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časopis pro pěstování matematiky, roč. 91 (1966), Praha 

PSEUDO-UNITARY SPACES 

JIŘÍ JELÍNEK, Praha and JURAJ VIRSIK, Bratislava 

(Received August 15, 1964) 

In the present paper linear spaces endowed with two or more topologies will be 
discusfsed. In order to specify which of the topologies is being considered, this will 
be indicated in brackets in front of the corresponding symbol. E.g. the relation 
(T0) H0 = (<r) H0 = H0 states that H0 is closed in both the topologies T0 and o. In 
the text this will be expressed by saying that H0 is T0-closed, cr-closed, etc. The 
symbol &{A} denotes the linear hull of the subset A of a linear space H. 

1. DEFINITION AND SOME PROPERTIES 

l . l Let H be a linear space (module) over the field of real numbers. H will be called 
a pseudo-unitary space if there is given a symmetric non-degenerate bilinear form 
on H. This means that to any elements xeH9 yeH there is assigned a^real number 
<x, y> with the following properties 

Sl)<x,y> = <)>,%>, 
52) (Xxt -f fxx29 y} ~\X(xi9 y} + K*2> A 

53) <x0, y} = 0 for all y eJS implies x0 = 0. 

The number <x, y} will be called the pseudo-scalar product of x, y eH. 
For arbitrary x0eH the expression <x0, y> (or, more precisely, the mapping 

y -** <*o» y>) determines a linear form on H. Denote by H* the dual of H9 i.e. the 
space of (algebraic) linear forms on H. According to S3, the linear space H is 
isomorphic to some linear subspace of H*. This isomorphism is given by the relation 
x « ( y - * <x, y>). Two elements x€H, y eH are termed orthogonal if <x, y} = 0. 
An element x e H is called isotropic if x # 0 and <x, x> = 0. We shall also sometimes 
write x Ly instead of <x, y> = 0. The following statement is evident: if x € H is 
orthogonal to all elements of E c H (i.e. x IE) then x 1 jgf{JS}. Let H0 a H be 
a linear subspace of H. The orthogonal complement ±(H0) of the subspace H0 in H 
is the set of all elements in H which are orthogonal to H0. Then 1(H0) is clearly 
a linear subspace of H. 
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Definition. A linear subspace H0 cz H is called non-isotropic if x0 e ff0 and 
<x0, y} = Ofor all yeH0 implies x0 = 0. 

1.2 In the following we give some theorems concerning the algebraical structure 
of pseudo-unitary spaces. The first one is evident. 

Theorem 1. A linear subspace ff 0 cz ff is itself a pseudo-unitary space with the 
pseudo-scalar product defined naturally if an only if H0 is non-isotropic in H. 

Theorem 2. A linear subspace H0 cz H is non-isotropic if and only if H0 n 
n l(ff0) = {0}. 

Proof. Let ff0 be non-isotropic, xe±(ff0)r.ff0 . Then xeff0 and x 1 ff0, 
which implies x = 0. The converse is similar. 

Lemma 1. Let H0 be a non-trivial non-isotropic linear subspace of H. Then there 
exists an element x e ff0 such that <x, x> 4s 0. 

Proof. Let <x, x> = 0 for all x e ff0. Then for a fixed 0 4= x0 e ff0 and arbitrary 
y e ff0 we have 0 = <x0 + y, x0 + y} = <x0, x0> + 2<x0, y} + (y, y} and thus 
<x0, y} = 0, which is in contradiction with the assumptions. 

Theorem 3. Let H0 be a non-isotropic linear subspace of ff, and let <x, x> g: 0 
for all xeH0. Then <x, x> > Ofor all 0 + xeH0. 

Proof. Let an x0 e ff0 with <x0, x0> = 0 be fixed and choose y e H0 arbitrarily. 
We then have, for each real k, <x0 + ky9x0 + ky} 2> 0,i.e. fc2<y, y} + 2fe<x0, y} ^ 
j£ 0. Hence the discriminant of this form in fe, i.e. D = (<x0, y})2, satisfies D g 0; 
as y was arbitrary we conclude hence that x0 = 0. 

Denote by / the set of isotropic elements of ff and put J = J?{/}. Then the 
following holds 

Theorem 4. In a pseudo-unitary space H either I = 0 (i.e. ff is a unitary space) 
orlf = ff. 

Proof. Let I # 0 . First we shall show that J is non-isotropic. Indeed, assume 
i e , / , i L J, i 4= 0. Then necessarily i € J, and there exists an y e l f such that 
<*\ y> 4= 0. Now if we put 

<y,y> , 
2 = У 

2<i, У> 

we have zel and <i, z> = <i, y> 4= 0; this is in contradiction with i Ju J. 
Next we shall prove that e&ch x0 e ff can be expressed as a linear combination of 

elements in L Obviously it suffices to suppose x0 e ff - I and, e.g., <x0, x0> > 0. 
There are two cases: 
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a) There exists an i0 € I such that <Xo> *o> * 0. Then we may write 

— ' 4- ~x°9 x°y 
, X0 -• x 0 -r ~-~ — . i0 , 

2<*o> *o> 
where 

' — <xp, X0> . f 
x 0 — x 0 — — — • . i0 , x 0 € i , 

2<x0, i0> 
and thus x0 e J. 

b) Suppose now x0 ± I. We shall show that the form <x, x> is positive-definite 
on ±(J). Indeed, let 0 # y0 e (J) satisfy <y0, y0} <; 0. Then the equation <x0 + 
4- ky0f x0 4* ky0y = 0 has a solution k = fc0, and according to Theorem 2 we 
obtain* x0 4- fe0y0 = 0, i.e. <x0, x0> = k0(y09 y0}9 which is in contradiction with 
<x0, x0> > 0. 

As I # 0 , we conclude from Theorem 3 that there exists an xt e H satisfying 
<x4, xty < 0. According to what has been proved above xt # ±(J)9 i.e. there exists 
an isotropic it such that <xl5 i1> # 0. From part a) of this proof we obtain x± e J. 
Now, since the equation <x0 4- kxl9 x0 4- fcx^ = 0 has a real solution, we obtain 
finally that x0 e J. 

The case <x0, x0> < 0 could be treated in a similar manner. 
Theorem 1 shows that an n-dimensional non-isotropic linear subspace of a pseudo-

unitary space is isomorphic in a natural way with the n-dimensional pseudo-
euclidean space. Therefore the theorem below is in fact only a well-known result in 
the theory of these spaces. 

Theorem 5. Let H0 be a non-isotropic n-dimensional linear subspace of a pseudo-
unitary space H. Then the following holds: 

For arbitrary elements xt9 x2>..., xm (1 51 m < n) such that xt e H0, <xf, x̂ > = 
= ±$tj (hj = 1,..., m) there exist in H0 n — m elements xm+1,..., xn such that 
<Xj, Xj> » ±5ij9 where now i,i = 1, 2,.. . , n. Moreover, the integer p (0 51 p <I n) 
denoting the number of indices ifor which <x*, xf> = 4 - 1 , respectively the integer q 
(0 <J q <J n, p 4- q = n) denoting the number of indices ifor which <xi5 Xj> = — 1, 
depend only upon the subspace H0 c H. (The symbol dtJ means here as usual the 
Kronecker delta.) 

1.3 In a given pseudo-unitary space H let us choose arbitrarily a fixed element x0. 
Then the function p(y)« J<x0, y>| is a pseudo-norm in H. The system of these pseudo-
norms obtained as x0 varies over H determines the topology a(H9 H) on the linear 
space H [1]. We shall call this topology, given by the algebraical structure of the 
pseudo-unitary space, briefly the cr-topology. It is the weakest topology on H in 
which the addition of elements, multiplication by real numbers and also the forms 
y -* <xt yy on H for each fixed x e H are all continuous. The space H endowed with 
this topology is a locally convex Hausdorff space [1, ch. IV § 1]. Moreover, each 
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linear form f(y) on H continuous in the <x-topology can be expressed as f(y) = 
= <x0, y} for some x0 e H (loc. cit.). 

Theorem 6. Let H be a pseudo-unitary space, H0 a H a linear subspace and 
E c H an arbitrary subset. Then the following hold: 

a) x±F=>x±(<r)j&?{£}, 

b) x ± E, (a) ¥{E} = H => x = 0, 

c) ±(H0) is a a-closed linear subspace of H, 

d) if H0 is a-closed then ±(±(H0)) = H0. 

Proof. The first three statements are evident. For the proof of the last one see 
Bourbaki [1, ch. IV § 1 n. 5]. 

Theorem 7. Let H0 be a non-isotropic a-closed linear subspace of a pseudo-unitary 
space H. Then ±(H0), which is again a a-closed linear subspace of H, is also 
non-isotropic. 

Proof, x e ±(H0), x ± ±(H0) imply x e H0, x ± H0, and hence x = O. 

Theorem 8. Let H0 be a non-isotropic a-closed linear subspace of H. Then the 
set M = H0 4- ±(H0) is an (algebraical) direct sum of its summands, and is 
a-dense in the space H. 

Proof. Let x e M and x = xt + x2 = x[ -F x'2, where xl5 xi e H0 and x2, x2 e 
e ±(H0), i.e. (xt — xi) + (x2 — x2) = 0. Then for arbitrary yeH0 we have 
<xt — xi, y} = 0, i.e. xt = xi. From the above equation we also conclude that 
x2 = x2. 

The set M is clearly a linear subspace of H. Let x ± M for some element x € H. 
Then also x ± H0 and x ± ±(H0), and hence, according to Theorem 6d, we have 
x e H0 n ±(H0). Theorem 2 yields x = 0, i.e. ±(M) = {0}, and Theorem 6d then 
yields ±({0}) = (a) M, i.e. (a) M = H. 

Theorem 9. Let H0 be a linear subspace a-dense in H. Then H0 is non-isotropic. 
This is an immediate consequence of Theorem 6b. 

2. INTRODUCTION OF CONTINUOUS TOPOLOGY INTO 
PSEUDO-UNITARY SPACE 

2.1 We shall say that there is given a continuous topology T0 in the pseudo-unitary 
space H if H, with this topology T0, is a linear topological space and the pseudo-
scalar product is continuous in both its arguments under this topology. In other 
words, we assume that 
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Tl) the mapping (lu X2f xl9 x2) -» Xxxx + X2x2 is a continuous mapping from 
Ex x Et x H x H into If, and 

T2) the mappihg (i, y) -* <x, }>> is a continuous mapping from H x H into £x. 

If there exists, in a pseudo-unitary space H, a topology T0 satisfying the above 
conditions, then this topology is clearly stronger than the topology <r. Thus in this 
case the following theorem is evident. 

Theorem 10. The Theorems 6a, 66 and 9 remain valid if the a-topology is replaced 
by a continuous topology. 

The existence in H of a topology T0 with the above properties is by no means 
warranted by the algebraical structure of the pseudo-unitary space, and also it 
cannot be selected in a natural unique manner as in the case of unitary spaces. If such 
a topology exists it must be determined a posteriori. We shall illustrate this in the 
following examples. 

Example 1. Here we shall show that in a pseudo-unitary space there need not exist 
any locally convex topology satisfying TX) and T2). 

Let H be the set of all sequences of real numbers {al5 a2,...} such that at = 0 for 
each sufficently large even L Let the pseudo-scalar product on H be defined by the 
relation 

I odd 

Clearly H is a pseudo-unitary space. The non-existence of a topology with the above 
properties will be proved indirectly. 

Let us suppose that such a topology exists and let U be a symmetric convex 
neighbourhood of the origin in H such that 

(1) a e 17, b E 17 «-> |<a, t>| = 1. 

Denote e% = {0,0,«.., 1,0,...}, where 1 is at the i-th place. For aeH denote by \a\ 
the pseudo-norm defined by the neighbourhood I/. Our purpose is to prove that 
\et\ = 0 for sufficently large even L 

Thus, let u = {uu u2$...}, where «{ = 0 for even i, and ut = 2(i + 1). \ei+1\ 
for odd L First we have u e H, and for each even i + 1 with |e i+A > 0 there is 

= 2 . 
* + 1' Һ+i| 

From £i+i/|ef4.i| € U it follows that uj(i + 1) # l/» [ l ] . But this cannot happen for 
infinitely many i; this proves the above statement. 
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Consequently for some i ^ 2 we have \et\ = 0, which means that a. e{ e U for 
each real a. But now from 

we obtain 2el_ Ja £ U (cf. [1]) for each real a, which is a contradiction. 

Example 2. In this example we shall show that in a pseudo-unitary space there may 
exist two locally convex continuous topologies although there does not exist any 
topology with these properties weaker than both (i.e. there does not exist a weakest 
topology with the required properties, in distinction with the case of unitary spaces). 

Let H be the space of all sequences of real numbers {al9 a29...} for which £ a 2 < 
i 

< +co and J^eja2 < +oo, where we write e2i = 21, e2l-i = 1/2* (i a positive 
i 

integer). The pseudo-scalar product will be defined by 

i odd 

which may also be written as 

Y(eiaiei+ibi+i + ei+i«i+i«i*i)-
i ode-

Let one of the topologies be given by means of the norm \{at}\ = Q]a2)*, and the 
i 

other by means of the norm [({a*! =- Q]e?a2)* It is easily seen that the pseudo-scalar 
i 

product is continuous in both these topologies. 
Let An = {0, 0,..., 1,1, 0,...} where 1 is at the (2n - l)-th and 2n-th places, 

and let Bn = {0, 0,..., 2n, l/(2n), 0,...,} where the non-zero elements are at the 
same places as before. Now, the sequence {-4n},,= i,2,... *s bounded in the first 
topology, the sequence {£„}„-= 1,2,... is bounded in the second one; thus the sequence 
{An + £„}„.= ij2>... is bounded in each locally convex topology which is weaker than 
both of the topologies introduced above. Nevertheless (An + Bn9 An + Bn} > 
> An -+ +00, and thus the pseudo-scalar product is not continuous in any such 
topology. 

In what follows we shall suppose that there is given a pseudo-unitary space H 
provided with a continuous topology T0. 

2.2 A locally convex pseudo-unitary space H will be called a pseudo-Hilbert 
space if its continuous topology T0 has the following property: If x ~»/(x) is any 
T0-continuous linear form on H9 then there exists an element y e H such that/(x) = 
= <x, y} for each x e H. 

Theorem 11. Let H = H(T0) be a pseudo-Hilbert space, f a linear form on H. 
Then f is T0-continuous if and only if it is a-continuous. 
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Proof. If / is ^-continuous then it is also T0-continuous because the weak 
topology a is obviously weaker than T0. Conversely if/ is T0-continuous, it can be 
written as x -v(x9 y> and thus it is also cr-continuous. 

Theorem 12. Each pseudo-Hilbert space is normable. 

Proof. Let H(T0) be a pseudo-Hilbert space and U a symmetric convex neigh
bourhood of the origin such that x e U9 y e U => |<x, y>\ g 1. This implication 
asserts that the polar set of U (i.e. the set of those y e H for which |<x, y>\ ^ 1 holds 
for all x € U) contains the neighbourhood U. But as this polar set is ^--compact, the 
same is true about U; in particular, U is ^-bounded. According to Theorem 11, the 
spaces H(T0) and H(a) satisfy trivially for instance the assumptions of the theorem of 
MACKEY (cf. [1] ch. IV § 2 n. 4). Hence U is also T0-bounded and one can take it for 
the unit ball; this concludes the proof. 

Remark. The norm in pseudo-Hilbert space, where the unit ball is the set U from 
the above proof, satisfies the relation 

(2) |<x, y>\ £ \x\. \y\. 

Lemma 2. Let H be a pseudo-Hilbert space, the topology of which is defined by 
a norm x -*• |x| satisfying (2). Then the norm x —> ||x||, defined in such a manner 
that the set 

M = {x; | y | g U |<x, y>\ £ 1} 

(i.e. the set polar to the unit ball in the norm x -> |x|) is the unit ball in the norm 
x -> |x||, determines the same topology as the norm x -> |x|. 

Proof. Obviously |x| ^ 1 => x e M => ||x| S 1? so that the topology given by the 
norm x -> | x | is weaker. On the other hand, the set M being polar to a neigh
bourhood of the origin, it is bounded (cf. [1]), which proves the converse assertion. 

Theorem 13. Each pseudo-Hilbert space is complete. 

Proof. Let us choose in H a norm x -* |x| satisfying (2) and let {xl5 x2,...} be 
a Cauchy sequence in H. The sequence {xB} is also <x-Cauchy, and thus for each 
yeH there exists an/(y) = lim<xll, y>. Then / is a linear form. The preceding 

»-*co 

lemma shows that {<x„, y>} is a Cauchy sequence, uniformly on the set {y; \y\ jg 1}, 
so that its limit is bounded on this set, i.e. / is a bounded linear form. This means that 
there exists an x e H such that f(y) = <x, y> for all y e H. Furthermore, {<xw, y>} 
converges to/(j>) uniformly on the set described above. In other words, the sequence 
{<**» y}} converges to <x» y> uniformly on the set {y; \y\ S 1}» and applying again 
Lemma 2, we finally obtain that lim xH » x; this concludes the proof. 
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Theorem 14. Let H be a pseudo-unitary space. Then on H there exists at the 
most one (locally convex) topology such that H with this topology is a pseudo-
Hilbert space. 

Proof. If there exist two such topologies T\ and T2, then the graph of the identical 
mapping of H(Tt) onto H(T2) is closed in H(Tt) x H(T2\ because it is obviously 
closed in the same cartesian product under the weaker topology a x a (a is the weak 
topology in H). From the closed graph theorem (cf. also Theorems 12 and 13) we 
conclude that the identical mapping of H(T\) onto H(T2) is continuous, and for the 
same reason its inverse is also continuous; hence Tx = T2. 

Example 3. Here we shall show that a non-isotropic subspace of a pseudo-Hilbert 
space may have an isotropic closure. Thus it is not true that the complete hull of 
a pseudo-unitary space is again a pseudo-unitary space as in the case at the unitary 
spaces. 

Take H = I2 (the space of all sequences of real numbers {an} with £ a^< + oo) 
n = i 

with the usual topology, but with the pseudo-scalar product defined as follows: 
+ oo 

For a = {aB}w=1}2,... and b = {bn}Hsslt2tm„ let <a, b> = axb2 + a2bt + YanK-
n = 3 

Let the subspace H0 be the set of all a e H for which at = 0, an = Q for n sufficiently 
+ 00 

large, and £ an = 0 (with the notation as above). 
n = l 

If a e H0, a 4= 0, then obviously ak 4= 0 for some fc § 3. If we now choose b2 = 
= — 1, bk = 0 for the remaining n, then b e H0, <a, b> + 0, and therefore H0 is 
non-isotropic. On the other hand H0 is clearly the set of all such a e H for which 
ax = 0. Choosing b = {0,1, 0, 0,...} we have <a, fe> = 0 for all aeH0 and thus E0 

is isotropic. 
Example 4. Here we shall show that — in contradistinction to Hilbert spaces — 

if H is a pseudo-Hilbert space and H0 c H a T0-closed non-isotropic linear subspace 
in H, then H = H0 + -i-(Ho) need not hold (this need not hold even set-theoretically). 
The same remains true if H0 even has a Hilbert-space structure, i.e. if the pseudo-
scalar product is positive-definite on H0. 

First we shall prove the following auxiliary statement 

Lemma 3. Let q be a real number and q e<0,1). Then for any (xl5 x2)e JS2, 
(yijy2)^^2 the following inequality holds 

(3) I x ^ - x2y2\ £ V(*t + *2 - 2qxxx2) . j(y\ + y\ - 2qyxy2) . * . 
VI 1 ~" 9 ) 

Moreover, to each point (xi9 x2) one can find a point (yi> J^) 4= 0 such that equality 
holds in (3). 
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Proof. Indeed, using the one-to-one substitution given by 

fli #_ fr_ bi 
*f - , / 4 N + „_ x . yi = • 7/ v + V(--«) V(- + «)' V(--«) va + «) 
v - q i a 2 ,, _ *2 &i 
*2 77. c — Ž T : \ ' "2 V(--«) vr(1 + «)' V(--«) V(- + «) 

(3) transforms into 

2 . l a^ i + a2fe2| _ V[2(a? + a2)] . V[2(*>? + *£)] . - 1 

V(l - a2) « — ^ ' - ^ " ^ "» ^ ^ "" V(l - «2) 

which is a consequence of the Minkowski inequality. 
Returning to our example, let H be the space of all real sequences {a%, #2> •••} 

such that the following series converges 

(4) I (at + a2
+1 - 2(1 - 1/fc) akafc+1) . * 

*t_<*v * *T1 v 1 / • - v ^[1 - (1 - 1/fc)*] 

The norm in if is defined as the square root of (4), and the pseudo-scalar product is 
defined by the relation 

<R}> {&«}> = E (akh - <*k+ibk+i) • 
A odd 

First we shall show that (2) holds, i.e. 

KKl, {&.}>_ IW|. |{6.}|. 

According to Lemma 3, the left-hand side can be estimated from above by the 
expression 

1 
_: VC«* + «2+i - 2(1 - llfc) a_a_+J . 

lodd 

x yfíbl + b2
k+1-2(1-ljk)bkbk+1]. 

Ä V L l Ж V , Л '"*Ч + U '*l[l-(l-l/fc)_ 
1 

*/[l - (1 - l/fc)2] 

(we have chosen q =- 1 — 1/fc), and the rest follows from the Holder inequality in J2. 
Further we shall verify that each continuous linear form on H can be written as 

(5) /(*) - _>_ (akxk - ak+lxk+1) 
fcodd 

where * » {x,,},,,^,...* {an}B„ l t2 t...eH. Itis clear that there exists a sequence {an} 
such that (5) holds for all * for which xn # 0 for only a finite number n's. As / is 
continuous, there exists a number A > 0 such that for each such x we have 

(6) E h** - a*+i**+i| .si -*|*| • 
fcodd 
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It suffices to prove {an} e H only for {an} # 0. In this case the number (cf. the defini
tion of the norm) 

- * - I (-»' + al+1 - 2(1 - l\k)akak+1) . l 

odd*<2W .J[l — (1 — 1/fc) J 
is non-zero for sufficiently large integers N. 

Let x be defined as follows: For n > 2N let x„ = 0. For odd k <2N let xk and xk+1 

be defined in such a manner that 

(7) xkak - Xjt+iaj+i = 

= VCa- + a*+i - 2(1 ~ Vfe) a*«*+i] • V[** + x?+i - 2( J ~ */*) x*x*+il x 

1 
X V[l - (1 - 1/fc)*] 

(cf. Lemma 3). Furthermore, we can always choose the pair (xfc, xfc+1) so that (on 
multiplying both the components by the same factor if needed) the first factor 
in the right-hand side of (7) equals the second, and thus |{xB}j2 = P. According to 
(7) we then have ]T xkak — xk+xak+i = P and the relation (6) now yields P jg 

fcodd 

<; Ay/P, i.e. P S A2. As JV was arbitrarily large, we conclude |{a„}|2 S ^2> -•«. 
{an}eH. 

Now it is easy to establish that (6) holds for all x0 e H. Indeed, each x0 is the limit 
of a sequence of elements x for which xB # 0 holds for only finitely many n's. 
Hence if is a pseudo-Hilbert space. 

Let now H0 = {{x„}; xn = 0 for all even n}. Clearly, ±.(H0) = {{x„}; xn = 0 
for all odd n}. Both these spaces are closed and non-isotropic, because the pseudo-
scalar product is positive or negative-definite, respectively. 

The sequence {x„} defined by xk = x k + 1 = .^[1 - (1 - 1/fc)2] for all odd k is an 
element of H, as is easily established; but the sequence {x*} where x* = xn for n 
odd and x* = 0 for n even is not an element of HQ (it is not even an element of H). 
Thus x e H0 + ±(H0) does not hold. 

3. COMPLETE ORTHONORMAL SYSTEMS AND /-SEPARABLE 
PSEUDO-UNITARY SPACES 

3.1 We shall say that a system { x j (a e A) of elements of a pseudo-unitary space H 

is <T-complete (or T0-complete) if (cr) JS?{xj = H (or (T0) JS?{xj = if, respectively). 
The only element in H which is orthogonal to a er-complete or to a T0-complete 

system of elements in H is the zero element. This is an immediate consequence of 
Theorem 6b. In addition we have 

Theorem 15. The system of elements { x j , (a e A) in H is o~complete if an only 
if xeH, x J. xa for all aeA imply x = 0. 

Proof. This follows from Theorem 6 since 1({0}) = if. 
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A system {xa}9 (a e .A) of elements of a pseudo-unitary space H is called ortho-
normal if a, p e A ==> <xa, x̂ > = 8afi or — 5afi9 where 8aP is the Kronecker delta (with 
an obvious generalisation). 

Let K = {xa} be an orthonormal system of elements of the space H. The following 
notations will be used: the symbols K+ and K~ will denote the set of those elements 
x € K for which <xa, xa> = +1 or <xa, xa> = — 1 respectively; thus K = K+ u K". 
Furthermore, let Jf+ == &{K+} and Jf" = S£{K }. Clearly the product (x, y) -> 
-• <x, y> is positive or negative definite on X+ or CtiC~ respectively. The spaces Ctif+ 

and rfT" can therefore be treated in a natural manner as usual unitary spaces, the 
induced topology in them being in general different from that induced by the topo
logy T0 in H. 

3.2 It is known that a topological space T is called separable if there exists in T 
a countable dense subset. 

We shall call a pseudo-unitary space H separable if it is separable in its continuous 
topology TQ. 

Theorem 16. Let H be a separable pseudo-unitary space. Then there exists in H 
a countable T0-complete (and therefore also a-complete) orthonormal system. 

Before proving this theorem we shall first establish the following 

Lemma 4. Let H be a pseudo-unitary space and let xl9 ..., xn be a system of n 
orthonormal elements in H. Suppose that z e H is an element such that 
J£{xl9 x2,..., xn9 z} is isotropic. Then there exists an element ueH such that 
&{xl9..., xn9 z9 u} is non-isotropic. 

Proof. First, z is independent of the elements xl9..., xn9 and thus dim H > n + 1 
Now we shall prove the following statement: If yl9..., yk are linearly independent 
the subspace JS?{yi, ...*y*} is isotropic if and only if det [<yi9 yy>] = 0 (i9j = 
= 1,..., fe). Indeed, the existence of an element y satisfying <y, yf> = 0, y = 

* * 
** TJ a-^-' .£ a? + 0» is equivalent to the existence of a non-trivial solution of the 
system 

<*l<yl> yl> + «2<yl> y2> + — + «*<yl> y*> = 0 

«l<y*» yl> + «2<y*> y2> + *•• + <**<y*> y*> = 0 

and this proves the statement. In our case the following determinant is zero: 

±1 , 0, ..., 0, 0, <z,x1>| 

o, o, ..., o, ±1, <z, x„y 
• <Z.X!>, <Z, X2>, ..., <Z,X„>, <Z,zy 
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Next we shall prove the following statement: In H exists an element u 1 xt (i = 
= 1,..., n) such that <w, z> 4= 0. Suppose the contrary, i.e. that u e ±(j£?{xl9..., xrt}) 
implies <w, z> = 0. Then z is orthogonal to the subspace l(jSf{x1,..., xj) , and 
according to Theorem 6d, ze £?{xl9 ...9xn} in spite of the fact that z was chosen 
linearly independent of xl9...9xn. Hence there exists an element ueH with the 
above property. It remains to prove that 3?{xl9..., xn9 z, u} is non-isotropic. But 
we have 

±i, 0, ..., 0, 0, <z, Xj) , 0 

0, 0, ..., 0, ± 1 , <z,xл>, . 0 
<Z, X t > , <Z, X 2 > , . . . , <Z,X„>, <Z, Z>, <Ц, z> 

0, 0, ..., 0, <u,z}, <u,u} 

= -<«,z> 

±1, 0, 

o, o , . 
<z, *!>, <z, x2>, . 

., 0, 

.., o, 

o, 0 

±1, o 
<z, x„>, <u, z> 

+ <u,u>.0 = < ы , z > 2 . ( ± l ) Ф 0 , 

and this proves the lemma. 

Proof of Theorem 16. Let D = {zl9 z2,...} be a T0-dense set in H. First we 
shall prove that the case (jzi9 zf> = 0 for all i = 1, 2,... cannot occur. Indeed, if 
(zi9 Zi) = 0 for all i, then from the continuity of the topology T0 it follows that 
<x, x> = 0 for all x e H9 and this contradicts Lemma 1. Assume say <z l5 zt} # 0, 
and put 

1 t 
x t = —• . zi9 nt = 1 . 

V(l<-i.-i>l) 
Now assume that to the elements zl9..., zk we have already constructed orthonormal 
elements xl9..., x„k in such a way that zl9..., zfc e JSf{xl9..., x„k}. It is required to 
construct elements xn k + 1,..., xBk+1 such that zl9..., zk+1 e 3?{xl9..., xWk+1} and 
that xl9..., xWk+1 are an orthonormal system. As concerns the element zk+l9 one has 
the following possibilities: 

a) zk+1 e S£{xl9..., xWk}. In this case choose nk+1 == nk9 i.e. do not add anything to 
the set x1?..., x„k. 

b) S£{xl9..., xBk, zk+1} is a non-isotropic (nk + l)-dimensional space. Then we 
conclude from Theorem 5 that there exists an element x„k+1 e S£{xl9..., xnk, zk+1} 
with the property that the elements xl9..., xBk, xrtk+1 form an orthonormal system. 
Thus in this case we have nk+i = nk 4- 1. 

c) <e{xl9...9 x„k, zk+i} is an isotropic (nk -h l)-dimensional space. Here on applying 
Lemma 4 we find an element ueH such that &{xl9».., x„k, zk+l9u} is again 
non-isotropic. Now Theorem 5 ensures the existence of elements xnk+l and 
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*„ fc+2 m ***+1 such that the system xu...9xnk9xnk+t9xnk+l is an orthonormal 
basis in the space &{xu ..., x„k9 zk+u u). Thus now we have nk+1 = nk + 2. 

In this manner we can construct an orthonormal sequence of elements xu..., 
..., xRk9 ...,**- {xt} satisfying De &{xt}; as 3 = H the theorem is proved. 

3.3 We shall say that a pseudo-unitary space H is l-separable if each linear 
subspace of H is separable in the continuous topology T0 of H. It is well-known that 
if the topology T0 is metrisable, then H is l-separable if and only if it is separable. 
Now we can establish the following 

Theorem 17. Let H be an Inseparable pseudo-unitary space. Then each ortho-
normal system K = {xa} (a e A)9 K c H9 is at most countable. 

Proof. As mentioned above, the linear subspace Jf+ = j£f{K+} is a unitary 
space with the scalar product (x9 y) -> <x, y}. From the f-separability of H9 the 
set K+ is at most countable. Similarly one shows that K" is also at most countable. 

Theorem 18. Let H be a pseudo-unitary space and let K = {xa} (a eA) be a To-
complete orthonormal system in H. Suppose that K+ consists of exactly n elements 
xu ..., xn. Then there does not exist in H an orthonormal system ofn+l elements 
zu ..., zn+t satisfying (zi9 z{> > 0/or i = 1,2,..., n + 1. 

Proof. Clearly 3C~ c ±(tf+). In the linear space l ( j f + ) we are given the 
topology induced by the topology T0; denote it by T0. We shall prove that in this 
topology Jf *~ is dense in l ( j f + ) . Thus suppose y e ±(tf+)9 i.e. y 1 X+. The set 
&{K} is T0-dense in H and hence there exists a generalized sequence ul ~f y(i€l)9 

ul € &{K}. But it can be easily seen that an arbitrary element uL e JS?{K} can be 
written in a unique manner as u* = xl + yl

9 where xl e Jf+
9 yl e X~. Put xl = 

= a\xl + a'2x
2 + ... + al

nx
n. Thus we have a\xl + ...anx

n + yl -? y. On "multi
plying*' this relation by x* (k = 1,..., n), we obtain ak -j> 0 (k = 1,..., n) and hence 
xl 7» 0. Finally, there follows hence the required relation (T0) y

l ~j* y9 y
l eJf~~(ie J). 

Now, from the continuity of the topology, also <>>*, y1} "f <y, y>. Thus for all 
y 6 l ( j f + ) we have <y, >>> S 0. 

Let now z* (i = 1,..., a + 1) be orthonormal elements in H and let us try to 
find an element z0 = <ttzt + ... + ocn+tzn+t which is orthogonal to jf+. But the 
system of n equations 

. «i<*i**i> + ... + fl-.+i<z.+i»Xi> - ° 

«!<-!. *•> + ••• + «л+i<г1,+i,xя> - 0 

certainly has a non-trivial solution (au ..., aB + 1), and this means that there exists an 
^mmm z0 e &{xu ,/.» - r ^ J n i .( jr + ). But this is not possible as the pseudo-scalar 
§m4m is positive d#§nit# Oil &{zu..., zn+t}; this contradiction completes the 
p*®o£ 
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The following Theorem 19 is actually a corollary of Theorems 16, 17 and 18. It 
may be interpreted as a generalisation of the well-known rule of inertia for quadratic 
forms in elementary algebra to the case of /-separable pseudo-unitary spaces. 

Theorem 19. Let H be an l-separable pseudo-unitary space and let K be an 
arbitrary T0-complete orthonormal system of elements in H. Then the numbers 
p = card(K+) <; +oo and q = card(K"~) <J +oo do not depend on the choice of 
the system K. 

The pair of these numbers (p, q) will be called the index of the pseudo-unitary 
space H. According to Theorem 1 one may also speak about the index of a non-
isotropic linear subspace of a pseudo-unitary space. If the index of the space H is of 
the form (p9 0), then if is a unitary space, its scalar product being given by <x, y}. 
The topology connected in the natural way with this unitary space is in general 
weaker than the topology T0 given a posteriori in H. On the other hand, it is not 
difficult to see that one can construct from each (infinite dimensional) Hilbert space 
a pseudo-unitary (l-separable) space H with arbitrary index (p, q) (p + q = + oo). 

Indeed, let H' be some Hilbert space. The scalar product of its elements x, y will be 
denoted by x . y. Let K be a complete orthonormal system of elements in this space. 
Let K consist of elements xl9..., xi9... Let there be given an arbitrary but fixed 
sequence e, (i = 1,2,...) of numbers +1 or — 1. Let K+ be the set of those elements 
xt € K for which et = +1 , and K~ the set of those xt e K for which et = — 1. We 
define the pseudo-scalar product in H' as <w, v} = J/ji* V for u = JVx^, v = ]£i>*Xj. 
It is easily seen that H\ with the pseudo-scalar product thus defined, is a pseudo-
unitary space and its continuous topology T0 is given by the a priori unitary space 
structure in H'. In this pseudo-unitary space, K is a T0-complete orthonormal system 
and the index of H' is the pair (p9 q) where p == card (K+) and q = card (K"). This 
space is clearly /-separable. 

Theorem 20. Let H be an l-separable pseudo-unitary space with index (+oo, q) 
where q is a (finite) non-negative integer. Let K c H be an arbitrary T0-complete 
orthonormal system. Then the following holds: 

a) The space H under the topology T0 is a topological direct sum of its subspaces 
(T0) «3f

 + and Jf" provided with the topologies induced by T0, i.e. 

JrJ = ( T 0 ) ^ r T 4 . J f - . 

b) One can define a scalar product in H in such a manner that H becomes a unitary 
space with the natural topology x in general weaker than the a priori continuous 
topology T0. The system K is simultaneously a x*complete orthonormal system 
in this unitary space (in other words, (x) J&{K} = H). 

Proof. It is easily established that &{K) - Jf+ + Jf". There exists, to each 
element x 6 H9 a generalized sequence {z*} (* € I) such that (T0) z< -f x and z* € 
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6 Jf+ + j f ~, i.e., one may write in a unique way zl = ul + vl
9 u

l e Jf+, v4 e Jf ~. 

Put t?* = J) a\*i, where K" = {Xi,..., x j . If we now "multiply" the relation zl = 

=* u1 + t?* by xt (i = 1,..., q), we obtain <zA, xf> = a\. From the convergence of 
the left-hand side in this relation we conclude a\ ~f av Hence there exists an element 

v = £a .x f e jf" such that (T0)t?* ~f t;. But then there also exists an element U G H 

such that u ' f «, and it is clear that u 6 (T0) Jf + . Therefore an arbitrary element 
x € H can be written in a unique way in the form x = u + v; u e (T0) jf

+, v e Jf ~. 
As we have seen in the proof of Theorem 18, there is <x, x> ^ 0 for all x e L(jf ~). 
Now Theorem 7 states that L($T~~) is non-isotropic, and from Theorem 3 we con
clude that <x, x> > 0 holds for all 0 4= x e L(jf~) and thus also for all 0 =f= x e 
e(To)jf+. Hence (T0)jf+ is a unitary space with the scalar product given by 
(x, y) -> <x, }>>. It is also not difficult to see that H is even a topological sum of the 
spaces (T0)*jjf+ and Jf". If 

x = u + v; u e (T0) Jf*, t> € JT", x' = u' + t/; u' e (T0) W+, v' e X" , 

we define 

(8) x . x' = <u, u'> - <i>, i>'> . 

Hence the space H may be considered as a unitary space with the scalar product 
given by (8). The remaining parts of the theorem are now evident. 

Remark. Let a pseudo-unitary space H have the following properties: 1) it is the 
algebraic direct sum of two subspaces, H = Hx © H2; 2) the dimension of Ht is 
finite; 3) the pseudo-scalar product is positive-definite on Ht and negative-definite 
on H2. Then on H there is an a priori given canonical structure of a linear topological 
space, in which the pseudo-scalar product is continuous. According to Theorem 20, 
each /-separable pseudo-unitary space with index (p9 + 00) (p finite) has the three 
properties mentioned above, and the corresponding canonical structure is given by 
the topology T. An another example of such a pseudo-unitary space is the space HK 

investigated by YokhvidofF and Krein. Here there are also required completeness 
of IIK in the canonical topology and linearity over the field of complex numbers. 
For the precise definitions see [2]. 
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Výtah 

PSEUDOUNITÁRNÍ PROSTORY 

JIŘÍ JELÍNEK, Praha, JURAJ VIRSIK, Bratislava 

Lineární prostor Я (nad tělesem reálných čísel) na němž je definována nedegene-
rovaná bilineární forma nazveme pseudounitárním prostorem. Hodnotu této formy 
pro dva prvky z Я pak nazveme pseudoskalárním součinem těchto prvků. 

V práci jsou vyšetřovány některé „geometrické" vlastnosti pseudounitárních 
prostorů a je diskutována možnost zavedení topologie na Я, která je v souladu 
s lineární strukturou i pseudoskalárním součinem. Je-li tato topologie /-separabilní — 
tj. existuje-li ke každé lineární podmnožině v Я její spočetná hustá část — pak lze 
definovat úplné ortonormované systémy prvků z Я o nichž platí zákon jenž je obdo
bou zákona setrvačnosti kvadratických forem u lineárních prostorů s konečnou 
dimensí. Je zaveden pojem indexu ř-separabilního pseudounitárního prostoru a je 
naznačena souvislost mezi zde definovanými pseudounitárními prostory a prostory 
studovanými v (2). 

Резюме 

ПСЕВДОУНИТАРНЫЕ ПРОСТРАНСТВА 

ИРЖИ ЕЛИНЕК (Jiří Jelínek), Praha, ЮРАЙ ВИРСИК (Juraj Virsik), Bratislava 

Линейное пространство Я (над полем вещественных чисел) с определенной на 
нем невырожденной билинейной формой назовем псевдоунитарным простран
ством. Значение этой формы для двух элементов из Я назовем псевдоскалярным 
произведением этих элементов. 

В работе исследуются некоторые „геометрические" свойства псевдоунитар* 
ных пространств и обсуждается возможность введения в Я топологии, согла
сованной с линейной структурой и псевдоскалярным произведением. Если эта 
топология /-сепарабельна, т.е. если существует в каждом линейном подмно
жестве Я 0 из Я подмножество, счетное и плотное в Я 0 , то можно определить 
полные ортонормированные системы элементов из Я, для которых выполня -̂
ется закон, аналогичный закону инерции квадратических форм для линейных 
пространств с конечной размерностью. Вводится понятие индекса /-сепара-
бельного псевдоунитарного пространства, и назначена связь определенных 
здесь псевдоунитарных пространств с пространствами, исследованными в [2]. 

33 


		webmaster@dml.cz
	2012-05-11T22:06:55+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




