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The compact extension property:

the role of compactness

Jos van der Bijl∗, Jan van Mill

Abstract. We consider separable metrizable topological spaces. Among other things we
prove that there exists a non-contractible space with the compact extension property and
we prove a new version of realization of polytopes for ANR’s.

Keywords: absolute retract, the compact extension property, contractibility, simplicial
complex, partial realization

Classification: 55M15, 57N17

1. Introduction.

We only consider separable metrizable spaces. A map is a continuous function
and an extension is always supposed to be continuous. A space X has the compact
(neighborhood) extension property , abbreviated C(N)EP, if for every space Y , ev-
ery map f : A → X , where A is a compact subset of Y , has an extension to
(a neighborhood of A in) Y . The difference of this notion with the well known
A(N)R-property lies in the requirement of compactness for A, instead of closedness
of A in Y . The question by Kuratowski of whether the C(N)EP is strictly weaker
than the A(N)R-property, motivated by his result that for finite-dimensional spaces
the C(N)EP is equivalent with the A(N)R-property, was solved by J. van Mill in [12].
Further investigations around the C(N)EP are collected in [7], [3], [4] and [2]. We
refer the reader to these for more information.
In these and other investigations it turned out that spaces with the C(N)EP

often behave like A(N)R’s. Many of the properties, that are well known from ANR-
theory crop up in the neighborhood of the C(N)EP, and many constructions thereof
can easily be adapted to serve for the study of the C(N)EP. However, there is one
persistent difference. A property, known from ANR-theory, has sometimes to be
adjusted in the sense, that it is now not applicable to the whole space under con-
sideration, but only to an arbitrary compactum in the space. In this paper we show
in which way compacta are essential. We treat our subject in two instances. The
first one (§2) deals with (local) contractibility; the second one (§3) with realization
of polytopes.

2. Contractibility.

We study properties of spaces with the C(N)EP that are related to contractibility.
First, we prove a contractibility-like property for spaces with the CEP.
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Proposition 2.1. If X has the CEP, then for every compact subset K of X there

is a compact subset L of X , such that K is contractible in L.

Proof: Take a space X with the CEP and a compact subset K of X . There is
an embedding j : K → Q (Q is the Hilbert cube). Because X has the CEP, the
map j−1 : j(K) → X has an extension ξ : Q → X . Let L = ξ(Q) and denote the
straight-line contraction (x, t) 7→ t · x by G : Q × I → Q. A contraction of K in L

is given by ξ ◦ G ◦ (j × id) : K × I → L. �

Analogous to the situation in ANR-theory, the CEP can be characterized in
terms of the CNEP and the contractibility property of this proposition. We prove
somewhat more. As usual, a space X is said to be C∞ if for every m ∈ N, every
map f : Sm → X has an extension g : Bm+1 → X .

Theorem 2.2. The following assertions are equivalent:

(i) X has the CEP,
(ii) X has the CNEP and X is C∞,

(iii) X has the CNEP and every compact subset K of X is contractible in X .

Proof: (iii) ⇒ (ii): This is easy.
(ii)⇒ (i): Choose a space Y , a compact subspace A of Y and a map f : A → X .

According to [5, Theorem V.6.2] there exist a compact ARZ and an embedding
i : A → Z such that N = Z \ i(A) is a locally finite polytope with triangulation
T = {σi}

∞

i=1 with limi→∞ diam σi = 0. There is a map α : Y → Z such that

i = α ↾ A. Identify i(A) and A in the sequel and denote f ◦ i−1 : i(A) → X

by f̃ . By definition, there is an extension h : V → X of f̃ : A → X , where V is

a neighborhood of A in Z, V = A∪ Ñ , Ñ is a subpolytope of N . Because X is C∞,

there is by [13, 5.2.14] an extension k : N → X of h ↾ Ñ . Define g̃ : Z → X by

g̃(z) =

{
h(z) (z ∈ V ),

k(z) (z ∈ N).

In each point of Z, g̃ is either locally h or locally k, so g̃ is continuous. The desired
extension of f : A → X is given by g = g̃ ◦ α : Y → X .
(i) ⇒ (iii): See Proposition 2.1. �

Having deduced Proposition 2.1 we ask whether for spaces with the CEP we
can prove contractibility of the whole space. In other words, we ask about the
essentiality of the restriction to compact sets in the above. We provide the answer
to this question. Our construction is a more sophisticated version of [6]. For more
details see that paper. The proof of Theorem 2.3 shall give another example of
a non-ANR with the CEP. Note that since the publication of [6] a cell-like dimension
raising map has been found, [8]. For information on cell-like maps see [1].

Theorem 2.3. There exists a topologically complete space with the CEP, which
is not contractible.

Proof: Let f : X → Y be a cell-like map from a finite-dimensional compact space
X onto an infinite-dimensional space Y , [8]. We may assume X ⊂ Sn−1 for some
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n ∈ N. Find a totally disconnected Gδ-subset S of Y with dim S > n, [6, 3.1].
Consider the adjunction space Z = Bn ∪f Y and its subspaces

ZA = (Int Bn) ∪ A, A closed in S.

Note that in this situation, A is closed in ZA. The quotient map f̌ : Bn → Z is
cell-like, and hence its restrictions

fA : (Int Bn) ∪ f−1(A)→ ZA

for A ⊂ S closed are cell-like as well.

Claim 1. If dim A < ∞, then ZA ∈ AR.

Proof: Note that [6, 3.2] gives that (Int Bn)∪f−1(A) is an AR. Furthermore, the
singular set S(fA) of fA is contained in A, so it is finite-dimensional. [1] finishes
the argument.

Claim 2. For any closed A ⊂ S the set ZA has the CEP.

Proof: Observe that a space having the property that each compact subspace is
contained in an AR, has the CEP. So pickK ⊂ ZA compact. ThenK∩A is compact
as well, and it is totally disconnected, so by [9, 6.2.9] we have dim(K ∩A) ≤ 0. But
then ZA∩K is an AR by Claim 1. By K ⊂ ZA∩K ⊂ ZA we are done.

Claim 3. There is a closed subspace A of S such that ZA is not contractible.

Proof: Suppose not. We shall prove dim S ≤ n, which is a contradiction with the
requirements on S. We use [13, 4.6.4]. Pick a closed subspace A of S and a map
φ : A → Sn. The dimension of ZA \ A = Int Bn is not greater than n, so there is

an extension φ̃ : ZA → Sn of φ, [13, 4.6.3]. Now the contractibility of ZA implies

that φ̃ is nullhomotopic, so φ is nullhomotopic. The Borsuk homotopy extension
theorem [10, IV.2.2] gives an extension φ : S → Sn of φ and we are done.

It is easy to see that ZA is topologically complete for every closed A ⊂ S. By
Claim 2, the space ZA with A as in Claim 3 is as required. �

After our considerations on global contractibility we prove a local-contractibility-
like property for spaces with the CNEP.

Proposition 2.4. If X has the CNEP, then for every compact subset K of X

there is a compact subset L of X , such that for every element p of K and every

open set U , containing p, there is an open set O ⊂ U , containing p, such that

O ∩ K is contractible in U ∩ L.

Proof: Take a space X with the CEP and a compact subset K of X . There is
an embedding j : K → Q. Since X has the CNEP, the map j−1 : j(K) → K has
an extension ξ : W → X to some open neighborhood W of j(K) in Q. Take an
open set V such that j(K) ⊂ V ⊂ V ⊂ W and let L = ξ(V ). Pick p ∈ K and
U open, containing p. The set ξ−1(U) is open in Q and contains j(p). Choose
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a convex open set C with j(p) ∈ C ⊂ ξ−1(U) ∩ V and consider the straight-line
contraction G : C × I → C of C onto j(p). Determine an X-open set O with
O ∩ K = j−1(C). Then we have O ∩ K ⊂ U , so without loss of generality O ⊂ U .
Let H : (O ∩ K)× I → U ∩ L be given by H(x, t) = ξG(j(x), t). �

Just as in the case of (global) contractibility we prove that restriction to compacta
is essential.

Corollary 2.5. There exists a topologically complete space X with the CNEP,
which is not locally contractible.

Proof: Let Y be a space as in Theorem 2.3 and let X be the countably infinite
product Y ∞ of copies of Y . Then X has the CEP and X is topologically complete.
We shall prove that no non-empty open subset of X is contractible in X . Suppose
that U is an arbitrary non-empty open subset of X , and H : U × I → X is
a contraction. Pick x = (x1, x2, . . . ) ∈ U . There are a k ∈ N and open subsets
U1, U2, . . . , Uk−1 of Y with xi ∈ Ui for every i, such that

U1 × U2 × · · · × Uk−1 × Y × Y × · · · ⊂ U.

Operating in the k-th factor it is easy to construct a contraction of Y in itself,
a contradiction. �

At the end of this section we may conclude that, as far as contractibility and
local contractibility are concerned, the C(N)EP is a property working essentially
on compacta. It gives knowledge about compacta in the space, but does not imply
anything about behavior of the whole space.
Questions, that cannot be suppressed, are whether the assumption of contractibil-

ity or local contractibility allows us to conclude the A(N)R-property from the
C(N)EP. The question about contractibility can be answered. It is possible to
prove that the metric cone ∆X (see [13]) over a space X with the CNEP has the
CEP. Now let X be a space as in Theorem 2.3. Then ∆X has the CEP and is
contractible, but (see [13, 5.4.2]) it is not an ANR. A conditional answer to the
same question was already provided in [2]. There we constructed, under the as-
sumption that there exists a (topological) linear space which is not an AR, a linear
(so, contractible) space with the CEP, that is not an AR. To be answered remains:

Question: Does there exist a locally contractible space X with the C(N)EP, which
is not an ANR?

Note that the above mentioned considerations from [2] also provide a conditional
positive answer to this question, for every linear space is locally contractible as well.

3. Realization of polytopes.

Speaking about polytopes and simplicial complexes (cf. [13]) we always mean
countable and locally finite ones. Let X be a space and let U be an open cover
of X . In addition, let T be a simplicial complex with the Whitehead topology and
let S be a subcomplex of T , containing all the vertices of T . A partial realization
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of T in X relative to S and U is a map f : |S| → X such that for every σ ∈ T there
is U ∈ U with f(σ ∩ |S|) ⊂ U . If S = T , then f is called a full realization. For
convenience, we may denote a partial realization of T in X relative to S and U by
the quadruple (T ,S, f,U).
Consider the standard realization property for ANR’s:

(∗): for every open cover U ofX there exists an open refinement V of U , such
that for every simplicial complex T , every partial realization (T ,S, f,V) in
X can be extended to a full realization (T , T , g,U) in X .

It is well known that for a space X , this property (∗) is equivalent to X being
an ANR, cf. [10, §IV.4]. In [2] the authors derived a realization property for the
CNEP, analogous to the above one. It reads as follows (in two versions):

(∗∗): for every compact subset K of X there is a compact subset L of X

such that for every open cover U of X there exists an open refinement V
of U , such that for every simplicial complex T , every partial realization
(T ,S, f,V) in K can be extended to a full realization (T , T , g,U) in L.

(∗∗∗): for every compact subset K of X there is a compact subset L of X
such that for every open cover U of X there exists an open refinement V
of U , such that for every finite simplicial complex T , every partial realization
(T ,S, f,V) in K can be extended to a full realization (T , T , g,U) in L.

In [2] we proved that (∗∗) and (∗∗∗) are both equivalent to X having the CNEP.
In the realm of polytopes compactness precisely means finiteness. Superficially, the
difference between the realization property (∗) for ANR’s on the one hand, and
properties (∗∗) and (∗∗∗) for spaces with the CNEP on the other hand is twofold.
The first striking point is the occurrence of the two compacta K and L in both of
(∗∗) and (∗∗∗). Second, in (∗∗∗) we moreover restrict the polytopes admitted to
finite ones. It is therefore natural to consider a fourth realization property, in which
we restrict the polytopes to finite ones, but we do not introduce the compacta K

and L. We are thus led to:

(∗∗∗∗): for every open cover U of X there exists an open refinement V of
U , such that for every finite simplicial complex T , every partial realization
(T ,S, f,V) in X can be extended to a full realization (T , T , g,U) in X .

Since “the difference” between the CNEP and the ANR-property is in the intro-
duction of compacta in suitable places, it might be suspected that property (∗∗∗∗)
is equivalent to the CNEP for X . We show that, surprisingly, (∗∗∗∗) is equiva-
lent to X being an ANR. Our main tool is the possibility of chopping up a given
polytope into finite pieces in an appropriate way. We start with that.

Lemma 3.1. Let T be a (countable and locally finite) simplicial complex. Then
there exist finite subcomplexes Tn(n = 0, 1, . . . ), such that

(i) T =
⋃

∞

n=0 Tn, and

(ii) Tn ∩ Tm = ∅ for |n − m| ≥ 2.

Proof: If A is a collection of simplexes of T , then we denote by A♭ the subcomplex
of T , formed by all faces of elements of A. First suppose for simplicity that T is
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connected. We define an increasing sequence {Sn}∞n=−1 of finite subpolytopes of T .

Let S−1 = ∅ and S0 = {τ}♭, where τ ∈ T is arbitrary. If S−1, . . . ,Sn−1 are chosen,
then we put

Sn = {σ ∈ T | σ ∩ |Sn−1| 6= ∅}♭.

Note that by local finiteness of T , this is finite. Having constructed the Sn’s, we

put Tn = (Sn \ Sn−1)
♭ for n ≥ 0. By connectedness, (i) holds; (ii) is easily verified.

In the case that T is not connected, pick elements τ0, τ1, . . . , of T such that every
component of T is represented. Change the definition of the Sn’s into S0 = {τ0}

♭,

Sn = ({σ ∈ T | σ ∩ |Sn−1| 6= ∅} ∪ {τn})
♭.

The proof is finished in the same way as before. �

Theorem 3.2. An arbitrary space X is an ANR iff property (∗∗∗∗) holds.

Proof: Every ANR has property (∗), so certainly the apparently weaker property
(∗∗∗∗). We are left with proving that (∗∗∗∗) implies X being an ANR. This shall
be done by deducing (∗) from (∗∗∗∗). Take an arbitrary open cover U of X . Refine
U three times as follows: find open covers W1,W2 and V such that

(i) V < W2
∗

< W1 < U ,
(ii) every partial realization in X of any finite simplicial complex with respect
to W1 can be extended to a full realization in X with respect to U , and

(iii) every partial realization in X of any finite simplicial complex with respect
to V can be extended to a full realization in X with respect to W2.

Choose an arbitrary simplicial complex T , a subcomplex S of T , containing all the
vertices of T , and a partial realization f : |S| → X of T in X with respect to V .
We shall extend f to a full realization of T with respect to U . To that end apply
Lemma 3.1 and determine finite subcomplexes T0, T1, . . . of T such that

(iv) T =
⋃

∞

n=0 Tn, and
(v) Tn ∩ Tm = ∅ for |n − m| ≥ 2.

It is obvious that for every n ≥ 0 the map f ↾ |S ∩ Tn| : |S ∩ Tn| → X is a partial
realization of the finite simplicial complex Tn with respect to V . For even n, us-
ing (iii), we extend this map to a full realization gn : |Tn| → X with respect to W2.
For odd n, consider the subcomplex

T̃n = Tn ∩ (Tn−1 ∪ S ∪ Tn+1)

of Tn, and the map hn : |T̃n| → X given by

hn(x) =






gn−1(x) (x ∈ |Tn−1|),

f(x) (x ∈ |S|),

gn+1 (x ∈ |Tn+1|).

(It is easy to see that hn is well defined.) �
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Claim. The map hn is a partial realization of Tn with respect to W1.

Proof: Pick σ ∈ Tn. We have

hn(σ ∩ |T̃n|) = gn−1(σ ∩ |Tn−1|) ∪ f(σ ∩ |S|) ∪ gn+1(σ ∩ |Tn+1|).

By the properties of f there is an element V ∈ V with f(σ∩|S|) ⊂ V . Furthermore,
σ∩|Tn−1| consists of a number of simplexes τ , each of which intersects σ∩|S| (for S
contains all the vertices of T ), and for each of which there is a Wτ ∈ W2 such that

gn−1(τ) ⊂ Wτ . The same holds for σ∩|Tn+1|. So we have hn(σ∩|T̃n|) ⊂ V ∪
⋃

τ Wτ

for certain members Wτ ∈ W2 with Wτ ∩ V 6= ∅. By V < W2
∗

< W1 there exists
W ∈ W1 with hn(σ ∩ |T̃n|) ⊂ W .
Now by (ii), and finiteness of Tn, we find a full realization gn : |Tn| → X with

respect to U , extending hn, for every odd n. Define g : |T | → X by g(x) =
gn(x)(x ∈ |Tn|). By (v), and the coincidence of gn and gn+1 on |Tn ∩ Tn+1|, g is
well defined. It is continuous by the Whitehead topology. For every n the map gn is
a full realization of Tn with respect to U , so g is a full realization of T with respect
to U . It clearly extends f . �

We conclude that with partial realization of polytopes, the compactness condition
has nothing to do with the polytopes, but everything with the image set of the
realization.
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