Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematic

Dalibor Klucký; Libuše Marková
Medial subcartesian products of fields

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, Vol. 26 (1987), No. 1, 27--31

Persistent URL: http://dml.cz/dmlcz/116967

Terms of use:

© Palacký University Olomouc, Faculty of Science, 1987

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

ACTA UNIVERSITATIS PALACKIANAE OLOMUCENSIS

FAGULTAS RERUM NATURALIUM

Katedra algebry a geometrie
přírodovědecké fakulty University Palackého v Olomouci Vedoucí katedry: Ladislav Sedláček, Prof., RNDr., CSc.

MEDIAL SUBCARTESIAN PRODUCTS OF FIELDS

DALIBOR KLUCKÝ, LIBUŠE MARKOVA
(Received March 30th, 1986)

The authors wish to acknowledge their indebtedness to Doc.RNDr. V.Vilhelm, CSc, for suggesting the idea underlying this article.

Let us consider a Cartesian product $A=X_{i \in J} F_{i}$ of a given system $\left\{F_{i}\right\}_{i \in \mathcal{J}}$ of fields, A is a commutative ring with a unity-element 1 and the zero-element 0 such that $\forall i \in J: \quad \operatorname{pr} i^{1}=f_{i}$ and $\quad \mathrm{pr}_{i}{ }^{0}=n_{i}$, where f_{i} and n_{i} are by order the unity-element and the zero--element of the field F_{i}.

For any i $\in J$ we have a natural isomorphic embedding u_{i} : $F_{i} \longrightarrow A$ given by
$\forall a \in F_{i}: p r_{i} u_{i}(a)=a, \quad p r_{j} u_{i}(a)=n_{j} \quad(j \in J, j \neq i)$.
For any $i \in J$ let $u s$ denote by E_{i} the $\operatorname{Im} u_{i}=u_{i}\left(F_{i}\right)$. E_{i} is of course a field, moreover it is an ideal of the ring A and finally, it may be described by

$$
E_{i}=\left\{\bar{x} \in A \mid \nmid j \in J, j \neq i: \operatorname{pr}_{j} \bar{x}=n_{j}\right\} \text {. }
$$

For any $i \in J$ the element $e_{i}=u_{i}\left(f_{i}\right)$ is the unity-element of the field E_{i} while all E_{i} have the common zero-element 0 .

The Cartesian product A contains as an ideal and consequently as a subring the (exterior) direct sum $B=\bigoplus_{i G J} F_{i}$. The B is obviously a subcartesian product of the system $\left\{F_{i}\right\}$ i \mathcal{J}. As a subring of A, in generally, it does not contain the unity-element 1 . It is the goal of our article to describe all rings R for that $B \subset R \subset A$ and $1 \in R$. For the purpose of this paper we will call all such rings medial subcartesian products of the system $\left\{F_{i}\right\}_{i \in J}$ (medial - "between" B and A).

Examples

1. As a trivial example of the medial subcartesian product (of the system $\left\{F_{i}\right\} \quad i \in J$ of fields) we may take the Cartesian product A itself.
2. Let $M=\{n \times 1+a \mid n \in Z, a \boldsymbol{B} B\}$. M is obviously the medial subcartesian product of the system $\left\{F_{i}\right\}_{i \in J}$ which is minimal in the sense of being contained in any other one.
3. Let $J=N$ be the set of natural numbers and let for any $i \in J$ the F_{i} be the field of rational numbers $(\Rightarrow$ the Cartesian product $A=\underset{i \in J}{X} F_{i}$ is the ring of all sequences of rational numbers). Then the set R of all convergent sequences of rational numbers is a medial subcartesian product of the system $\left\{F_{i}\right\}$ i $\in J$ different from A as well as from the minimal medial subcartesian product.

Theorem 1. Let M be the minimal_subcartesian product of the system $\left\{F_{i}\right\}$ icJ of_fields. Then_ $M=A$ if_and_only if the set J ís_finite.

Proof: It is sufficient to prove that the infinity of J implies $M \neq A$. For this reason we need to construct an element x of A whose projections are not almost the constant multiples of unity-elements. We may see without difficulty that the following two cases are possible, only. 1. There exists an infinite subset K of J such that all F_{i}, $i \in K$ have the same characteristic. 2. There exists an infinite subset K
of J such that for any two distinct indices i, $j \in K$ the F_{i}, F_{j} have different characteristics. In both cases we may assume without loss of generality that K is countable: $K=\{k(1)$, $k(2), k(3), \ldots\}$. In the first case, let $x \in A$ be an element for that $\operatorname{pr}_{k(1)}=1 \times f_{k(1)}, \operatorname{pr}_{k(2)}=2 \times f_{k(2)}, \operatorname{pr}_{k(3)}=$ $=3 \times f_{k(3)}, \ldots$. . In the second case, let us denote by p_{1}, p_{2}, p_{3}, \ldots the characteristics of the fields $F_{k(1)}, F_{k(2)}$, $F_{k(3)}$ - the eventuality of the zero-characteristics may be ommited. Now, let $x \in A$ be an element for that $\operatorname{pr}_{k(1)} \times=$ $=\left(p_{1}-1\right) \times f_{k(1)}, \operatorname{pr}_{k(2)} x=\left(p_{2}-1\right) \times f_{k(2)}, \operatorname{pr}_{k(3)} x=$ $=\left(p_{3}-1\right) \times 千_{k(3)}, \ldots$. The proof is completed.

Now, let us consider an arbitrary medial subcartesian product R of the system $\left\{F_{i}\right\}_{i \in J}$ of fields. The ring R contains any field E_{i} as an ideal, especially it contains any element e_{i}. the generator of the ideal $E_{i}=e_{i}$. R. Let us put $U_{i}=\left(1-e_{i}\right) \cdot R$. The system $\left\{e_{i}\right\} \quad i \in J$ consists of orthogonal idempotenties and has following properties:
(i) For any $i \in J$ the ideal $U_{i}=\left(1-e_{i}\right) \cdot R$ is maximal.
(ii) If for any i ϵJ and for some $x \in R$ the $e_{i} \cdot x=0$ is true, then $x=0$.

The (ii) is evident. To prove (i) we use the fact that
R as R-module is the direct sum of its ideals E_{i} and U_{i} :
$R=E_{i} \oplus U_{i}$ allowing the unique expression

$$
\begin{equation*}
x=e_{i} \cdot x+\left(1-e_{i}\right) \cdot x \tag{1}
\end{equation*}
$$

for any $x \in R$ and summands in order of E_{i} and U_{i}. In such a way, it follows from (1) that the mapping $R \rightarrow E_{i}$ given by $x \rightarrow e_{i} \times$ is an epimorphism with the kernel U_{i}. Thus we have proved:

Theorem 2. Any medial_subcartesian product R of the system $\left\{F_{i}\right\}$ iєJ of fields possesses_a_system $\left\{e_{i}\right\}$ iєJ of orthogonal idempotenties satisfying_the_conditions (i) and (in)_above.

Conversely, let us suppose that a commutative ring R with a unity-element 1 is endowed by a system $\left\{e_{i}\right\}$ i $\in J$ of
orthogonal idempotent elements fulfilling (i) and (ii). Evidently, for any $i \in J$ the elements e_{i} and $1-e_{i}$ are orthogonal idempotenties. Consequently, putting $E_{i}=e_{i}$. R we get

$$
R=E_{i} \oplus U_{i}
$$

As U_{i} is a maximal ideal the E_{i} is a field. Let us denote by A the Cartesian product $X_{i} E_{i}$ of the system $\left\{E_{i}\right\}$ i $\}_{j}$ and let us define a mapping $f: R \rightarrow A$ by virtue of $\psi x \in R$:

$$
\operatorname{pr}_{i} f(x)=e_{i} \cdot x
$$

Evidently, f is a homomorphism carrying the unity-element 1 of R, onto the element I of A for which $p r_{i} I=e_{i} .1=e_{i}$. Hence, I is the unity-element of the Cartesian product A.

According to the condition (ii) the kernel of f is the zero-ideal of the ring R. Consequently, f is an isomorphic embedding $R \rightarrow A$.

Let us denote by S the image of the ring R under the embedding f. As we have seen, the ring S contains the unityelement I of A. The fields A_{i} defined by

$$
A_{i}=\left\{\bar{x} \in A \mid \forall j \in J, \quad j \neq i: p r_{j} \bar{x}=0\right\}
$$

are the images of the fields E_{i} under the isomorphic embedding f. It follows from this that S contains the (interior) direct
 Therefore S is a medial subcartesian product of the system $\left\{E_{i}\right\}_{i \in J}$.
We conclude our consideration by formulating:
Theorem 3. Let a commutative ring R with_a_unity-element 1 possess a system_ $\left\{e_{i}\right\}$ i \mathcal{G} of orthogonal idempotenties fulfilling the conditions (i) and (ii) above. Then_R_is isomorphic_ to_some medial_subcartesian product of a_system $\left\{E_{i}\right\}$ iGJ of fields.

Remark. We may replace the system of fields by a system of integral domains in simultaneous replacing (i) by the con-
dition:
(i) For any $i \in J$ the ideal $U_{i}=\left(1-e_{i}\right) \cdot R$ is a prime-ideal.

REFERENCES

[1] J e ž e k, Jaroslav: Univerzální algebra a teorie modelů (Universal algebra and model-theory, czech.original), SNTL, Praha 1976.
[2] К а л у жнин , Л.А.: Введение в общув алгебру;
Наука, Москва 157З.
[3] ламбек, ио а х и м : Кольца и модули (English original: Lectures on rings and modulesj; publ. Mnp, Mосквa 1971

SOUHRN

Mediálni subkartézské součiny těles Dalibor K \quad lucký, Libuše Markóa
\checkmark článku jsou studovány subkartézské součiny systému těles $\left\{F_{i}\right\}$ iєJ obsahujicí jednotkový prvek okruhu $\underset{i}{ } \not \mathcal{X}_{j} F_{i}$ a současně jeho ideál $\underset{i}{\oplus} \underset{\boldsymbol{E}}{\boldsymbol{J}} \mathrm{~F}_{i}$ (vnějši direktni součet těles systému $\left\{F_{i}\right\}_{i \in J}$).

PEЗЮME

Медиальные подпрямые произведения полей далибор Клуцки, либуше Маркова

В статье изучадтся подпрямые проивведения системы полей $\left\{F_{i}\right\}_{i \in J}$ содержанщее единицу кольца $\underset{i \in J}{ } F_{i}$ и в тоже время его идеал $\left.{ }_{i}^{(}\right) F_{i}$ (внешнуи прямуп сумму полей системы $\left\{F_{i}\right\}_{i \in J}$).

