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Casopis pro péstovani matematiky, ro¥. 94 (1969), Praha

ON APPROXIMATE SOLUTIONS OF INITIAL VALUE PROBLEMS
FOR INTEGRO-DIFFERENTIAL EQUATION WITH QUASILINEAR
DIFFERENTIAL OPERATOR AND GENERALIZED
VOLTERRA OPERATOR})

VLADIMIR FEDOROVITCH KRAPIVIN, Moscow

(Received Juny 15, 1967)

For integro-differential equations are suggested approximate methods of numerical
solutions, based on its substitution on each subinterval by easily integrable ordinary
differential equations with constant coefficients. Recurrent and general error estima-
tion methods are presented, and particular examples considered.

1. Introduction. A number of problems in electronics leads to the necessity of
integrating generally non-linear integro-differential equations; and in a majority of
cases, these equations are not integrable by elementary and special functions. To solve
them, as a rule, it is necessary to make use of the latest achievements of calculating
methods and technics. In many problems the use of well known numerical methods
of solving initial value problems even by modern high-speed electronic computers
does not lead to desirable results. The existing approximate methods of. solving
integro-differential equations, as a rule, are based on replacing the derivatives by the
finite differences and represent a complicated multistep process, which in practical
problems cannot be solved on electron computers in a reasonable time. Therefore in
solving practical problems we have to search other means of approximate solutions
for integro-differential equations, without using the finite-difference methods.

In the method considered in this paper, the integro-differential equation is sub-
stituted in each subinterval of the independent variable by an easily integrable ordi-
nary differential equation with constant coefficients; this method is not a new theore-
tical idea for it was known to Euler. However, in this paper the error estimations are
obtained for the first time, and methods applicable to various problems are developed
in detail. In particular, problems in the theory of semi-corductors were solved by this

1) This article was reported on the second Czechoslovak conference on differential equations
and their applications. - :
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method [1]. It was necessary to solve the boundary value problem for a system of
three equations with complicated non-linear boundary conditions on a half line.
The boundary value problem was changed to initial value problem with arbitrary
initial conditions, and was solved by the method given below.

2. Method of solution and estimation of error. Let us consider the equation -

o - . Lly] = Aw[y] = f(x y),

Ly] being'the differential operator
) L[] = X P 3, ¥y o0y Y0) yO70 - (mi < )
=0

and W[y] the generalized Volterra operator

(3) | wiy] = er:,OK (6 &) y (&) de, (r<n)

A — a real number, P(x, y, ', ..., y™") and f(x, y) — continuous functions with
respect to their arguments in the finite interval [a, b], P # 0 and kernels K i, &),
j =0,1,..., r are continuous functions in the region G{a < ¢ < x < b}.

The initial conditions are

(€ ya) =y, s=0,1,..,n—1.

Assuming that equation (1) with the initial conditions (4) has a unique continuous
solution y(x), let us construct an approximate solution j(x) in [a, b]. Let us divide
the interval [a, b] by a sequence of points X, = a, Xy, ..., Xp, = b, by = X4y — X
On each subinterval [x;, x;4+;], k = 0,1,...,m — 1 let us replace equation (1) by
the following linear differential equation of the n-th order with constant coefficients

(5) : I:k[)’] =41 Wk[)’] +f (xk’ i)

with the initial conditions:

(6) y(3)(xk) = fis) , §=0,1,..., n— 1,
where
) LY] = 3Pk S o 3 570
r
(8) Wt[}’] =IZO(KJ-R.0y%’)hO + K].k,lﬁ(lj)hl + ...+ Kj'k’kﬁij)hk) )
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The general solution of equation (5) is known:
9) 7= j(x, e, P, ..., "),

where the constants are determined from the initial conditions at the beginning of

each interval [xy, x,.,]. The calculations are carried out successively beginning
with the first interval (k = 0).

Let us estimate the error in solution of equation (1). Let y(x) and ji(x) by the exact
and the approximate solutions respectively. Let us denote

(10) Pik = Pi(xb .i;k’ yl’n sty yl(tm‘)) 4
= f(xk, yk) s & = .V(xk) - y(xk) .

Let us integrate n times equations (1) and (5) from x, to x, and consider the final
results for x = x,,,. For the sake of convenience and brevity let us denote

ff '[¢(x)dx dx-—J.x o(x) dx ;

we have |
, 2”—1 ( h;"z n Xk +1 i
) Yuwr = Vet ikt e Xy =0 — ij Py® Pdx +
X+ 1 K+ 1
+ f(x, y)dx + ,1J' w[y] dx,
. n—1
(12) Pr+1 "yk+y"hk+hk2~(3) _Z J‘ piy(” Ddx +

+ J‘xmf,‘ dx + AJ W[y] dx .

X
n

From (11) and (12) We get:

, n—-1 5 hs—z Xic+ 1
13) ey = &+ G+ B Y &) —— + (f = fi)dx -
k+ 2 s!
s= ! %

[ - B [ WD - DD e

=1 ) xc *k

n n

We know that

(14) xud»lfk fkhk , kHWk[y] dx = WL[y_'J_h_" .
%% X n:
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Let us denote

E, = max ||, hp, = max k., p;=max|P|, M, ;= max|y"" Y|,
J [a,b] [a,b]
Li max |Pul, Np-y=max|§®"?|, F=max|f|,
a, [a,b] [a,5]
(15) G, = max []‘,‘l , T=max|W[y],
[a,b] G

s = [b - a| 3 max |K (x, &) M, = max [W[y]],
j=0 G G

1 n
= [iZI(P:M,.-; + LN,_) + F + Go + || (T + )],
n—1 1s-1
g = 1 + Z “max_ s
s=2 s!
and M,_; = N,_;. Then from (13) we get the following recurrent error estimation
(16) Eesr < (14 ghyy) Ey + Iy

Hence we get
k s K
(17 E, (1 + ghpa) 80 + —% [(1 + ghpe)* — 1],
)
where g, is the maximum error in the initial data. Obviously, if ¢, = 0, then from

(17) it follows that if hy,, — O then E, — 0, i.e. j(x;) > y(x).
In case that the equation (1) has the form:

Lyl =f(x, y) + J F(x,y,y,...,y™dx, xela,b],

then the estimation (17) will read

(0))k-. (0))k —
(18) Ey = (1 + hp@)e, +2 O [(1+hp ¥ - 1],
where
n—1 hs—-l hn 1

o=y

s=1 s}

[+ (7 + (i + D 2an) + (b= a) lmy+ 1),

pP = (a+5/31+2B+Zpo)+(——g—)—g,
(n + 1)' n!

a —-maxaf 5=max—aj—”,v)’z=max a‘P,
{a,b) |0x {a,b) |0y s,[a,b] |0y
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B: = max {|y®|, |5}, ¢ = max
[a,b] s,[a,b]

oF
) y(S) ’

DPoi = ﬂn-i(li + )’i_zoﬁs+ 1) + 20Bp41~i »

ey oF

g =#A4+CYBy), A=max|—

s=0 [a,b] |0X

I, = max dP; , B=max{|Fl, |F|}
[a,61 | Ox La,b]

3. Solution of equation y™ = f(x, y, ¥, ..., y"~1). We shall apply the approximate
method of solution presented in this paper to integro-differential equations to solve
the initial value problem: "

(19) ’ Y = £y, ...y Y), (x,y)eG,

20)  ¥(x0) =0, ¥(xo) =¥, j=1...,n~1, (x0,)0)€G,

where the function f satisfies the Lipschitz condition
. n—1
@) fGey + 00, YT+ 8uy) = f(%, 3, ¥ s YOV S K Y16
i=0

Let us divide the interval [a, b] by a sequence of points xo = @, Xy, ..., X, = b into
elementary intervals. Let E = &{xo, ..., X,}. On each interval [Xx,, x, ], let us solve
the initial value problem:

.

(19’) y(n) =f(x’ yv’ ?;, e 95-"-1)), (x, ﬁ.)EG y V= 0,1, ceey S — 1
(20) = ) =29,, yYWx)=9, j=1,..,n—-1, (x,9)€eG.

Then, if the function f satisfies condition (21) and max [x,+, — x;] = max (h,) =
= h, the solution of problems (19") (20") !

j} = {)’o, j}h LRt .vs} ’ ﬁ(j) = {yg)j), .ﬁj” L] .fzj)} ’

j=1,..,n — 1 when h — 0 tends to the solution of equations (19), (20) and the
estimation for the rate of convergence is as follows:

(22)

mzllx [y&=P — ﬁﬁ""”’l < eo(l + hoo) + -zhz—l [+ hagy — 1], r=1,2,..,5,
' 0
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where

hi-1 n—1n—j-2 15
ao—z——+K(n+;Z 3 h)

i= j=0 s=o0 !
n—1 h,._j_l . hs
o =K TN, :
1 j;o[ (n —] _ 1)' Z +jit+1 S!]

M = max |[f(x, y, ', ..., y* V|, Ngpjeq = max |pETID]
{a,b] r

If the initial conditions are exactly given, the error estimation has the form:

(23) max [y — 9"P| < DR, r=1,...,s,

15isn-1

where

N = max|N,|, D =K(M + nD) [L + he’(1 + $Knk) + Kn] — 1
teras 4[1 + Kh(3h + €%

4. Solution of a system of ordinary differential equations. For the sake of simplicity
let us confine ourselves to the important case of equations, having the canonical
form

(24) ygm‘)(t) = fi(t’ Y1 ylla ooy y(l’m 1), o) y,(,""'_l)), i= 1, R (B

The system (24) can be replaced by an equivalent system of m = m; + ... + m,
equations of the first order, relative to the derivates for all m unknown functions.
Then one of the standard computer programs can be used to solve the last system.
Due to the limited memory of computers, difficulties are encountered in solving
systems of higher orders and it is not possible to solve then at all when m > 100.
And at the same time, the practical necessities on electronic development con-
stantly demand searching other algorithms to carry out numerical calculations. In
the present case, the above mentioned method, without much loss in accuracy,
avoids many of the difficulties, is economical in time and convenient for programming.

Let the functions f;, i = 1, ..., n be continuous and differentiable with respect to
all arguments. Let us suppose that the solution of system (24) with the initial condi-
tions

@) wt) = 0o, ¥ilte) = (i)os - ¥ ONt0) = (AT

exists and is uniqueint, € t € T.

Divide the interval [t,, T] into elementary intervals Ak = [t,, t;+1] by.a sequence
of points t;, < t; < ... <t, = T. On each such interval, let us search the solution
of system (24) in the form of a series:

@) 10 = 540 +*5, L= 500 + L2,
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@) R =)+, e e

(e = i)™ ™7 ;
B () (=1, m 1),
(m,- - J).
The error of such a solution can be easily estimated, considering the exact expansion
of the functions y(f) and y{(f) in a Taylor series:

h""+1

m; + 1)!

(28) lei(tiss)| < Jede)] + Z h | e w)] + Mi

(’)('k)l ’

( )'
“t iy (s+J)
Il e (t_y) +

) )] 5 ) +"”;i

(T £ ).
!

Formulas (28) and (29) give a recurrent estimation for error. From them it is possible
to obtain an errot estimation applicable to the entire interval [t,, T]:

where
Y
6 V1

of

(mn—1)

M; = max
[0, T]

at ay

(30) Ey < 6ol + hpo)t + PPA[(1 + hpo)t — 1],
Po

where the following notations are introduced

h=maxh,, E = max laS”(tk)| = max M,;,
k i

v-1
vy =minm,, pu = maxm,, P1=Mh—,
s s (V+1)!

hv—1 p-1 hs—l
Do = mM + Z
v! s=1 §!

The above method permits to tabulate the solutions with an accuracy sufficient
for engineering calculations.
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5. Solutions of equations with known moments on the right hand side. Let us consider
a particular case of equation (1):

(1) Lly] = y™ +._i py" P =f(x), x20,

-

where p; — constant coefficients, f (x) — a single-valued and differentiable function,
f(x) » 0as x > oo and its moments are known: : :

(32) va(x)=fmx”f(x)dx<oo, v=0,1,...,m.
0

It is necessary to solve th equation (31) with the following initial conditions:
(33) Y xo) =¥ (s=0,1,...,n—1).

We shall approximate f (x) in the following manner:
(34) fx) m e ™Y ax! = e P,(x)
i=0

where m > 0 is an integer, k > 0 and a; are constants to be determined. Then, from
(32) and (34) we have
(v + i)

(35 509 = [“<le Eaax = Fa (o

k is fixed from the conditions of best approx1mat10n by (34). Then the equatlon
(31) is replaced by the approximate equation: o

(36) L[i] =e Z axt,
i=0
which can be easily solved. For the error ¢(x) = y(x) — j(x), we obtain an equaﬁon
from (31) and (36):
(37 Lle(x)] = f(x) — ™™ Pm(x) R,(x).
Solving equation (37), we have '

(38) , [e(x)] §-'7_' i (f.‘_k"‘)_:k M,

where :
K(x, s) }: pi CaD , o= max [Ry(x)],

(]

M = max [K(x,s)|.

‘asSssSxsb
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6. Refinements of approximate solutions of Volterra ilitegr'al equatidns. Let us con-
sider Volterra integral equation of the first and of the second kind:

(39) A f *G(x, y) o(y)dy = g(x),

(40 el [ K(s ) el ay = 19,

where x € [a, b], the kernel K(x, y) and its derivatives K(x, y) are continuous in
the region R{a < y < x < b}, f(x) is a continuously differentiable function in
(a, b), the kernel G(x, y) and g(x) are twice continuously differentiable functions
of x, G(x, x) # 0. Then, as it is known from [4], equations (39) and (40) have unique
solutions ¢@,(x) and ¢@,(x) respectively which are continuous and differentiable
in [a, b] for any value of A. The case when G(x, x) = 0 for some point in the interval
[a, b] or for the entire interval is considered in the paper [5]. In our case, equation
(39) is equivalent to the equation of second kind

o) + [ GED oty = L

Therefore, the argument used to find an approximate solution of (40) is valid for
equation (39) as well.

In [6, 7] equation (40) is solved by replacing the integral of the equation by a finite
sum of some quadratic formula. Applying this approach let us divide the interval
[a, b] by a sequence of points x, = a; < X, < X;...X, = b into elementary
intervals 4j = [x;, x4, and instead of (40) let us write the equation:

@) o) =13 [Kep ) o)y =1x)s (=01 m).

Xxi

Further, because of the assumptions made on (p(x) and K(x, y) we can write

() o) = olx) + T () + CI e

2!
(x.- SgGsSxs xt+1),

and assuming the existence and differentiability of K;(x, y) we have
43) K(xj y) = K(xj, %)) + (v = x) Ky x)) +

R T NETTIIITS
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substituting (42) and (43) in (41) we get:

(44) o(x)) - ):g: {K(x,, x;) o(x;) + }‘;" [K(xp x) @'(xi) + K(x5 x;) 0(x)] +

- 2.

+ %“ﬁ(xp x)) ‘P'(xi)} hi + Ry = f(x;),

where
J-1 h3 ” 1 ’ h ’
Ry = -4 1=1 o"(&) | - K x) + — Ky, x:)] +
i=o (2 3 ’ 4

h‘3 ” 1 hi ’ his ” Ku ( )
+ ?Kyy(xj’ n:) §¢(xi) + Zq’ (x) |+ 20 @"(E) K (x5 m5)p -

Neglecting the small quantity R; in (44), we get a recurrent formula for determining

@(x;) from the values of the function ¢(x) at x = X, Xy, ..., X;_1. By differentiating
(40) we get a formula to calculate the values of the derivative ¢’(x).

X

(45) o'(x) = (%) + AK(x, x) 9(x) + f Ki(x, ¥) () dy .

From (45), we have at x = x;
i—1 Xs+1
() ) = 1) + G o) + 23, [ KL 2) 00) 0,

where
9o(xo) = f(a), @'(xo) = f'(a) + AK(a, a) ¢(a) .

Neglecting the quantity
s h? 2 ko,
ri=AY Ko (x, Q) = | o(x) + Z@'(x)h + = @ (fs)] +
s=0 2 3 4
h2
+K:,c(xi1xs)_g‘ (P"(és)} ’ (xs é és, Qs é y é xs+ 1) ’

equation (46) can be written as:

(47) @'(xi) =f '(xi) + AK(x;, x;) ‘7’(xi) +
+ /1‘2: hK(xs x,) [(ﬁ(x,) + % (ii’(x,)] .
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From (44) and (47) we get finally the equation for determining @(x,):

j—1
(48) @(x;) = f(x;) = A'_;)[(ﬁ(xi) K(xj, x;) 1y + hyyyé] by = 0,
where, for sake of brevity, the following notation are introduced:

Ij' =1 + ‘h—! lK(xi, x;) + IM [1 + élhiK(x‘, x,-)] ’
2 K(xj, x;)

Vi = ‘fK(xj, xi) [1 + %h; I%j,;‘i))] s
J> i

i ’ ~ hs ~
=110 + AT o x) | ) + 2 (5|
Thus, starting the calculation by formula (48) from j = 1, we get the values of solu-

tion ¢, @,, ..., §,, with the error s(x,-). Let us estimate the value of modulus of the
error &(x) from above. Let us introduce the following notation:

M = max |o(x)], N = max|¢'(x)], L= max]|e"(x),
[a,b] [a,b] [a,b]
Q = max {[K(x, y)l. [Ki=. D)}, G = max [K(x, )|,

B = max {|[K},(x, y)]. [Kop(x, y)[} . b = max|h,
m 3h 3 3 pp2
l =5 B M+ZN + L(G + 30k + {5Bh?) |,

2
no= HBm (2R RN g
2 3 4 6

Then from (44) and (48) we have

@ s e+, (I + Llel) +
similarly from (46) and (47) we have:

(50) i = 1 6l + 14 o (1ed + 2 ) + i

Formulas (49) and (50) give a recurrent error estimation.
From (50) we get roughly

i-1 ,
lei] < |4| (Gle| + hQ :,:0184) + (n + [A| QNm) B?.
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~ Hence and from (49) we get

60 led 5 14 wa + som3; [ (1 + lﬂ-z‘i”) of + 07 iglssl] oo,

2 s

where -

t=1+ g m(G + %Qh) (n + |4] QNm).

Let us denote

T= |1 (G + 3h0), b = 1+Ii|2h—G,

r=|4(t + QMTm?).
Then from (51) we get:

. j— 1
(52) le)| < hTBY |e + rk.
. i=g
From (52) we have

h3 rh? 1
53 — P SE =g+ e+, (hs—),
(3 les= @l = £y = ooz 1—Thh~ ° 1 - Th;h ( Tb)

where Z, is the real root of the equation
Z/+Y — TbhZ’"'(Z — 1) =0

between Z = 1 and Z = h Tbh.

7. Conclusion. The methods presented in this paper of solving initial value
problems for various types of d fferential and integrodifferential equations have been
often used to solve concrete problems by electronic computers. These methods, being
simple in programming, give in reasonable time sufficiently accurate results for such
problems which cannot be solved by the well known standard methods.

The idea presented above permits, in principle, very easily to write the recurrent
relations for any equation or a system of equations and to estimate the error. More
accurate approximations may be used in concrete cases. For example the equation
examined in the third section could be substituted on each subinterval by the equation
FO = f(x, §, F's o0 O, FEFY, L, FPTY), if it can be solved analytically.
Evidently, the error estimations obtained here can be improved.
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