Commentationes Mathematicae Universitatis Carolinae

Eugene D. Rodionov
 Einstein metrics on a class of five-dimensional homogeneous spaces

Commentationes Mathematicae Universitatis Carolinae, Vol. 32 (1991), No. 2, 389--393

Persistent URL: http://dml.cz/dmlcz/116981

Terms of use:

© Charles University in Prague, Faculty of Mathematics and Physics, 1991

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

Einstein metrics on a class of five-dimensional homogeneous spaces

E.D. Rodionov

Abstract

We prove that there is exactly one homothety class of invariant Einstein metrics in each space $S U(2) \times S U(2) / S O(2)_{r}(r \in Q,|r| \neq 1)$ defined below.

Keywords: homogeneous Riemannian manifolds, Einstein manifolds, Ricci tensor, sectional curvature

Classification: 53C25, 53C30

It is well-known [J] that any homogeneous Einstein manifold M^{n} for $n \leq 4$ is a Riemannian symmetric space. On the other hand, little is known about five-dimensional homogeneous Einstein manifolds which are not locally symmetric (cf. [B, p. 186]).

In this paper, we study a special family of homogeneous spaces $M_{r}^{5}=S U(2) \times$ $S U(2) / S O(2)_{r}$, where $S O(2)_{r}, r \in Q$, denotes the subgroup of all product matrices of the form:

$$
\left(\begin{array}{cc}
e^{2 \pi i t} & 0 \\
0 & e^{-2 \pi i t}
\end{array}\right) \times\left(\begin{array}{cc}
e^{2 \pi i r t} & 0 \\
0 & e^{-2 \pi i r t}
\end{array}\right) \quad(t \in R)
$$

We prove the existence, up to a homothety, of a unique invariant Einstein metric on each $M_{r}^{5}(|r| \neq 1)$. These metrics are never naturally reductive.

1. Preliminaries.

Let $s u(2)$ denote the Lie algebra of $S U(2)$ provided by the scalar product $B(x, y)=$ $-\frac{1}{2}$ Retr $x y$. We consider an orthonormal basis $\left\{x_{1}, x_{2}, x_{3}\right\}$ of $s u(2)$ such that $\left[x_{1}, x_{2}\right]=x_{3},\left[x_{1}, x_{3}\right]=-x_{2},\left[x_{2}, x_{3}\right]=x_{1}$ and, moreover, the Lie algebra h of $H=S O(2)_{r}(r \in Q)$ is of the form $h=R \cdot\left(x_{1}, r x_{1}\right)$. Put $G=S U(2) \times S U(2)$, then $g=s u(2) \oplus s u(2)$ is the corresponding Lie algebra. Consider the scalar product on g given by $\left.B\right|_{g \times g}=B_{s u(2)}+B_{s u(2)}$. Then we have a B-orthogonal decomposition $g=h \oplus p_{1} \oplus p_{2} \oplus p_{3}$, where $p_{1}=R \cdot\left(r x_{1},-x_{1}\right), p_{2}=R \cdot\left(x_{2}, 0\right)+R \cdot\left(x_{3}, o\right), p_{3}=$ $R \cdot\left(0, x_{2}\right)+R \cdot\left(0, x_{3}\right)$. Moreover, p_{1}, p_{2}, p_{3} are irreducible invariant subspaces w.r. to the adjoint representation ad h on $p=p_{1} \oplus p_{2} \oplus p_{3}$ and $p_{1} \not 千 p_{2}, p_{1} \not 千 p_{3}$ w.r. to this representation.

[^0]Lemma 1.1. We have $p_{2} \not 千 p_{3}$ for $|r| \neq 0,1$ with respect to the adjoint representation of h on p.

Proof: Suppose that there exists an isomorphism $\varrho: p_{2} \rightarrow p_{3}$ such that ad $W \circ \varrho=$ $\varrho \circ$ ad W for every $W \in h$. Put $A=\left(x_{2}, 0\right), B=\left(x_{3}, 0\right) \in p_{2}$. Then we can write $\varrho(A)=(0, x), \varrho(B)=(0, y)$, where $x, y \in \operatorname{span}\left(x_{2}, x_{3}\right)$. For $W=\left(x_{1}, r x_{1}\right)$, we have $[W, \varrho(A)]=\varrho([W, A])=\varrho(B)$, and also $[W, \varrho(B)]=-\varrho(A)$. Hence we get $r\left[x_{1}, x\right]=$ $y, r\left[x_{1}, y\right]=-x$. Further, since the Lie bracket $[x, y]$ on $s u(2)$ coincides with the usual vector cross-product, we obtain immediately $r\left\|\left[x_{1}, x\right]\right\|=r\|x\|=\|y\|$ and $r\left\|\left[x_{1}, y\right]\right\|=r\|y\|=\|x\|$. Hence the equality $r^{2}=1$ holds, which is a contradiction.

Corollary 1.1. For $|r| \neq 0,1$, every $\operatorname{Ad}(H)$-invariant scalar product $\langle\cdot, \cdot\rangle$ on p has, up to a constant factor, the following form:

$$
\begin{equation*}
\langle\cdot, \cdot\rangle=\left.\langle\cdot, \cdot\rangle_{\circ}\right|_{p_{2} \times p_{1}}+\left.t\langle\cdot, \cdot\rangle_{\circ}\right|_{p_{2} \times p_{2}}+\left.s\langle\cdot, \cdot\rangle_{\circ}\right|_{p_{2} \times p_{2}} \tag{1.1}
\end{equation*}
$$

where $t, s \in R^{+}$and $\langle\cdot, \cdot\rangle_{\circ}=\left.B\right|_{g \times g}$.
The proof follows from Lemma 1.1 and the Schur's lemma.
We construct a scalar product (\cdot, \cdot) on $g=s u(2) \oplus s u(2)$ by setting $(\cdot, \cdot)=$ $\left.\langle\cdot, \cdot\rangle\right|_{p \times p}+\left.\langle\cdot, \cdot\rangle_{\circ}\right|_{h \times h}$. Then we consider the following (\cdot, \cdot)-orthonormal basis of g :

$$
\begin{aligned}
& E_{1}=\left(r \alpha x_{1},-\alpha x_{1}\right), E_{2}=1 / \sqrt{t}\left(x_{2}, 0\right), E_{3}=1 / \sqrt{t}\left(x_{3}, 0\right) \\
& E_{4}=1 / \sqrt{s}\left(0, x_{2}\right), E_{5}=1 / \sqrt{s}\left(0, x_{3}\right), E_{6}=\left(\alpha x_{1}, r \alpha x_{1}\right)
\end{aligned}
$$

where $\alpha=\left(r^{2}+1\right)^{-1 / 2}$.
It is obvious that $h=R \cdot E_{6}, p_{1}=R \cdot E_{1}, p_{2}=R \cdot E_{2}+R \cdot E_{3}$ and $p_{3}=R \cdot E_{4}+R \cdot E_{5}$.

Lemma 1.2. We have the following multiplication table:

$$
\begin{aligned}
& {\left[E_{1}, E_{2}\right]=r \alpha E_{3},\left[E_{1}, E_{3}\right]=-r \alpha E_{2},\left[E_{1}, E_{4}\right]=-\alpha E_{5},\left[E_{1}, E_{5}\right]=\alpha E_{4},} \\
& {\left[E_{2}, E_{3}\right]=r \alpha t^{-1} \cdot E_{1}+\alpha t^{-1} \cdot E_{6},\left[E_{2}, E_{4}\right]=\left[E_{2}, E_{5}\right]=\left[E_{3}, E_{4}\right]=\left[E_{3}, E_{5}\right]=0,} \\
& {\left[E_{4}, E_{5}\right]=\alpha s^{-1} \cdot E_{1}+r \alpha s^{-1} \cdot E_{6},\left[E_{3}, E_{6}\right]=\alpha E_{2},\left[E_{5}, E_{6}\right]=r \alpha E_{4},}
\end{aligned}
$$

where $\alpha=\left(r^{2}+1\right)^{-1 / 2}$.
The proof is straightforward and can be omitted.
Corollary 1.2. The multiplication table of Lemma 1.2 implies that:

$$
\begin{aligned}
& {\left[p_{1}, p_{1}\right]=0,\left[p_{1}, p_{2}\right]=p_{2},\left[p_{1}, p_{3}\right]=p_{3},\left[p_{2}, p_{3}\right]=0,} \\
& {\left[p_{2}, p_{2}\right] \subset p_{1} \oplus h,\left[p_{3}, p_{3}\right] \subset p_{1} \oplus h}
\end{aligned}
$$

2. The computation of the sectional curvatures.

In this part, we shall use the notation of the previous part. First, we see that every G-invariant Riemannian metric on $M_{r}^{5}(|r| \neq 0,1)$ is determined, up to a homothety, by an $\operatorname{Ad}(H)$-invariant scalar product of the form (1.1). Further, the sectional curvatures of such metric can be calculated by means of the standard formula (see [B]):

$$
\begin{align*}
& \langle R(X, Y) Y, X\rangle=(-3 / 4)\left\langle[X, Y]_{p},[X, Y]_{p}\right\rangle-\left\langle\left[[X, Y]_{h}, Y\right], X\right\rangle- \\
& -(1 / 2)\left\langle Y,\left[X,[X, Y]_{p}\right]_{p}\right\rangle-(1 / 2)\left\langle X,\left[Y,[Y, X]_{p}\right]_{p}\right\rangle+ \tag{2.1}\\
& +\langle u(X, Y), u(X, Y)\rangle-\langle u(X, X), u(Y, Y)\rangle
\end{align*}
$$

where $X, Y \in p,\langle\cdot, \cdot\rangle$ is the corresponding scalar product on p and the mapping $u: p \times p \rightarrow p$ is defined by the formula:

$$
\begin{equation*}
2\langle u(X, Y), Z\rangle=\left\langle[Z, X]_{p}, Y\right\rangle+\left\langle[Z, Y]_{p}, X\right\rangle \tag{2.2}
\end{equation*}
$$

for all $Z \in p$.
Lemma 2.1. For an $\operatorname{Ad}(H)$-invariant scalar product $\langle\cdot, \cdot\rangle$ of the form (1.1), the following formulas are true:

$$
\begin{align*}
& u(X, Y)=(t-1) / 2 t[X, Y], \quad \text { where } X \in p_{1}, Y \in p_{2}, \\
& u(X, Z)=(s-1) / 2 s[X, Z], \quad \text { where } X \in p_{1}, Z \in p_{3} \tag{2.3}\\
& u\left(p_{1}, p_{1}\right)=u\left(p_{2}, p_{2}\right)=u\left(p_{3}, p_{3}\right)=u\left(p_{2}, p_{3}\right)=0
\end{align*}
$$

Proof: We shall use Corollary 1.2, the formula (2.2) and the notations of Corollary 1.1. Let $X \in p_{1}, Y \in p_{2}$. If $Z \in p_{1}$, then $[Z, X]_{p}=0,[Z, Y]_{p} \in p_{2}$ and hence $\langle u(X, Y), Z\rangle=0$. Further, if $Z \in p_{3}$, then $[Z, X]_{p} \in p_{3},[Z, Y]_{p}=0$ and also $\langle u(X, Y), Z\rangle=0$. Therefore $u(X, Y) \in p_{2}$. Let $Z \in p_{2}$, then $[Z, X]_{p} \in p_{2},[Z, Y]_{p} \in$ p_{1} and we have:

$$
2 t\langle u(X, Y), Z\rangle_{\circ}=t\left\langle[Z, X]_{p}, Y\right\rangle_{\circ}+\left\langle[Z, Y]_{p}, X\right\rangle_{\circ}
$$

But

$$
\begin{aligned}
& t\left\langle[Z, X]_{p}, Y\right\rangle_{\circ}+\left\langle[Z, Y]_{p}, X\right\rangle_{\circ}= \\
& =t\langle[Z, X], Y\rangle_{\circ}+\langle[Z, Y], X\rangle_{\circ}= \\
& =t\langle[X, Y], Z\rangle_{\circ}-\langle[X, Y], Z\rangle_{\circ}
\end{aligned}
$$

since $\langle\cdot, \cdot\rangle_{\circ}$ is $\operatorname{Ad}(G)$-invariant. Hence $u(X, Y)=(t-1) / 2 t[X, Y]$ for $X \in p_{1}, Y \in p_{2}$. The other cases are treated analogously.

Lemma 2.2. For the sectional curvatures of $M_{r}^{5}(r \neq 0)$ we have:

$$
\begin{aligned}
& K_{\sigma}\left(E_{1}, E_{2}\right)=K_{\sigma}\left(E_{1}, E_{3}\right)=(r \alpha / 2 t)^{2} \\
& K_{\sigma}\left(E_{1}, E_{4}\right)=K_{\sigma}\left(E_{1}, E_{5}\right)=(\alpha / 2 s)^{2} \\
& K_{\sigma}\left(E_{2}, E_{3}\right)=1 / t-3 \alpha^{2} / 4 t^{2}, K_{\sigma}\left(E_{2}, E_{4}\right)=K_{\sigma}\left(E_{2}, E_{5}\right)=0 \\
& K_{\sigma}\left(E_{4}, E_{5}\right)=1 / s-3 \alpha^{2} / 4 t^{2}, K_{\sigma}\left(E_{4}, E_{3}\right)=0
\end{aligned}
$$

where $\alpha=\left(r^{2}+1\right)^{-1 / 2}$.
Proof: Let us calculate $K_{\sigma}\left(E_{1}, E_{2}\right)$. From the formula (2.1) and Lemmas 1.2, 2.1 we have:

$$
\begin{aligned}
& K_{\sigma}\left(E_{1}, E_{2}\right)=(-3 / 4)\left\langle r \alpha E_{3}, r \alpha E_{3}\right\rangle-(1 / 2)\left\langle E_{2},\left[E_{1}, r \alpha E_{3}\right]_{p}\right\rangle- \\
& -(1 / 2)\left\langle E_{1},\left[E_{2},(-r \alpha) E_{3}\right]_{p}\right\rangle+((t-1) / 2 t)^{2}\left\langle\left[E_{1}, E_{2}\right],\left[E_{1}, E_{2}\right]\right\rangle= \\
& =(-3 / 4) r^{2} \alpha^{2}+r^{2} \alpha^{2} / 2+r^{2} \alpha^{2} / 2 t+((t-1) / 2 t)^{2} r^{2} \alpha^{2}=(r \alpha / 2 t)^{2}
\end{aligned}
$$

The other sectional curvatures are calculated analogously.
Corollary 2.1. For the Ricci curvatures of $M_{r}^{5}(r \neq 0)$ we have:

$$
\begin{aligned}
& \operatorname{ricc}\left(E_{1}\right)=\left(r^{2} s^{2}+t^{2}\right) \alpha^{2} / 2 t^{2} s^{2}, \operatorname{ricc}\left(E_{2}\right)=\left(2 t\left(r^{2}+1\right)-r^{2}\right) \alpha^{2} / 2 t^{2} \\
& \operatorname{ricc}\left(E_{4}\right)=\left(2 s\left(r^{2}+1\right)-1\right) \alpha^{2} / 2 s^{2}, \quad \text { where } \alpha=\left(r^{2}+1\right)^{-1 / 2}
\end{aligned}
$$

The proof follows from the Lemma 2.2 by a straightforward computation.

3. Invariant Einstein metrics on M_{r}^{5}.

We start with
Lemma 3.1. Let $\langle\cdot, \cdot\rangle$ be an $\operatorname{Ad}(H)$-invariant scalar product on p of the form (1.1). Then the invariant Einstein metrics on $M_{r}^{5}(|r| \neq 0,1)$ are defined by the formulas

$$
\begin{equation*}
t=\frac{|r|\left(2 y^{2}+1\right)}{2|y|\left(r^{2}+1\right)}, \quad s=\frac{2 y^{2}+1}{r^{2}+1} \tag{3.1}
\end{equation*}
$$

where y is any real root of the equation $8|y|^{3}-8|r| y^{2}+4|y|-|r|=0$.
Proof: Since $S O(2)_{r}$ acts transitively on p_{1}, p_{2}, p_{3} and preserves the Ricci curvature, then $\langle\cdot, \cdot\rangle$ is Einsteinian iff $\operatorname{ricc}\left(E_{1}\right)=\operatorname{ricc}\left(E_{2}\right)=\operatorname{ricc}\left(E_{4}\right)$. But from Corollary 2.1 we see that this is equivalent to the formulas:

$$
\left\{\begin{array}{l}
\frac{r^{2} s^{2}+t^{2}}{s^{2}}=2 t\left(r^{2}+1\right)-r^{2} \\
\frac{r^{2} s^{2}+t^{2}}{t^{2}}=2 s\left(r^{2}+1\right)-1
\end{array} \quad\left(t, s \in R^{+}\right)\right.
$$

or

$$
\left\{\begin{array}{l}
2\left\{t\left(r^{2}+1\right)-r^{2}\right\}=t^{2} / s^{2} \\
2\left\{s\left(r^{2}+1\right)-1\right\} / r^{2}=s^{2} / t^{2}
\end{array} \quad\left(t, s \in R^{+}\right)\right.
$$

From here we can express the parameter t in two different ways:

$$
\left\{\begin{array}{rl}
t & =\frac{r^{2}}{4\left(r^{2}+1\right)\left\{s\left(r^{2}+1\right)-1\right\}}+\frac{r^{2}}{r^{2}+1} \\
t & =\frac{s|r|}{\sqrt{2\left\{s\left(r^{2}+1\right)-1\right\}}}
\end{array} \quad\left(t, s \in R^{+}, s>\frac{1}{r^{2}+1}\right) .\right.
$$

Hence we get the equation

$$
\frac{r^{2}}{4\left(r^{2}+1\right)\left\{s\left(r^{2}+1\right)-1\right\}}+\frac{r^{2}}{r^{2}+1}=\frac{s|r|}{\sqrt{2\left\{s\left(r^{2}+1\right)-1\right\}}}
$$

After the substitution $s\left(r^{2}+1\right)-1=2 y^{2}$, we obtain $8|y|^{3}-8|r| y^{2}+4|y|-|r|=0$. Further, for the discriminant \mathcal{D}, we get $\mathcal{D}=\frac{1}{6^{3}}\left(r^{4}-\frac{61}{2^{5}} \cdot r^{2}+1\right)>0$, and hence we have only one real root. The formulas (3.1) now follow easily, and this completes the proof.

Hence we obtain the first part of the following
Theorem 3.1. For each $r \in Q(|r| \neq 0,1)$, there exists, up to a homothety, a unique invariant Einstein metric on M_{r}^{5}. This metric is never naturally reductive.

Proof of the second part: In fact, we only have to compare our metrics with the family of naturally reductive metrics of the type I from $[\mathrm{K}-\mathrm{V}]$. This can be done by a direct computation.

Remark 1. Let us note that the property "never naturally reductive" means "not naturally reductive whatever is the group representation $M_{r}^{5}=G / H\left(G \subset I\left(M_{r}^{5}\right)\right)$ and whatever is the $\operatorname{Ad}(H)$-invariant decomposition $g=h \oplus p "$, cf. [K-V].
Remark 2. For $r=0$, we obtain the decomposable homogeneous space $S^{2} \times S^{3}$, where the invariant Einstein metrics are well-known. All of them are naturally reductive (cf. [B]).

The cases M_{-1}^{5}, M_{1}^{5} are to be studied separately.

References

[B] Besse A., Einstein manifolds, Springer Verlag, Berlin, 1987.
[J] Jensen G.R., Homogeneous Einstein spaces of dimension 4, J. of Diff. Geom. 3 (1969), 309-349.
[K-V] Kowalski O., Vanhecke L., Classification of five-dimensional naturally reductive spaces, Math. Proc. Camb. Phil. Soc. 97 (1985), 445-463.

Altai State University, Dimitrov Street 66, 656099 Barnaul, USSR

[^0]: The author would like to thank Th. Friedrich, O. Kowalski and N. Netsvetaev for useful discussions related to this work

