there are uniquely determined numers 21, /kk' Vm such that

S r t
=Zl ZZ/"k'l( 2*i'2 Cik) +Z \)mvm
k=1 i=1 m=1
Define

f(e) = % 1 gz e ‘11'2 Cii) é Y nVm
k i m

Clearly, f maps C on C and it satisfies the above conditions.

Now let a, = frl(c

_ - I _ G =
ik P =Upleg e By =Y (T, By = 45T

:B ———sg)

2

There exists a unique &-morphism fliA— A (f
b k=1,...,8).

satisfying fl(ai) = —a_i, i=l,...,r (fz(bk) =

We shall show that f is a \oéd%—morphism of C onto C with the

- 20 =



underlying é(—mor‘phisms fq and f2.

r
i 9 - - (o oo
Since v/'l(f(c)) = g Aiai = fl(/rl(c)) we have pof = flaf’l.

i=1
: ) . (]"' . _N ,
Consider c,c’” &€ C with the property 1(c) = I 1(0 ). Let gv .
()0'4 K. Let us write

c = gli 22 (‘1'|<'1(Ai'2cil<) * é YoV ¢
< i m

) ) o~
¢ =2y %2 Mt Aiopei) + & V' v,
k i m

For ?;(c) = (71:1((:,), we have Ai = Ali, i=1,...,r. Moreover,
(fe10) vy (4hge7) = 24 22 S Tat ?l(u’k)'l(ﬂ“i'zcik) *
k i

C Sy g @Y Y,
m

It follows that f((g.lc) *1 ({'.1c')) = (Q <1 f(e)) +4
(g'.lf(c‘)). Hence f:(C,Tl,A)————~> (E,TI,K) is a o‘(f/?'—mor-_
phism over fl. Similarly, f:(C.gl\/Z,B)-——a(E, (l/\é,§) is a OZV?-
-morphism, Thus f is a &L -morphism. The prove of uniqueness
of f involves no difficulties.

Corollary. Two double_ vector spaces C,T:c—-»AxB, and '6,?!/:;

C-——AxB, are &Y -isomorphic if and_only if dim A = din 7,
dim B = dim B and dim V = dim V.

So we may define dimension of C dim C=:(r,s,t), where
r = dim A, s = dim B, t = dim V. In this case, C is & -iso-
morphic to the trivial ﬁfz—space K(r,s,t) =: K x I<'S)(Kt with
projection (//V=pr: K x K® x Kt — K™ x KB,

Now we shall investigate morphisms of the trivial double
vector space K(r,s,t) to another trivial X -space K(T,5,T).

For simplicity, let us denote A = K', B = k%, v = k¥, ¢ =

= AxBxV and similarly A = K" etc. Let f:C—C be a @ -mor-

-~ 21 -



phism with underlying & -morphisms fy:A—=A, f,:B—B. Let
¢ = (a,b,v) € C and let us write f(c) s (E,E,V). Since
f:(C,Tl.A)—-—o(E,T“‘l,K) is a £ F -morphism over f, and
f:(C, %Z,B)ﬁ(ﬁ, ?-?—;“BQE) is a £YF -morphism over f,, we have
as=s fl(a),b = fZ(Q).“Befine a mapping G :A xB—>V by

f((a,b,0)) = (fi(a), fo(b), G (a,b)).

Lemma 3.1. The mapping 6:ax8—7T is_bilinear,

Proof, Let a,a' e« A,b gB. Then

i

f(a+a’',b,0)) = (f,(a+a’ ),fz(b),é (a+a’,b)) =

R

(Fy(a)efy(a’),fy(b), 6 (a+a’,b))
and further

f((at+a’',b,0))

i

f((anb.0)+2(a'4bgg)) = f((a,b,O))+2f((a',b,O)) =

(fy(a), Fo(b), 6 (a,0))+p(Fy(a') Fo(b), 6(a’,b) =

(Fy(a)+fy(a’) Fo(b), 4(a,b)+ G (a’,b)).

Therefore 6 (a+a’,b)aé(a.b)+ 6(3',_b). A proof' of the equality
é(a,b+b')=é(a,b)+é(aib¥) is quite similar,

Let f3 denote the restriction of f to the vector space V.
Obviously, fz(V) ¢ V. We have f((a.b,v)) = f((a,b,0)+v) =
F((8,0,0))+F5(V) = (f1(a),Fa(b), G (a,b))+fs(v) =
= (f1(8),Fo(0): B(a.0)4E5(0)).

Further, denote by the symbol Hom (C,C) the set of all
oﬁ&—morghigma of the trivial &K—space C to the trivial #& -
space E Let Hem (AQE) be the vector space of all o(C—,morphisms
of A te A (similarly for B,V) and let Hom (Ax B,V) denote the
vector space of all bilinear mappings of AXB to V,

Theorem 3.4. Thear
X : Hom (C,C)——aHom (A,A)x Hom (B,B) x Hom (V,V) xHom (A xB,V).
The mapping ¥ sends each &L zmorphism f ¢ Hom (c,T) onto_an

ordered guadruplg (fy.fp.f5,6). The inverse mapping £ maps_

e exists_a _bijection

E = R S L~ <

=22 =




a guadruple (flzfa.f3, G)on f e Hom (C,C) given by_
f((a,b,v)) = (f;(a),fy(b),@ (a,b)+f5(V)).

gugdguglgs_(fi.f*a.fs,q') and (f-i,fé,f:'s,o“) then_the quadruple

(f:'L"fl'fé°f2'f§‘f3'6'(f1‘f2)+f3' G ) corresponds to_the_pro-

DR I N

duct f'e f:C—s &, The proof is straightforward.

The mapping # enables us to identify the sets Hom (C,CT)
and Hom (A,R)x Hom (B,B) xHom (V,V)x Hom (A B,V). Note that
(fg.f5.f3,6) € Hom (C,C) is an isomorphism if and only if
f, € Hom (A,R), f,€ Hom (8B,B), f4 € Hom (V,V) are isomorphisnms.

Let Aut(C) be the group of all automorphisms of the && -
space G, let Aut(A) denote the group of all automorphisms of
the vector space A etc. The mapping X gives an identification

~S —

Aut(C)——> AUt (A,B,V) x Hom (A xB,V)
where AUt(A,B,V) = Aut(A)x Aut(B) x Aut(V) is a direct product
of groups. Define

A~
J: Aut(C)——>Aut(A,B,V)

by 1(f1,f2,f3,@7) = (fl'fz'fs)‘ It is easily seen that this
mapping is a group epimorphism, Its kernel is a commutative
group Hom(A x B,V) with its usual additive group structure.

Hence we have a short exact sequence

— ~
0 ——-> Hom (A xB,V)— Aut(C)——>Aut(A,B,V)——0

where i is an embedding. If we define qg: ;\\Uft(A,B,V)-——-bAut(C)
by q(fl,fz,f3) = (fl'fZ'f3'O) then q is a group homomorphism
and it is a splitting of the above sequence. It follows
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Example 3.1. If pg : E—sM is a vector bundle then its tan-
gent bundle TE admits twe vector bundle projections
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Prg ¢ TE—E and TpE : TE—> TM. Each fibre (TE), =

= (p.l.E pE)_i(x) for x € M is a JY -space with projection

¥ (TE), ——E xT M, T(F) = (Pre(f ). Tp ¢ £)) for fe(TE),.

Example 3.2. Let T¥E be a cotangent bundle of the vector bundle
pg + E—M. Besides a natural projection p* : T¥E —E, there
exists a projection q : T*E— E¥ of the vector bundle giwnen

as follows. For y € E and w: T E— R} assume the restriction

‘T = leyE—-bR.

The vector space VyE may be identified with Ey (where
x = pg(y)) via translation. Let T: v E — E, denates the
corresponding isomorphism. Then we define q w =T“[EEX——» R .

@ of cw to the vertical subspace VyE

A fibre (T*E), is a 34 -space with projection

T () —Ey x B PMw) = (PM(w)) alw ).
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SOUHRN

Dvojné vektorové prostory

Alena Vanzurova

vV &lanku je podana geometricka axiomatizace kategorie
dvojné linearnich prostord a jejich morfismd, kterou zavedl
J.Pradines v [1]. Ukazuje se, Ze kazdy X & -prostor je iso-
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morfni s nékterym trividlnim D& -prostorem. V zavéru je vy-

Setfovéna grupa véech & -automorfism@ trividlniho & -pros-
toru.

PE3KOME

JBoitHO BeKTOpHHE MpPOCTpPaHCTBA

AnrneHa BaHwHxyposBa

B crarbe maeTcsd aKcuoMaTMUYeCcKOoe onucaHue JMBOJHO BEKTOD-
HHX NIPOCTDP&HCTB U JBOJHO JuHellHHXx MopdusmoB, KoTOpoe Goree
reoMeTpUYHO YEeM ODMTUHAJbHOE onpeleJeHue BBeleHHoe [IpaiuHoM.
C LBOJIHO BeKTODHHMM IIpOCTpaHcTBamu BeTpeuaeMcs B audpdepen~

uuasnbHO} reoMeTpuy BTODPOrO NOpAAKa, I'le CJAYXaT CJOAMA HEKO-
TOpHX DPaccJaoeHuil.
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