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OPTIMUM STRATEGY AND OTHER PROBLEMS 
IN PROBABILITY SAMPLING 

JAROSLAV HAJEK, Praha 

(Received August 4, 1958) DT: 519.271.3 

The statistician's strategy in probability sampling consists in the 
choice of the sampling design (plan) and of the estimation method 
(procedure). A strategy may be called optimum if it solves the 
conflict between cost and accuracy in the best way. I n this paper 
Bayes approach is accepted, i. e. the accuracy is measured b y the 
expected variance with respect to a certain a priori distribution of 
ascertained values. A general solution of the problem is derived for 
a rather wide class of admissible sampling designs, estimators, cost 
functions, and for the following two most important assumptions 
concerning the a priori distribution: (a) The ascertained values are 
realizations of non-correlated random variables, (b) The ascertained 
values are realizations of a random sequence with stationary convex 
correlation function and stationary coefficients of variations. 

In the introductory sections the conceptions of "sample" and 
"estimate" are defined, and a general formula for the variance and 
estimated variance of linear estimates is derived; furthermore, a 
method of improving estimates based on sufficient statistics is 
presented, and two sampling designs with varying probabilities are 
discussed. 

A. INTRODUCTORY SECTIONS (1-5) 

1. Definitions 

Let us have a population 8 consisting of N elements of arbitrary nature, 
so that they may be represented by integers 1, ..., N, 8 = {1, ..., N}. From 
8 we select a subset s in such a way that any subset s cS possesses a pro­
bability P(s) of being selected. The selected subset s will be called the sample. 
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Let us denote by yl9..., yN values of a certain variable associated with 
elements 1, ..., N, respectively. We try to estimate the total • 

T = 2-yt (i-i) 

by an estimate Y having the form 

Y = 2yiWi(s), (1.2) 
ies 

where w>i(s) are arbitrary weights, i e s, s c S, and 2 extends over the elements 
ies 

i included in the sample s. The estimate (1.2) will be called a linear estimate. 
The necessary and sufficient condition for the estimate (1.2) to be unbiassed 

is, obviously, that 
2wi(s)P(s)=l, i=l, ...,N\ (1.3) 
s^i 

where the sum ]£ extends over all samples containing the element L 
$*i 

The probability of selecting a sample s which contains the element i, say 
uti, equals 

«. = 2 p(*) • (L4) 
$*i 

Similarly, the probability of selecting a sample which contains both elements 
i and /, say 7tij9 equals 

^ = 2P(*)> i,/ = l , . . . , ^ . (1.5) 
$*i 
S3j 

If we put Wi(s) = — , i € s, s c S, we get the simple linear estimate: 
7Zi 

Ѓ = 2 £ - (L6) 
. щ 
І€S l 

I t is easily seen that the simple linear estimate is unbiassed, i. e. that (L3) 
holds. 

We have defined the "sample" as a subset of the population. However, one 
could think of a more detailed specification of the ''sample". For example, 
it is possible to define it as an ordered subset of the population, or, still more 
distinctively, as a sequence, all members of which belong to the population. 
For brevity, let us use the following symbols: 

subset s , ordered subset s', sequence s" . (1.7) 

The sample s only tells us what elements have been selected, while s' and 
s" comprise further information. The sample s' fully describes the element-
by-element sampling without replacement, and s" fully describes the element-
by-element sampling with replacement. 
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If we delete in the sequence s,r all members which appear in some of the 
preceding places we get on ordered set s', s' = s'(s"). If we dispense with the 
ordering in s', we get a set s, s = s(s'). Symbolically, 

S = 8(8') = *(*'(*")), (1-8) 

i. e. s' is an abstract function of s/r and s is an abstract function of s', and,, 
naturally, of s'r too. 

The collection (1.7) of possible definitions of the sample is naturally not 
exhaustive. For example, we shall use, in section 3, the sample s* which tells-
how many times each element has been included in the sample. Clearly, if we 
dispense with the ordering in s", we get s*. Thus it holds that 

5* = S*(S") , 5 = S(S*) . (1.9) 

If we deal with double sampling, we may define the sample as a couple of 
subsets (sl9 $), where sx is the "larger" sample and s is the ultimately selected 
sample. As we can see, the possible definitions of the sample might be continued 
as long as we wished. 

Now, let us define the observation and the estimate in probability sampling.. 
The observation, say (s, y)3. (s'} y), (s", y), etc., involves a knowledge of the 
sample s, s', s", etc. and of the values yt associated with elements in s, s', s"r 

etc., respectively. The estimate t is any function of (s, y), (sf, y), (s", y), etc.: 

' * = *(*, y ) , t = t(s',y), t = t(s",y), etc. (1.10) 

2. Estimating sampling error of linear estimates 

We begin with the Definition 2.1. Any estimate t^s), which equals 0 if s does* 
not contain the element i, will be called an (i)-estimate; any estimate t^s), 
which equals 0 if s does not contain the element i or j (or both), will be called 
an (i, y)-estimate. 

If we complete the definition of w€(s), as function of s, putting for s no t 
containing the element i 

Wi(s) = 0 , s non 3 i , (2.1) 

then Wi(s) becomes an (i)-estimate of 1 and (1.2) may be rewritten in the 
following form: 

Y^fyMs). (2-2) 

Theorem 2.1. / / for the values zl9 . . . , % the equation 
N N 

2*i*>i(*) = 2*i (i.e. Z = Z) (2.3) 
ѓ = i 
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holds with probability 1, then the mean-square error of the estimate (2.2) equals 
N N J , 2 

M(Y - Yy = - i ^ ^ I— - —I z ^ ( M ^ + M ^ ~ 1 - MWiWj) (2.4) 

where Mt = 2^(5) -^v5) ^enoies ^e m&an value over all possible s. In the unbiassed 
case (Mwi = 1, i = 1, ..., N) we have 

N N 

M(F - 7)2 = I T y ^ - fi 2̂ ,(1 - M W ) . (2.5) 

1 / v . ^ \ 2 

-FAe sum of the weights standing in (2.4) at the terms — J— — —I , % 4= ̂  equals 
2 \2^ z3-/ 

iV 

2 2 ^ i ( M ^ t : + Mw> - l - M t W ) = 2$M(wi - l ) 2 . (2.6) 
$ =j= 3 * -»1 

Proof is based on the following easy identities: 
JV N 

M(7 - YY = M[2y.(«>. - i)P = 22^'^M ( W* ~ 1 ) (^ ~ x) = 
i = l i - l 

JV JV 

= 2 2 1 1 f: ZiZ*M{Wi ~ 1){W* ~l)== 
i - i i - i * 3 

- i i l-Tfe-^'+T^+Tfe)]^- . -^.-!)- • 
i == 1 j » 1 

N N 1 , 2 

= Y 2 2 ?-?/tM^ +M^--x-M^i + 
w i-1 i=l v * * ' 

N 1 \2 r N 1 
+ 2te M L . ^ . - I ^ K - I ) ] . 

j -»1 / « 1 
IV 

The last term, however, vanishes, since, according to (2.3), 2 zi(wi — 1) = 0 
i = i 

with probability 1. The identity (2.6) is implied by the same fact: We get 
0 = - M(Jzi(Wi - I))2 = 2 2z^CMw* + Mw* ~ l ~~ Mwi™i1 -

iV 

— 2 z^(wi— !)2 > which is equivalent to (2.6). 
f - i 

Formula (2.5) for simple estimate was given in [5], 
As regards the estimated mean-square error, we shall use the following 

Theorem 2.2. On replacing I, Mw{, MwiW$ in (2.4) or (2.5) by any their (i, j)-
estimates, we get an estimated means square error of the estimate (2.2). Ones of 
the possible unbiassed (i, j)-estimates of 1, Mwi and Mwtw^ are the following: 
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Estimate of 1 == 

_ 1 -U _ i _ V ^ ~ {?} + W) , _ i _ V P(g ~ {*} + {k}) 
~~~ ~T~ - 1 Z , P(fi) Ť Я - l - w P(ő) ^ 

jfcПOПeS ÄTПOПeS 

_ L _ J _ _ V V P(g - {%, j} + {k, Ц) , 
+ ^ л j 2 2 P(.) ' г>?єs- (-7> 

ЙПOПeS ÄПOПeS 
Ä ф Л 

Estimate of Mгvг- == 

= ^'(S) + ^ _ Л 2 ^ - 0 " } + W ) P ( S ~ {
p f ď )

+ W )
; M««- (-.8)' 

&ПOП€S 

Estimate of Mгv̂ гL == гøť(s) гv3-(8) , i,jes, (2-9) 

D̂Aere s — {7} + {k} and s — {i, 7} + {k, h} denotes the subset got from the subset 
s by replacing the element j by the element k or the elements {i, j} by the elements 
{k, h}, respectively, and 2 denotes the sumation over all elements k not contained 

knoiies 

ins. 
Proof. The first assertion of the Theorem only tells that on replacing, 1, 

MWi and MWiW^ in (2.4) or (2.5) by any their (i, ^-estimates, we get a function 
of (s, y), i. e. an estimate (see Section 1), 

Now, in view of (2.1), we have 

2 # ) Wj(8) p(s) = 2 wi(8).wA8) p(s) = M w ^ , 
s~*ij sQS 

where 2 denotes the sum extended over the subsets s containing the both 
s*ij > 

elements i and j , by which it is shown that wtwd is an unbiassed (i, ^-estimate 
of MwiWj. 

In order to prove the assertion concerning (2.8), let us note, that any subset 
z containing the element i but not containing the element j may be converted 
in a subset 8 containing both elements i and j by omitting an element, say 
k, different from i, and by replacing it by j , and that this may be doiie in n — 1 
ways. Consequently, 

• 2 h ( 5 ) + i r h : 2 ^s - o-} + w> P{s~fis)

+{k})] p(*) -

= 2 ».(«) p(*) + 2 ~T~zri 2 Wi{s ~ #> + **» ( P ( S ~ # > + **» = 

sz>ij ss>ij JcnoneS 

= 2 ^(s) p(s) + 2 ^~r {n~1) Wi{z) P{z)=2Wt{s) P(s) ---Mwi • 
S3ÍJ S*i 

Before proceeding to (2.7), let us note, that any subset z not containing either 
i or j may be converted in a subset s, which does contain both elements i and /, 
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by omitting any two of his elements, say Jc and h, and by replacing them by 
i and j9 and that this may be done in n(n — 1) ways. Consequently, 

V Г. 4- - Л - V р(* - #} + Щ) , _2_ V Р(а ~ Ф + **» д. 
А,\ г « - 1 2!у Р(«) ~|~ » — 1 -С Р(в) "*" 

5~»г"..?" «- &П0пе$ ТспопеЗ 

V V Р(8 - {*. ?} + {*> Щ в/ ч 2, 2, ~ ~щ~ Р(*) = 

ПОП«?$. АП0П«?$ ~-

n(n — 1) 
Isnoiies, hnoTi€S 

Jcdph 

= 2 p^ + 2 -+i{n~l) P(s) + 2 ^b{n -l) ?{s) + 
$*i>j ssi szj 

snon*;" «non*t 

+ 2 ^ T j ^ - l ) p ( s ) = 2 p ( s ) = 1' 
.snon-»i sQS 
•snon*? 

which accomplished the proof. 

R e m a r k 2.1. The (i, y)-estimates shown in the theorem 2.2 are of use in 
situations where w^s) depends of 8 (s * i) not much, and they will be used in 
section 4. Their scope might be widened by this device: We may, for each 
(i, j) separately, select several samples containing both elements i, /, say 
sl9 . . . , % and then replace the (i, j)-estimate, say %5(8), by the arithmetic 
mean 

k 

11%(sl9 ..., sk) = j 2 uif(s9) . (2.10) 

If the probabilities ni§ of including both elements i and j and mean values 
MwiWj and Mwi are simple, we may use the following unbiassed (i, /)-estimates: 

TT .> . , TKA , KA , LA 1 MW€ ~\~ MWj — 1 — MW/Wj . . . . ... 
Estimate of [M «̂;̂  + Mw^ — 1 — MWiW*] = — — -—- %f {%, j ) c B, 

71 ij 

= 0 in the other case , (2.11) 

or, in the unbiassed case 
1 — \Aw-w • 

Estimate of [1 — MwiWs] =
 L-i- i/ {i, y} c 5 , 

= 0 in the other case . (2.12) 

R e m a r k 2.2. The device of ratio estimation may be useful also in estimating 
the mean square error. For example, in view of (2.6), we may hope that the 
estimated mean square error 

i 2 2 IT - T\ Z^MW< + MU>, - 1 - MwM* N 

m(r-D2= ^ U 2«$M(t*,-l)», 

(2.13) 
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where [.]itj denotes a proper (i, ^-estimate of [.], will be better than the 
estimated mean square error 

m(f - 7)3 = ^ 2 2 fe ~ -̂ -V-V^M". + Mw* - - - M*WW • (2-14) 
z € s j€s \ t Z3 I 

Remark 2.3. If the estimated mean square errors (2.13) and (2.14) are too 
laborious, we may select randomly with equal probabilities a subset 
M of k couples {i, j} c s without common elements, when possible, and then 
replace (2.13) and (2.14) by 

\ 2 2 (f1 ~~ jr)2***'[MM?'+M^ ~ 1 ~ Mw^u N 

2^2L,ZiZs[Mv)i + Mw5 — 1 — MWiW/\u <a.i 
{. ,^}«M 

(2.15) 
and by 

m(F - 7)2 = — " ^ ^ 2 2 (S ~~ f4V;[M^ + Mw, - 1 - M^-] M . (2.16) 

Remark 2.4. If not directly the values yf but unbiassed estimates of them 
are at hand, say yi9 e. g. in the case of subsampling, and if estimates yt are 
mutually independent, then the. formula (1.2) is changed into 

Y = 1 УІЩ(З) , 

and the formula (2.3) into 

N N 

м(ŕ - D»=- 2 2 ? [(f ~Ђ\ZiílИщ+Mщ ~* ~MWiWЛ + 

N 

+ 2->(&>, (2-І 7) 

i » l ? - l 
IV 

i « l 2 

where M(.) and D(.) denote the mean value and the variance over the estimates 
A 2 2 

y€ (for example, over the subsampling). 
It means that the estimated mean square error has, generally, the form 

m(Y - 7)- = - 2 2 ( f - jr) fM^ + Mw' - l - Mw*w^ + &* > (2-18) 
ieS i e « 

JV 

where D2 is an estimate of 2, D(jli) • 
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3. Improving estimates connected with element-by-element sampling 
with and without replacement 

We have denoted by (sfr, y) the observation consisting in a knowledge of 
s" and of values y{ associated with elements appearing in sr/, and a similar 
meaning has been ascribed to (s, y) and (sr, y). I t is easily seen that the know­
ledge of (s", y) enables us to establish (z'r, y) for all zrr such that 

«(*') = «0"), (3-1) 

or, similarly, knowledge of (sr, y) enables us to establish (zr, y) for all z' such that 
s(zr) = s(s'). For example, if we know that on the sequence of elements 
s" = (2, 4, 3, 2, 4) there were ascertained values (13, 18, 15, 13, 18), respecti­
vely, we may infer that on the sequence z" = (3, 3, 2, 4) would be ascertained 
values (15, 15, 13, 18), respectively, because we simply know that yz =- 15, 
2/2 = 13 and y± = 18. Conversely, knowing (z,r, y) for any zn such that (3.1) 
holds, we can establish (s", y). 

This trivial fact has an interesting application: Having an arbitrary estimate 

t" = *"(**, y) , (3.2) 

we may replace it by the estimate 

2*V, y) P(z') 

where the sum ]T extends over all z" such that s(z'r) ==. $ -*s s(s"). Indeed, if 
w 

we know (srr, y), we can evaluate t"(zrr, y) for any zrr such that (3.1) holds, and 
hence we can evaluate (3.3). 

A brief inspection of the equation (3.3) shows that t is a conditional mean 
value of t" with respect to (s, y). Consequently 

M* == Mt" (3.4) 

Dt = Dt" - M(* — tfrY . (3.5) 

In other words, t is at worst as equally good an estimate as t". This means that 
the subset-definition of a sample is fully satisfactory, since any good estimate 
is a function of (s, y) only. (Of course, it may happen that f and the estimated 
variance of t" are more easy to compute than t and the estimated variance of t.) 

A similar conclusion may be drawn concerning the estimates tf «-= tr(sf, y), 
etc. 

Now, let us show how the method works: 
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Example 3.1. Let us perform independent samples of one element with 
JV 

probabilities ocl9 ..., ocm 2 ai ^ *> until n distinct elements have been selected. 
í - i 

Let us choose any unbiassed estimator of the total Y = 2 y* f° r example, 
t * « - 1 

Y = ^ (3.6) 

where ix denotes the element selected as the first. Let us take a conditional 
A 

mean value of Y with respect to (8, y), where s is the set of n distinct elements 
included in the sample. Using the formula (3.3) we see that 

Y = M(Y\(s,y)) = = 2 ! ^ ' < 3 / 7 ) 

where P*(#) is the conditional probability that the element i will be included 
as the first in the sample under the condition that the distinct elements 
selected consist the set s. Probabilities Pt(8) are not easy to compute, except 

when t h e sampling is uniform, i. e. ocx = ... = <xN = •=-=, or when n = 2. 

In t h e case when the sampling is uniform, we clearly get P{(s) = —, so that 
n 

т = -ZУ 

Now, let us consider the case n = 2, denoting the two distinct elements 
included in the sample by i and j . The probability that the element i was 
selected first and the element j second, equals 

P.. = P{«'=[Ml} = Y---i-. (3-8) 
1 — " OCi 

Similarly, the probability that the element / was selected first and the element 
i second, equals 

PH = P{s' = l},i]}=-2£l-. (3.9) 
\ 1 — ocs 

This means that the conditional probability that the element i has been 
selected first equals 

W-a-^-V (3-10) 

When substituting into (3.7) we get 

(--«.)£ +(!-««) J 
Y = —— - ' . (3.11) 
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As regards the variance of Y, we may use the formula (2.5) since (2.3) is clearly 
satisfied for %t = oci. I t means tha t 

N N J , 

M(F - 7p = I ^ 2 J - £ ^ [ 1 ™ Mw;^] ' (3J2) 

" i - i y - i ^** ^ 

In order to find MWiW5 let us first compute Ttif 

nu = P{i?.,' e s) = P{8 = {i, j}} = P i y + Pa = 

*£<*, , *>i&>i _ ft<*.(2 — <*< — <*i) / g 1 3 \ 

1 —- <%. 1 — <X.J ( 1 — -*<)(l ' — <*$) 

Now, in view of (3.11), 

wi(s) = o ==1^1 for 5 = {%, j} 
2 — at — OCJ oci 

and, consequently, 

MwiWj = 2 wi(s) WAS) ?(s) = wiw^ij = 
$*i,3 

0CtCCj(2 — OCi— OC5) ( 1 •—'<%j)(l — #«) 1 (1 — #_)(1—- rx^-) (2 — oci — a,)2 oc^/ 2 — oci — 0Cj ' 

On substituting (3.13) into (3.12) we get that 
N N I \ 2 

M(Y - P)« -= j J 2 - - - " ^ 1 " « ' - « ' . (3.14) 
2 -£-_/ Z w \<%. OCA 2 — OCi — OCA 

i = l i « l * * " 1 5 

Finally, we may use the (i, y)-estimates (2.12), where 7cis are given by (3.13), 
and get the following unbiassed estimated variance: 

d? = m(r - Yf =-. (* - *-V(1 ~ "' ) (1 ~ *')(1 ~ f ~ *->. (3.15) 
\«i «,7 (2 — «., ~ «3)

2 

As (1 — *t)(l - «,) __ f 1 - ^ i i p L j , w e have that 

d?^ife-|)2(1-^-^)- (3-16) 
If t he ordered-set sample s' consists of elements 8' = [il9 ..., i j , then there 

are the following unbiassed estimates of Y: 

Ѓ.--3---
«., 

Г. = У.ч+£Ч--*.ч). (3.17) 
o*2« 

T„ = y.. + ••• + Ž/І»-, + Ç- (i - «.. - ... - *«._,), 
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where ik is the element included in the sample as the ifc-th. These estimates 
A 

are non-correlated, and, moreover, the conditional mean value of Yk, given 
n 

A A _ - v 

Yl9 ..., Yk_x, equals Y. Consequently, any constants clt ..., cn, 2, o€ = 1, ge-Í = I 
n 

nerate an unbiassed estimate Y ==-- 2 ciXi s^0*1 that 

л 

D(2cirJ.) = 2c?Dr€. (3.18) 

A further unbiassed estimate might be 

(3.19) І V У± 

where the sum ^ extends over all elements of the sequence s" and v denotes 
s" 

the number of members of s" (i. e. the number of independent selections of 
one element until n distinct elements have been selected). 

The estimate (3.19) may be identified as a conditional mean value of (3.1) 
with respect to (<§*, y), where s* is the orderless-sequenee sample defined in 
Section 1: 

j2g = Mfe|^4 <3-20> 
This means, in view of (1.9), that the conditional mean of (3.19) with respect 
to (s, y) also equals (3.7). In addition, it is thereby proved that (3.19) is an 
unbiassed estimate. 

Example 3.2. Let us perform a fixed number, say m, of independent selections 
of one element always with probabilities ocl9 ..., aN and consider ihe well-
known estimate 

Y = ±~yy± (3.21) 
m<£~t oci s" * 

where the sum 2 extends over the selected sequence s" = (il9 ..., im). I t may 

be easily shown that the estimate (3.21) is a conditional mean value of (3.1) 
with respect to (8*, y), where 8* is again the orderless-sequenee sample. 

If the sampling is uniform, i. e. ocx = . . . = ocN = -=-=, then the conditional 

mean value of (3.21) with respect to (s, y) is easily seen to be 

Y = M(lf| («,-/)) = ! J ? " (3.22) 
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where d is number of distinct elements in the sample and $ is the set of the 
distinct elements in the sample. 

If the probabilities oct are varying we may get Y as follows: First let us re-
A 

write Y in the form 

Y = Ay î +Iyft.-1)-^ (3.23) 
m --w Ui m --w <%i 

ics ieS 

where hi is the number of times the element i has been selected. The conditional 
probabilities of events {ki = k°i3i e s} obviously equal 

o o n s t ^ ^ - , ko^l, _>*? = »». (3-24> 

If all elements in s" are distinct then Y = Y. If there are m —- 1 or m — 2 
distinct elements in the sample s", then (3.24) generates the following con­

ditional distribution of / (kt — 1) — : 

P V ( ^ - l ) ^ = ^ 
lf> ö t ť oca 

p < > (&, - i) ь. = ^ + Ул 

OCІ oca aь 
i*s 

\ \m — 1 distinct] 

,y)j--<*., » a , [ e l e m e n t g J (3.25) 

{_>> 1 ) ^ = 2 ^ (s,ÿ) 
3! 

> \m — 2 distinct] 
' a ' 6 6 5 ' [elements J ' ( 3 2 6 ) 

where c is a constant. From (3.25) and (3.26), after some computations, we 
get that 

y Ml 4- 11 7 = 
rø 

Y = 
rø 

У ^ + 2 ^ 
<ć-t OCІ 
iєS 

2« 

2 * K Ä ) 

[m — 1 distinct] 
elements J ' (3.27) 

Xm - 2 distinct! 
|_elements J 

If there are less then m —- 2 distinct elements, then precise evaluation of Y be­
comes too complicated. We may use, however, the approximation 

Hyi 
ў" _____ 

m У*+rЏ- [ m — r distinct] 
elements J (3.29) 

which seems to be a good one. 
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Example 3.3. Let us consider a double sampling design and denote by st 

and s (s c sx) the subsets of elements selected in the first and second phase, 
respectively. Let 

£ = 2 2 / ^ i K ) (3.30) 
ie§i 

be an estimate based on the sample <sx. Now, we may judge the sample s± as 
a, population with ascertained values yiW^s^), i e sl9 and construct a linear 
estimate 

A 

Y = 2 y&>ii(*i) wi2($v *)> 
ies 

whose weights depend on sx. As the final observation (s, y) is, obviously, an 
A 

abstract function of (sl9 s9 y), any good estimate Y must not depend on sl9 

i. e. we must have 

u>a(3i) wi2($i> *) ~ w'i(&) , 8 cs1cS . (3.32) 

If (3.32) does not hold, the estimate may be improved by the method we have 
used in Examples 3.1 and 3.2. 

A A 
If Y = MY, where M(.) denotes the mean value with respect to the second 

2 2 

phase (or stage) of sampling, then 

M(Y - Y)2 = M(Y - Y)2 + M(Y - Y)2. (3.33) 

Example 3.4. The same considerations may be applied to sampling whose 
result is given by k interpenetrating samples (sl9 ...,sk). We come to the 
conclusion that the "good" estimates must not depend of how many times an 
element has been selected, i. e. ist must be a function the set soi elements 
contained in at'least one set sl9 .... $ft, and of the observations ascertained 
thereon. 

Now we shall leave this topic, since, as will be shown in the section 4, there 
exists an exact theory of fixed-size sampling with varying probabilities with­
out replacement. 

Remark 3.L The method could be formulated as an application of the 
well-known Rao-Blackwell theorem on improving estimates by taking their 
conditional mean value with respect to a sufficient statistic. In fact, in the 
space of all possible observations (s"9 rj) we mafiy consider the system 
{Pyi„..yN(.)} of admissible distributions generated by all possible sequences 
of values yl9 ..., yN in such a way that 

P^t: „,(«"- n) = P(0 , if (s; v) = (*", y), 

= 0 , otherwise . 

Let us note that (yi, • ••> yN) plays a role of a parameter . 
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4. Rejective sampling 

Let us perform n independent draws of one element always with probabilities 
<xl9 ..., ocN and accept or reject all the selected elements if or if not at no two 
draws the same elements has been selected, respectively. If the sample is 
rejected, let us repeat this procedure until we get an acceptable sample. In 
this well-known sampling scheme, we have, obviously, 

P(s) = % Y\ oci for any s consisting of n elements , (4.1) 

where 

*=t2 n**]-1. 
SeVn ieS 

where Vn denotes the class of all subsets of the population which consist of 
n elements. Our point is to show that the sampling design just described is 
capable of exact and easy treatment. 

First, let us observe that any sample z not containing the element i may be 
converted in a sample which does contain the element i by omitting any one 
of its elements and replacing it by the element i. This may be done in n ways 
as z contains n elements. If the obtained sample is s, then, by (4.1), 

p(~) = ^ p ( « ) , 
OCi 

where k is the element which has been omitted. This means that 

i =- J™ + 2 PW - 2 P « + i 2 p<*> 2 J= 
8»i znon*£ sai $>i Jfenones 

= i™ [> + £ 2 * - 2 *•> - ^ — (4-2) 
8»i JtJXOTleS S^i 

where 2 extends over all samples not containing the element i. Denoting 
2 ПОП 3> I 

1 — ос + пос1 

ПОС; 2 1 — oc + noci . ,. nx 

Kk , Wi(s) = , * € * , (4 .3 ) 

we may rewrite (4.2) in the form 

2 «;.(*) P(*) = l . (4.4} 
s-»i 

The equation (4.4), however, means that w^s) are weights of the unbiassed 
estimate 

1 — oc + noci 1 — a ^ 2 * ^ P = ̂ 2!;+2*<- <«> 
£e« a'€s i € s 

The estimate (4.5) equals Y identically when yt are exactly proportional to 
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numbers oci9 i = I, ..., N, i. e. (2.3) is satisfied for zt = oc{. Consequently, 
according to (2.11), we have 

D f = i l X t - y£ - ^ - M ^- ) • (4-6) 
The (i, yj-estimates of 1 and of Mw{w3- we shall seek in the form (2.7) and (2.9). 

Let us observe that, in view of (4.1), 

P(* - {»} + {*}) = ** 
PW "i ' \ 

?(s — {i, j} + {k, h}) = ockoch 

?(s) ociocj ' 

and substitute these results into (2.7) and (2.9). We get: 

Estimate of 1 = 1 + - i — Y ^L + — ~ V — + 
n —• 1 -̂ -w a* w - 1 - w (Xj 

ftnone* &nones 

n(n — 1) ---w - w <% .oc,-
ft none*, A nones 

( l — « + W ^ ) ( l — OC + ^ X 3 - ) — W A C ^ — y <%| 
fcnones • • 

n(n —~ 1) o c ^ 

__ . A k . ( 1 — OC + W<%„-)(1 — a + TkXf) 
Estimate of Mw<w, = wtws = - ! -^ ~ . 

. n20Ci0Cj 

This gives: a 

Estimate of [1 — M w ^ J = 

__ (1 —• OC + W ^ ) ( l - - ft + noCj) OCiOCj hnon^s * N ,, - ^ 

n\n — I) n — 1 ^(w — 1) * 

On substituting (4.7) into (4.6) we obtain the following unbiassed estimated 
variance: 

'vt yA2 H 1 — * + ncK*) v1 — * + ^ i ) 

ІЄS 5ЄS \ * V L ?г n 

ftnones -J 

Now, remembering t h a t for any numbers pt, 2 Pi = 1? the identity 
u s 

T 2 2 ^ - S ) ' ^ - 2 ^ - 2 S » ) V 
i e S j ' e S \ 5 ! t e S V * tf6S * / 
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holds, we can (4.8) rewrite in the following form: 

dY=-My-IVi-tY1—a+na*-n y a iy^_iy^ 2 i_ 
n — 1 \z^f\oci J n —s ^ k j n^ocij n 

M_s V / &noneS ieS \ ies I 

_ a 2 y ? l i_*- __ . (4.9) 

The relative magnitudes of the terms on the right side are 1, ~ 11 — -̂ =1 

N 
M 2 1 

and 1-̂ =1 5 respectively. If cx1 = . . . = ocN = - ^ , we get the well-known 
formula for simple random sampling. 

If we wish to exploit the proportionality of values yt to certain values x{, we 
may use the ratio estimate 

%çS І€$ X ү = —_f _ _ _ _ y X i = fX . (4.10) 
1 — ÛІ ^r X< , V z-1 

X ř X лл .J - 1 
n 

І € S ' î , S 

Alternatively, we may also use the unbiassed ratio-type estimate 

ies i€s i €s *~ i€s ies 

which is a variant of the estimate introduced GOODMAN and HARTLEY in the 
case of simple random sampling (see [1$]). To show the unbiassedness. let 
us rewrite (4.11) in the form 

*_ = y y , + l=^y* + 
4^ n *—i oc{ 
igs i€s 

+ Lyt!i\z-xt- y z,-1-—} 2 ^1. (4.12) 

The first two terms on the right side are nothing else but the unbiassed estimate 
(4.5) of Y. Consequently, if we show that the conditional mean value of 

y x,+—± 2 ~ (4-13) 
ies-{f> ,0 X U*-{i) 3 

under the condition a n equals X — xu our proof will be completed. However, 
from (4.1) it is easily seen t ha t conditional probabilities of s under the condition 
s * i, say P{s\i), equal 

P(*K) = h I I ** > s * i > 
j€S-{i} 
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i. e. conditional distribution has the same structure as the nonconditional 
one. Now the estimate (4.13) has the same form as the unbiassed estimate 
(4.5) except that n is replaced by n — 1, probabilities ax, ..., ocN are replaced 

by probabilities -—-— , ..., — —— , -—*-i^~ , ..., - — — , and the element i is 
1 — 0Ct 1 — OCi 1 — OCi 1 — OCi 

omitted from the population. Consequently, the estimate (4.13) actually is 
an unbiassed estimate of X — x{ under the condition s -»i. 

The variances of (4.10) and (4.11) are naturally complicated but they 
may be estimated in lines with Theorem 2 . 2, since (2.3) is satisfied for z{ = x^ 

5. Permutation sampling 

The rule of including and not-including the element i in the sample is the 
following: We take a random permutation Rx, ..., RN of numbers 1, . . . , N, 
all permutations having the same probability, and than include or not include 
the element i in the sample if or if not 

Ri^TtiN, i = l , ..., N. (5.1) 

If the numbers JZ{N are not integers, we may replace R€ by R{ — gi9 where 
Hi are independent random variables distributed uniformly over the interval 
(0,1). 

I t is easily seen that the numbers JT,- used in (5.1) are directly probabilities 
of including the element in the sample. If jr2- <; nh and the element i has been 
included in the sample, then, because Rj # Rt and R{ ^ TC{N ^ TC^N, R$ may 
take on TZJN — 1 integers not greater than jr3N and N — TZJN integers greater 

then TtjN, each of them with the same probability -=-=--——. Consequently, 

the probability of including both elements i and / in the sample equals 

When we are using the above mentioned random variables | i 9 the formula 
for 71^ must be slightly modified. 

The permutation sampling is useful, for example, in connection with the 
ratio estimate 

І€S 
Яi N 

2*-iz- (5-3) 

> — is=1 

£~t7Zi 
ies 

Practical performation of permutation sampling goes as follows: We decide 
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that Tz'tS should by proportional to numbers a{ and that the mean sample size 
should be n. Then we compute the number 

N 

*_i a 
^ ~~~ nN ~~~ n ' 

Now we select elements by simple random sampling element-by-element without 
replacement and the element selected as the k-th, say ik9 we accept or reject if 
or if not aih ^ kip. I t is easily seen that, if a* = min a4- and a* = max ai9 

the first k ^ k* = — elements are accepted certainly, and, on the other 

hand, the sampling is certainly finished when k ^ k* = —. 

We may observe that in permutation sampling we need know the a[s only 

for the first k < — selected elements and that no sums of af,s are needed. 
- v 

B. OPTIMUM STRATEGY. CASE I: 
THE ASCERTAINED VALUES ARE NON-CORRELATED 

The assumption that the ascertained values are (a priori) non-correlated is 
of fundamental importance and, as the reader will see in section 8, of rather 
wide scope. For previous results see [6]. 

6. Bayes approach to the optimum strategy 

Sampling-estimating strategy is defined by probabilities P(s)9 s c S, and by 
weights Wi(s)9 i e s9 s c S. The quality of this strategy will be judged, on the 
one side, by the mean square error 

M(Y _ 7)2 _ 2 ( 2 ytv>t(8) - 2 ytf P{8), (6.1) 
«CS M j _ l 

and, on the other side, by costs which have generally the form 

C = 2c(s,w)?(s) (6.2) 

where c(s9 w), s c $, are costs of ascertaining the values yt on s, and of comput-
A 

ing Y with the weights w{(s)9 i c s; perhaps, in c(s9 w) may be included costs of 
computing estimated sampling error, i. e. estimated square root of (6.1). The 
right side of (1.2) is called a cost function. 
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Sampling-estimating may be optimum in two senses: it either minimizes 
the mean square error (6.1) for given expected total cost (6.2), or conversely, 
it minimizes expected total cost (6.2) for given mean square error (6.1). 

The notion of optimum strategy is useless when only one particular sequence 
yl9 ...,yN is considered, because the problem disappears, if we know it, and 
has no solution, if we does not know it. This difficulty may be overcome in 
various ways. In this paper we shall prefer the Bayes approach. It means we 
shall suppose that there is a certain probability distribution in the space of 
sequences (yl9 ..., yN), and our criterion of accuracy will be 

E M ( F ^ Y ) 2 (6.3) 

where E denotes the mean value over the random sequence (yl9 ..., yN) and 
M denotes the mean value over the samples s. 

As can be seen from (6.1) M(J — Y)2 is a quadratic form in y]s, so that 
A 

EM(7 — Y)2 depends only of the mean values, covariances and variances of 
yl9 ...,yN. Consequently, specification of the distribution of yl9 ...,yN may 
only consist in the determination of the first and second-order moments: 

Ey< = Pi > ^Vi = du > Gov (yi9 yt) = di3-, i€ j = 1, ..., N- (6.4) 

where V denotes the variance in the (yl9 ..., t/^-space. 
Bayes approach seems to be reasonable on these grounds: (a) In most cases, 

we really have some knowledge of conditions producting values yl9 .*.,yN, 
and we can express them in the form (6.4). (b) Assumptions (6.4), if accepted, 
only influence our choice of samphng-estimating strategy and do not influence 
the validity of our estimated sampling errors, confidence intervals etc. Sampling 
error will be valid for any particular sequence yl9 ...,yN and consequently, 
any mistake in assumptions (6.4) will only cause the sampling errors to be-
on the average greater than they would be, if our assumptions were right. 

There are, of course, cases, when the sample is selected in such a way that 
sampling error cannot be estimated on the basis of ascertained values yl9 ...>yN 

only (e. g. in systematic sampling). However, even in these cases, the Bayes. 
approach is the only way of getting any estimated sampling error at all: We 
shall conclude with a few remarks. 

Remark 6.L The first to use the Bayes approach for the solution of sam­
pling strategy was, according to the author's knowledge, W. G. COCHRAN, in 
the pioneering paper [1]. 

Remark 6.2. As emphasized by R. A. FISHER, any statistical work is a 
whole consisting of two aspects: experimental design and statistical procedure. 
This applies to probability sampling, too, the two aspects being the sampling 
design and the estimation procedure. 
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R e m a r k s 6.3. Not only in probability sampling but in any statistical work 
there is a fundamental distinction between the case where the a priori distribut­
ion is an organic part of the statistical procedure (i. e. influences the validity 
of the probability statements), and the case where it only influences the choice 
of the experimental design and of the statistical procedure. 

7. Sufficient conditions for the optimum strategy 

We shall restrict ourselves to unbiassed linear estimators, i. e. 2 wi(sW(s) = 
scs 

= 1, i = 1, ..., N, and to the simple cost function 

o = 2c^-- ( 7 Л ) 
t * - i 

(7.1) is based on the assumption that the cost associated with the element 
i equals ciy i. e. does not depend on the estimation method and on which other 
elements were selected. 

A 

Supposing that the yss are non-correlated and that the estimator Y is un­
biassed, let us evaluate (6.3). First, we change the order of the mean-value 
operators E and M, and then make use of the assumption that the yss are non-
correlated: 

N 

EM(F - Tf = ME(Y - Yf = ME( 2 y.w.(«) - 2 tv«)2 = 
ieS s £ = l 

N 

= M{( 2 t*i*>i(*) - 2 Pi? + 2 du(Wi(s) - l)2 + 2 du} = 
ieS f - 1 ieS imoi leS 

N N 

= M ( ^ i # ) - I / ( i ) ! + 2 4 [ 2 W 8 ) - i ) ! P W + 2 P(*)] (7-2) 
ieS £ = 1 2 = 1 S*i S l l O i m 

where /^ == Ey{, du = V^, and s e i and i c s denote that i is not contained 
in 8. Bearing in mind (1.3) and (1.4) we get 

2 <«>.(«) -1)2 PW + 2 p(s) ̂  [ 2 { щ { s ) -l) P ( s ) ľ ӯ^т + 2 P{í 

Sei SЋOЋ.*І L-sэг J £-* \ I ÄПOГlЭѓ 

= - (1 - »,)» + (1 - » , ) - = - - 1 , (7.3) 
Tti Tti 

where the sign of equality holds if, and only if, w€(s) are independent of s, 
s$i. Independency of w€(s) of s, in connection with (1.3) and (1.4), implies 
that 

w((s) = — , i es , s c S . (7.4) 
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The result just obtained together with (7.2) gives t h a t 

N . , 

ř « i 
JV 

where the sign of equality holds if and only if, first, 2 Miwi(s) = 2 fa f ° r a r i y 
г = l 

s such that P(s) > 0, and, second, (7.4) holds, i. e. Y is a simple linear estimate: 

Y = 2 - • (™) 

Finally let us choose optimum %, ...,nN under the supposition that the 
expected total cost is given by (7.1). For brevity, let us denote the right side 
of (7.5) by 

The use of Cauchy's inequality gives t h a t 

[ N -, , N- \ I N J \ I N \2 

D + 2 dA = (2 H (2 %) -* 2 vw <*•«> 
i «. 1 f » l £ *= 1 i » 1 

where the sign of equality holds if 

e ^ = A*^-\ i = l, . . . ,N , 

i. e. 

ЯІ = Л 
C,: 

= 1,.. ., N, (7.9) 

where A is a constant by which we may regulate the expected variance or cost 
when substituting into (7.7) or (7.1), respectively; of course, X must be chosen 
so that oti Ss 1. 

N 

Since the TZ^ S satisfying (7.9) minimalize the product G[D + 2 du] for 
i = i 

any X, (7.9) solves simultaneously both problems: minimization of C for 
given D, and of D for given C. The minimum value of C or D for given D or O, 
respectively, may be obtained from the equation 

r N 1 I N \2 

O LD+2<*« = 2 ^ 4 • (7JL0) 

Let us summarize our results in a theorem: 
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Theorem 7.1. Let us suppose that du == 0. i #= 7, 2 w%(s) ̂ (s) = 1, < == 1, .., -# 
scS 

cm<# O = ^ 0*%. jT%ew <m?/ strategy for which the conditions 
i - i 

** = ^ [ / " c 3 ' * = 1? -->N > (7.11) 

tv4.(.$)=—, U 5 , scS, (7.12) 

iV 

2rV*<(*)==]>>o P(*)>0, (7.13) 
i e S £ x=. 1 

are fulfilled, is the optimum one. 

The condition (7.11) determines the expected frequency n% of the element 
i in the sample and will be called the condition of optimum allocation. The 
condition (7.12) will be called the condition of constancy of weight®. The con­
dition (7.13) means that for any sample 8 which can be really selected the 
sampling error vanishes as soon as y€ exactly equal their expected values 
fiu i = \9 ...3 N. We can express this by words that the strategy is represen­
tative with respect to the values ju^ i = 1, ..., N. In this way the vague notion 
of "representativity" becomes well-defined. 

We can see that the condition (2.9) assumed in the section 2 was nothing 
else than the condition of representativity with respect to the values zt> 

i = l,...,N. 

From the course of the proof it is visible that small violations of the above 
conditions are immaterial. Most frequently it is the condition (7.12) which is 
not exactly fulfilled: the weights are not constant, and, moreover, they are 
very often such that the estimate is not unbiassed (e. g. in ratio estimation). 
Once we know that the above conditions are sufficient, it is inessential whether 
they are approximately fulfilled by an unbiassed or biassed estimate. Another 
question would be to choose an optimum solution within the whole class of 
linear estimates. However, this problem is too subtle and hardly fruitful. 

Sometimes we may decide which of two possible systems of weights w^s) 
and w*(s) is better in the following way: Suppose that the sampling design 
considered is such that (7.11) and (7.13) hold, then, according to (7,2), 

EM(f - Yy = M{2d«(t0,(«) - I)2 + I dit} . (7.14) 
i€§ inojies 

If it happens that for any s with P(8) > 0 

2 *«(«>.(«) - l)2 ^ 2 d„(u,*(8) - l ) a , (7.15) 
ieS ieS 

then, clearly, the weights w (s) are the better of the two. 
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Example 7.1. Let us compare the estimates 

ie$ 

$t = ±yy*t ( 7 . 1 7 ) 

under t h e hypotheses that 

П ć-4 Oti 
iєS 

du=Xx\9 0 ^ < 5 ^ 2 , (7.18) 

and t h a t the sampling is rejective as described in section 4. The estimate 
(7.16), a s we have seen, is unbiassed, and the estimate (7.17) is biassed. We 
cannot, however, a priori say which of them is better. Putting 

1 — oc -f- noci «, . 1 
WAS) -= , wt(s) = , % € s , 

* } noci % w noci 
we h a v e 

2 «.«[(».(*) - 1 ) 2 - (wf(S) - in -= 2 <*«K(*) + < w - 2). 

. (^(8) -— wf(s)) = 2 ]T ^""2(2 — oc — ?i<%e-)(^ —• oc) . 

T h e l a s t expression, however, is non-positive since i t equals the covariance 
of v a l u e s 2'&?~"2(2 — oc — nat) and values noci and since the relation 

[noci < na4] => [ocdr2(2 — oc — TUX4) ^ ^ ~ 2 ( 2 — oc — 7i*,)] , (7.19) 
0 < d <£ 2 , i9 j € s 

holds. Consequently, under the hypothesis (7.18), the estimate (7.16) is better 
than t h e estimate (7.17). 

Unbiassed estimated mean square error of the estimate (7.17) can be de­
rived i n lines of the sections 2 and 4: 

1 W*/ 1 ^ v \ ^ 1 " n a ^ 1 - ^ + n
J 2 ** 

m(r9^r)2 = _jLy^^lyyi — _ ,—.— n̂̂  + 

w - l - - w k , n £-i ocA n 
i€S \ % ies

 %! 

+ 0 l * [ ± y y i - " \ . (7.20) 

\ntt^ 2«J 
Now, we shall apply the theorem 7.1 to several typical examples. 

Example 7.2. If /u,€ = const, du = const, c{ = const, i = 1, ..., N, then all 
the requirements of the theorem 7.1 are fulfilled by simple random sampling 

together with the simple linear estimate — / yit If /^'s, df
us and ĉ s are con-

ie$ 

stant wdthin some parts (strata) of the population, and when these strata are 
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nh . 
-=•—- — л 

җ 

ldш 

C % 

large enough, then the requirements of the optimum strategy are satisfied by 
the optimumly allocated sampling together with the simple linear estimate. 
If the s t ratum Sh contains Nh elements from which we select nh elements, then 
for an element i, belonging to the stratum Sh ,we have 

7ti = ^-, ieSh. (7.21) 

According to (7.11) the %s must be chosen so that 

= 1, . . . , # , (7.22) 

where dhh and ch are common values of dus and ĉ .s within the stratum Sh. 

However, from (7.22) i t is seen that whenever the numbers XNh / — are too 

small, then (7.22) may not be fulfilled by any integers nh with a reasonable 
degree of precision. I n such situations is stratified sampling ineffective. 

Example 7.3. Very often we may suppose that /^s are proportional to known 
numbers xf 

Pi^tet, i=l,...,N. (7.23) 

I n such situations the ratio estimates (5.3), (4.10) or (4.11) meet the con­
dition of representativity with respect to (7.23). The condition of constancy 
of weights, however, may not be fulfilled. When using the estimate (5.3), 
(4.10) or (4.11) we have weights 

JV 

. l n i 

„**,„. _ - - * + » * . 
2*. 

го**(8) __ ^±^П ^ ^ _ ^ ^ (7.25) 

> %г : 1 " 
-----/ пос* 
гев г 

W, 

respectively. The variability of the weights depends on the sampling design 
and on the relation between the values xt and TT4- or oct. Generally, the weights 
(7.25) connected with the rejective sampling design described in Section 4 may 
be expected to vary least. 

The weights (7.24) can be used in connection with the permutation sampling 
described in Section 5 with ^ satisfying the condition of optimum allocation 
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(7.11). If the weights (7.25) are used, in connection with the rejective sampling 
described in Section 4, the oc'ts should be chosen so t h a t the Tt^s again satisfy 
(7.11). Now from (1.4) and (4.3) it follows that 

«+n*{p{8) 

ч *—! ПOCІ 

І - - - ! (7.27) n< Уp(s) 
whence it is easily seen that 

• ——, r ? - - — 7 r < 7ti < b ————^ti— . (7.28) 
J _L_ ( n __ 1) m a x (^. __ aj — I __ (n __ 1) ma>x ( ^ _ a^ 

3 i 

Consequently, the equation (7.11) will be nearly fulfilled if simply 

* . - = A " | / ^ - ' * == 1 -V- (7.29) 

If the ^s are not smaller than, say, 0,1, we may use the approximate relation 

noci 

1 + h=тN{Xi-т) 
(7.30) 

1. e. 
^ n —- 1 

~ Пi N ~~ l ' 
i 

™~~ n ., (w — 1) N 
1 /ЪT , v Л i 

(7.31) 

(N — 1) » ' 

I t may be of interest to modify the sampling design in order t h a t the weights 
(7.24) vary as little as possible. Let us describe such a design for the uniform 
(self-weighting) case (jtx = .... = 7tN = 71). I n this case we t ry to select ele­
ments in such a way t h a t 711 = it and t h a t the sum ^ x% m nearly constant . 

ieS 

Let us suppose t h a t the a^s are integers (which causes no loss of generality) 
and consider the cyclical sequence 

1 , 2 , . . . , ^ + . . . + xN, 1, 2, ..., co. 

Now we associate with the element i the segment of the sequence containing 
numbers {xx + . . . + x^x + 1, ..., xx + . . . + #t-}, i = 1, ..., N. Finally, we 
select an integer r with equal probabilities in the range 1 ^r ^xx + ... + xNi 

* 771 "(r\ 

and include the element i in the sample with a probability , where 

m€(r) is the number of integers belonging simultaneously to the both segments 
{r, . . . ,r + a) — 1} and {% + . . . + x^x + 1, . . . , xx + ... + xt). The prob-
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ability of including an element in the sample is the same for all elements, 
namely 

* • = * , + . " . + * „ • (,'32» 
This sampling may be preceeded by any, random or non-random, ordering 
of elements. 

Example 7.4. If the a priori hypothesis is expressed by a regression relation 

k 

Pi = 2 Pfi*? + Po, i=l,...,N, (7.33) 

where f}0, /?1? ...,{}% are unknown constants, then the fulfillment of the con­
dition of representativity is not easy. We may use some type of regression 
estimates, which are, however, difficult to compute, or, when the regression 
is passing through the origin (i. e. /50 = 0), some type of ratio estimates. Fi­
nally, we may use the so called acceptance-inspection method. This method 
consists in rejecting samples which give a bad result in estimating totals X$ of 
controlled (concomitant) variables used in the relation (7.31). For example, 
we repeat selections of a sample s until we get a sample for which 

\X, - Z , | ^ ^ 1 / D 1 T ? j=l,...k, (7.34) 

where e}* are properly chosen constants, say e$ = 0,5. This method of attaining 
to the representativity emphasizes the sampling-design aspect, and this is 
right in situations, where we are dealing with extensive and fresh a priori 
data and ascertain a number of variables y'i9 yn

i9 ..., each of them is related 
to variable xf\ ...,xf\ The theory of the acceptance-inspection method is 
based on the supposition that the random vector (Y, Xl9 ..., Xk) has a (h -f 1)-
dimensional normal distribution. However, no theoretical argument for this 
assumption is at our disposal in this time. Acceptance control is discussed 
in the paper [8], 

8. Some remarks on the applications 

8.1* Uniform sampling. The cost function (7.1) does not reflect the jump 
in cost which arises when the sampling is uniform (self-weighting) so that 

the simple linear estimates are reduced to arithmetic sums, i. e. Y = - ^S yim 

ieS 

Therefore, an optimum non-uniform sampling-estimating strategy is really 
acceptable only if it is better than the uniform sampling connected with the 
simple linear estimate or with the simple ratio estimate, etc. This device, 
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consisting in dividing the possible strategies into classes within which the 
problem has a simple mathematical formulation, is of wide use. 

8.2. Subsampling. The flexibility of the previous theory is well-illustrated 
by the subsampling problem. Let us suppose that the elements are primary 
sampling units consisting of N4 secondary units. We wish select in any primary 
unit nt secondary units by simple random sampling, where n{ is ascertained 
from the relation 

71 

7 t , ^ = T, * = 1, . . . , M, (8.1) 

where 7ti is the probability of including the primary unit in the sample and x is 
the uniform overall probability of including a secondary unit in the sample. 

A A 

A comparison of EM(Y — F)2, where Y is given by (2.30), with (7.2) shows 
that the effect of subsampling is the same as the effect of increasing the 
variances du by the second-stage variance of yit L e. by 

N1? / n-

where a\ is the expected variance within the element (primary sampling 
unit) i. On the other hand, the costs associated with the element i is decreased 
by subsampling by 

(N, - n{) e,, (8.3) 

where e* is the cost associated with a secondary unit within the element i. 
If we insert the changed a priori variances and costs into (7.1) and (7.7), 

we get (N == M) 
M 

0* = 2 » . [ e . - ( - V . - » . ) e . h (8-4) 
4 = 1 

** = lk+?4-te)](;H <85) 

which by means of (8.1) gives 
M M 

C* = 2 «,(c, - N&) + r'2 etNt, (8.6) 
i - 1 ť - 1 

M , M M 

(8.7) ->*=2 d i i „?** + 7 2 N<% - 2 {d» ~ N^ • 
£ — 1 -iwmX i—l 

It means that, if du —- Nta* >̂ 0, c€ — N&t ^ 0, we have 

M IM " 1 / M N \ 
O*[D* + 2 (du - Ntam ^ 2 R , - tf«o5)(«* - NAO + L/ 2 - M 2 # A2, 

<- i U - i r f„,i i s s si / 
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where the sign of equality holds if 

da - Ntf 

M 

?i M 2вд 
Xhtfa - Nfii) and ^ = XH 2 N& , 

i. e. 

nor 

—i\t NAЙ 2 
г^г = 1 

-V.e, . * = Ч Чг—• (8-8) 

See also [10], § 4. 

8.3. Relative emphasis on thfe sampling aspect. The conditions s tated in the 
Theorem 7.1 can be approximately fulfilled in many ways. When choosing a 
particular way, we may utilize some information which has not been included 
either in the assumptions about the a priori mean values and variances or in 
t h e cost function. A problem of this kind is how to distribute the effort between 
the sampling design and the estimation method. On some occasions it is better 
to p a y attention to the sampling design (e. g. see Example 7.3) and on other 
occasions it is better to choose carefully the estimation method. 

8.4. Connection between the a priori mean values and the assumption of 
non-correlation. The assumption of non-correlation of ascertained values is 

the more realistic, t h e more specific are the a priori mean values. For example, 

in a population of areas on which total yields of cereal-crops are ascertained, 

we m a y p u t 

Pi = V (8.9) 
or 

11 i = JbLX{ (8.10) 

or, finally, 
jut = UiXi + axt (8.11) 

where x£ is the size of the area and tt is an eye-estimate of the yield per unit 
area. The assumption (8.9) means that all influences are understood as random 
factors. The correlation of all these factors will cause the correlation of t he 
values y€. For example, in some regions there is a greater average size of areas 
t han in other and, therefore, a greater average total yield on there areas. If 
we know the sizes x€ and take the model (8.10), then this source of correlation 
will disappear. In model (8.11), there is excluded a further source of correlation, 
namely the correlation of fertility on neighbourhooding areas. When using 
this last model we may hope tha t the yields are a priori approximately non-
correlated. 
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8.5. Sampling designs with maximum entropy. A simple way of avoiding 
unfavourable consequences of the possible violation of the hypothesis of the 
non-correlation is to choose a sampling designs which distributes the probabil­
ities P(s) as uniformly as possible. This requirement may be formulated in the 
form that we wish to maximize the entropy 

E = -ZP(s)\ogP(s). ' (8.12) 

If the probabilities %, see (1.4), are fixed, the sampling which maximizes 
(8.12) is the Poisson sampling described in [10]. In fact, any sampling may be 
understood as N experiments having two possible outcomes: including or not 
including the element i in the sample. When the probability of including the 
element i in the sample, namely ni9 is given for each of these experiments, 
then the entropy will be maximum, as is well-known, if all these experiments 
are independent. By the last requirement just the Poisson sampling is defined. 

Now we shall show that the rejective sampling (Section 4) with fixed 
ocl9 ...9ocN has the greatest entropy in the class of sampling design with the 
same % . . . , TCN and with fixed sample size, n. In fact, bearing in mind (1.3) and 
using the usual method of Lagrange multiplicators Xi9 we get for ?(s) and At 

the following equations 
N 

8 [ 2 - p(*)iQgp(*) + 2 A i 2 P ( s ) ] = ~log P(s) -l + 2 A i ^ ° • seY*> 
(8.13) 

2 P ( s ) = ^ , i=l,...,N, (8.14) 

8P(s) . 

where Vn is the set of all samples with sample size n. Since the function 
— x log x is strictly concave, there is a single maximum. If it happens that the 
solution is such 0 ^ P(s) <£ 1, then it clearly coincides with the solution of 
the problem restricted to the domain 0 fg P(s) <S 1, s eVn. Now, it is easily 
seen that (8.13) is satisfied by the probabilities (4.1) arid by 

XІ = log OCІ + z (1 — log 2* I 1 C%І ) . (8.15) 

As regards (8.14), it is fulfilled automatically, since we considered just those 
7tl9 ...,TZN which are yielded by the given cxl9 ..., ocN. 

C OPTIMUM STRATEGY. CASE II: THE ASCERTAINED VALUES FORM 
A RAN§OM SERIES WITH A STATIONARY CONVEX CORRELATION 
FUNCTION AND STATIONARY COEFFICIENTS OF VARIATIONS (9-10) 

If the population is meaningfully ordered (in time or space), the ascertained 
values are very often governed by a convex correlation function. An empirical 
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correlation function of this kind is shown in the Fig. 1, where also the estimated 
correlation function is drawn. The data refer to a population of plots where 
the area of forest land has been measured.1) 

Convex correlation function are so often met with that they deserve a de­
tailed study. This has been undertaken in the paper [1], and in subsequent 

papers [3] and [7], where, under the supposition 
of convexity, it is proved that systematic sampling 
is superior to simple random sampling, stratified 

Corrélation 
coeffidenis 

0,4e-f+0,6é •5t 

2,5 3,0 

distance 
of ploŤs 

кg. i. 

sampling, and several independent systematic samplings. In the present 
paper, using quite a different method, we shall derive a general result that 
systematic sampling is better than any other sampling design under consi­
deration. Moreover, we shall replace the supposition that E^ and Vy{ are sta­
tionary by a more general supposition that only the coefficients of variation, 
yVyilEyi, are so. As a solution we shall obtain systematic. sampling with 
generally unequal probabilities. 

9. Preliminaries 

Lemma 9.1. Among all integral-valued random variables x possessing a given 
mean value £ the random variable which takes on only the values [£] and [£] + 1 
is of least variance. Here [£] denotes the greatest integral number not exceeding £m 

Proof. Putting a = [£] + | , we see that 

where 

Dx = 2 (k - a)2 P{x = k} — (£ - af , 

(*-<.)- = J, if k=m or m + i, 
> J , otherwise . 

This accomplishes our lemma. 

x) The Figure l i s borrowed from the paper [2] with author 's kind permission. 

416 



Definition. A correlation function R(i —- j), i,j= 1,..., N that satisfies 
the condition 

R(u) - 2R \~A + -%) =5 0 , 0 ^ «t, t; ^ N , (9.1) 

is called convex. 

Lemma 9.2. Any convex correlation function R(i — j), i, ? = 1, ..., N, of 
of a discrete stationary random process may be expressed in the form 

co J V + A - 1 

B(i-j) = 2 2 [Btt + l)-2B(X)+B(l-l)-]qaa)qa<i), (9.2) 
A - l tt>«l 

l^i,j ^N 
where 

la** = 1 , */ (o — X < i <: co , (9.3) 
= 0 , otherwise . 

and 
R(X + 1) — 2R(X) + R(X - 1) ^ 0 . (9.4) 

Proof. The inequality (9.4) follows from the assumption (9.1) when putting 
u = X + 1, v = X — 1. The equation (9.2) is a consequence of the following 
identities: 

J V + A - l 

2 ffiA^iAc* = A—\i — J\> M A > I* — j\ 

and 

D - l 

= 0, otherwise 

2 (*-l»- ?1W + -) - 2ižW + R(x -1)] = 

= | 2 [iž(A + 1) - 2R{X) + B{X - 1)] = 
A - J i - i | + l j í - j i - i | + l 

00 00 

= 2 2 m* + -) - 2ižw + -w -!)] = 
j í — J ť - i j + l A = jM 
oa 

= 2 [-«(/* — i) — iř(A-)] = Jř(|* — ;|) == -«(** — i ) . 
j U - J i - i J + l 

10. An optimum property of systematic sampling 

We shall suppose that the random sequence yv ..., yN possesses stationary 
coefficients of variation and a stationary convex correlation function, i. e. 

Ey€ = fiXi, Vyt = o2x2 , Gov (yi9 y,) = o^x^i — j) , (10.1) 

i,j, = 1, ..., N , 

and shall choose a sampling design which 
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(a) yields samples of fixed size, n, 

(b) gives the following probabilities jr?- of including the element i in the 
sample 

• î ~r • • • ~r -̂ JV 

(c) minimizes the expected variance of the estimator 

(10.3) Y=*y^, x = yXi. 
n t—iXi t—i 

i€s i = l 

R e m a r k 10.1. The correlation function 

E(i — j) = 1 , if i = j , 

= 0', otherwise , 

is convex, and, consequently, the scheme (10.1) incorporates the case of non-
correlated random variables with stationary coefficients of variation as 
a particular case. When supposing constant costs, i. e. c2 = c, i = 1, .. . , N, 
t hen the condition (10.2) and the estimator (10.3) gar ant ee tha t the sampling-
estimating strategy, we are choosing, will be optimum for this particular 
case. In fact, then (10.2) is equivalent to (7.11) and the estimator (10.3) 
implies the fulfilment of (7.12) and (7A3). 

Theorem 10.1. The above problem is solved by systematic sampling defined as 
follows: The sample consists of those elements i for which the sum x1 + . . . + xt 

at first reaches or exceeds some of the numbers 

r,r+±X,...,r + ̂ X, (x -= £ «,) , 

where r is a random variable uniformly distributed over the interval 0 < r ^ 

<:— x . — n 

Proof . Unbiassedness of the estimator (10.3) for any particular sequence 
2/i, >-,yN justifies the first of the following identities (the remaining ones are 
obvious): 

/ A N N 

EM(7 - J)* = EM(7 - 2 / ^ ) 2 - E(7 - 2 /^-)2 = 

= M E ( ? 2 ! - ^ - E ( ^ - ^ ) 2 = 

ш 
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Consequently, it suffices to minimize M( 2 2 B(* "" ?))• U s i n § (9*2) w e obtain 
ieS jeS 

oo i V - A - 1 

M(22 i ? ( i - / ) ) = 2 2 [̂ a + i)-2JR(A) + i ? a - i ) ] M ( 2 f e j 2 . 
jeSieS A = l a > - = l i e S 

According to (9.4) it suffices to prove that M( 2 ?a J 2 is minimized for each 
ieS 

X and co. The definition (9.3) of qa6> implies that 
«> 

f€s i «co -A + l 

where #>f are random variables such that 

Pi(s) = 1 , if s ? i , 
= 0 , otherwise. 

This means that 

(10.5) 

M(2gw)= 2 M ^)]= 2 w* = z 2 **• 
\i€$ I **«co-A + l e"«co-A + l * = cu-A + l 

i. e., in accordance with the point (b), the mean value of 2 2a<o is constant 
ieS 

for any considered sampling design. Thus minimizing M( 2 #a*>)2 is equivalent 
ieS 

oo 

to minimizing D( 2 fow) for given mean value Y 2 xi- ^ s 2 Qa<o *s a n 

ics 
oo n 

tV-t "" ' w JL i«»cu-_A + l teS 

integral-valued random variable, it suffices, according to lemma 9.1, to show 

that 2 qau only takes on values -== "T cca J and J •= ^ ^ + 1, where 
t€$ "- t*-o>-A + l "* i - < » - A + l J 

[|] again denotes the greatest integral number not exceeding f. This may be 
done as follows: 2 ?*AW is the number of members of the set {co — A + 1,... , co} 

ieS 

which have been included in the sample, and this number, according to the 
definition of the systematic sampling in Theorem 10.1, equals the number of 
integrals k = 1, ..., n for which 

k —- 1 
xt + ... + X^x < r H X £ xt + ... + x^ 

n 
i. e. 

n n 
j (#i + • • • + %a>~\ ~~r) + 1 <k^^(x1 + ...+x(0~~-r) + l. (io.6) 

The number of integrals lying in a interval of fixed length Z, however, can 
only equal [I] or [I] + 1. The proof may be thus completed by observing that 

0) 

n "ST**1 

the length of the interval (10.6) equals -=. J> xt. 
г=»û>-Л + l 
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R e m a r k 10.2. We have not proved that the sampling design described in 
Theorem 6.1 yields the probabilities of including the elements i in the sample 
given by (10.2). However, this is well-known (see, for example, [9], § 2). 

R e m a r k 10.3. In the most important particular case when both the expected 
values Eyt and variances Vŷ  are stationary, we get the uniform (or self-weight­
ing) systematic sampling. From the point of view of practice, .the case of 
stationary coefficients of variations which we have considered is only slightly 
more general, since there are only a few examples, where the coefficients of 
variations are stationary even though the expected values and variances are 
not so. (Let us mention, as an example, the case where yi and x{ denote the 
present and past city populations, respectively.) 

In cases where the coefficients of variations are not stationary, the problem 
becomes more complicated, and a question arises whether a solution, common 
for all convex correlation function, exists at all. We should minimize the ex­
pression 

oo N + X-l (o 

A — 1 co -. 1 2 = o > - A + l 

where Pi(s) are given by (10.5) and C{ are the coefficients of variations, i = 
= 1, -.., N. Moreover, in such cases, the supposition (10.2) and the estimator 
(10.3) cannot any longer be considered as "natural" ones arid the whole problem 
ought to be reformulated. 
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Výtah 

OPTIMÁLNÍ STRATEGIE A JINÉ PROBLÉMY 
V PRAVDĚPODOBNOSTNÍM VÝBÉRU 

JAROSLAV HÁJEK, Praha 

(Došlo dne 4. července 1958) 

Práce je rozdělena na tři části: 
V části A, která má úvodní charakter, jsou nejprve definovány základní 

pojmy: Máme soubor S skládající se z N libovolných elementů, např. z čísel 
í, 2, ..., N. Ze souboru S vybereme podmnožinu s tak, že každá podmnožina 
s má předem známou pravděpodobnost P(s), že právě ona bude vybrána. 
Vybranou podmnožinu nazýváme výběrovým, souborem. Nechť yl9 ..., yN jsou 
neznámé hodnoty na elementech 1, ....,N a chtějme odhadnout úhrn Y = 

N 

= ^ž/i pomocí hodnot zjištěných ve výběrovém souboru s. Odhad tvaru 
i - 1 

7 = 2, yiwÁs)> kde wt(s) (i c s, s c S) jsou libovolné váhy závisející nejen na 
ieS 

i ale i na s se nazývá lineárním odhadem. Obecně odhadem rozumíme libovolnou 
funkci t == t(s, y), kde (s, y) je pozorování obsahující informaci o tom, které 
elementy byly vybrány a jaké hodnoty y{ byly na nich zjištěny. V § 2 je od­
vozen jednoduchý tvar střední čtvercové odchylky M(Y — Y)2 pro ty lineární 
odhady, jejichž váhy w£(s) splňují pro některé známé hodnoty zx, ..., zN rovnici 

2~v«>.(*)--2*. (2-3> 
ieS « = 1 

s pravděpodobností 1. V § 3 je předložena obecná metoda zlepšování odhadů, 
která závisí na informacích neobsazených ve výše definovaném pozorování 
(s, y). Tato metoda není ničím jiným než použitím známé Rao-Blackwellovy 
věty o zlepšování odhadů tím, že vezmeme jejich podmíněnou střední hodnotu 
vzhledem k některé postačující statistice. V § 4 je odvozen odhad úhrnu, (4.5), a 
nestranný odhad jeho rozptylu, (4.9), pro tento způsob výběru: Provedeme 
n nezávislých tahů jednoho elementu vždy s pravděpodobnostmi ocx, ..., aN,. 
a potom přijmeme či zamítneme všechny vybrané elementy podle toho zda 
v každých dvou tazích jsme vybrali jiný element či nikoliv. Je-li výsledek vý­
běru zamítnut, opakujeme výběr tak dlouho dokud se nám nepodaří; *vybrat, 

421 



všechny elementy různé. V § 5 je popsán další výběr s nestejnými pravdě­
podobnostmi, nazvaný permutacním výběrem. 

V části B je řešena optimální strategie pro případ, kdy na zjišťované hodnoty 
yi můžeme hledět jako na realizace nezávislých náhodných veličin se známými 
očekávanými hodnotami fii a rozptyly du. Strategie je přitom určena pravdě­
podobnostmi P(8) jednotlivých výběrových souborů a vahami w€(s) výše 
zmíněného lineárního odhadu, a její optimalita se rozumí vzhledem k nákla­
dům, o kterých se předpokládá, že jsou tvaru 

C = 2CÍ*Í> (7-1) 
* = 1 

kde Tti je pravděpodobnost vybrání výběrového souboru s, který obsahuje 
element i. Jsou odvozeny postačující podmínky (7.11) až (7.13). § 8 je věnován 
problémům aplikace výsledku. 

V části C je řešena optimální strategie pro případ, kdy se o hodnotách y{ 

předpokládá, že jsou realisací náhodné posloupnosti, která má stacionární a 
konvexní korelační funkci a stacionární variační koeficienty. Je ukázáno, že 
těchto předpokladů je optimálním řešením systematický (mechanický) výběr 
s obecně nestejnými pravděpodobnostmi. 

V práci jsou zobecněny výsledky obsažené v pracích [1], [3], [7], [12] a [13]. 

Резюме 

ОПТИМАЛЬНАЯ СТРАТЕГИЯ И ДРУГИЕ ПРОБЛЕМЫ 
ВЕРОЯТНОСТНЫХ ВЫБОРОК 

ЯРОСЛАВ ГАЕК ^ а г о з ^ На]ек), Прага 

(Поступило в редакцию 4/УШ 1958 г.) 

Работа разделяется на три части. 
В части А, носящей вводной характер, даются прежде всего определения 

основных понятий: Дана совокупность /5, состоящая из N элементов про­
извольной природы, напр. из чисел 1, 2, ..., N. Из совокупности $ выбе­
рем подмножество <§ так, что каждое подмножество 8 имеет заранее извест­
ную вероятность Р(8) того, что будет выбрано именно оно. Выбранное 
подмножество мы называем выборочной совокупностью. Пусть уг, ...,ум — 
неизвестные значения на элементах 1, ..., N и пусть желательно дать 

N 

оценку итога Т = 2 У г при помощи значений, установленных в выбо-
л 

рочной совокупности 5. Оценка вида Г = ^УгЩ($), где гс^з) (г е а, 8 с 8) 

суть произвольные веса, зависящие не только от г, но и от «§, называется 
линейной оценкой. Вообще под оценкой мы подразумеваем какую-либо 
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функцию Ь = Ь(з, у), где (8, у) есть наблюдение, содержащее сведения о том, 
какие именно элементы были выбраны и какие значения уг были на них 
обнаружены. В § 2 выводится простое выражение для среднего квадратич-

л 

ного отклонения М(Т — У)2 для тех линейных оценок, веса которых щ(в) 
удовлетворяют для некоторых известных значений г1,...,гт^ уравнению 

я 

<«в г*-1 

с вероятностью 1. В § 3 предлагается общий метод для улучшения оценок, 
которые зависят от сведений, не содержащихся в определенном выше на­
блюдении (а, у). Этот метод — ничто иное, как успользование известной 
теоремы Рао-Блэквелла об улучшении оценок тем, что берется их условное 
среднее значение по отношению к какой-либо достаточной статистике. 
В § 4 выводится оценка итога, (4.5), а также несмещенная оценка его 
дисперсии, (4.9), для следующего способа выборки: Произведем п независи­
мых выборов одного элемента с вероятностями соответственно <хг, ..., осн, 
далее примем или отбросим все выбранные элементы в зависимости от 
того, получим-ли при каждых двух выборах различные элементы или нет. 
Если результат выборки отброшен, повторяем выборку до тех пор, пока не 
нам не удастся выбрать сплошь различные элементы. В § 5 описывается 
дальнейшая выборка с неодинаковыми вероятностями, названная перму-
тационной выборкой. 

В части В находится оптимальная стратегия для случая, когда обнару­
женные значения у1 можно считать реализациями независимых случайных 
величин с известными математическими ожиданиями /^ и дисперсиями 
Ли. Притом стратегия определяется вероятностями Р($) отдельных выбо­
рочных совокупностей и весами щ(в) упомянутой выше линейной оценки, 
а ее оптимальность относится к расходам, которые, как предполагается, 
имеют вид ТУ 

С = 2 < ^ , (7Л) 

где щ -— вероятность выбора выборочной совокупности 8, содержащей 
элемент %. Выводятся достаточные условия (7.11)—(7.13). § 8 посвящается 
проблемам применения полученного результата. 

В части С определяется оптимальная стратегия для случая, когда зна­
чения у1 можно считать реализацией случайной последовательности, име­
ющей стационарную и выпуклую функцию корреляции и стационарные 
коэффициенты вариации. Показано, что при этих условиях оптимальным 
решением является систематическая (механическая) выборка с неодина­
ковыми, вообще говоря, вероятностями. 

В работе обобщаются результаты, содержащиеся в работах [1], [3], [7], 
[12] и [13]. 
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