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Časopis pro pěstování matematiky, rot. 97 (1972). Praha 

ON AN APPLICATION OF THE STONE THEOREM 
IN THE THEORY OF DIFFERENTIAL EQUATIONS 

VALTER SEDA, Bratislava 

(Received September 4, 1970) 

In the theory of differential equations one often solves a given problem by ap
proximating it by a similar one with additional properties which allow to solve it 
and then by making a limit passage. This method sometimes requires the approxima
tion of a continuous function by means of smoother functions, usually by polynomials. 
However, when some additional properties of the approximating functions are re
quired, the Weierstrass theorem is of no use. Still much can be done by using the more 
poverful Stone theorem. This theorem is especially useful when the uniform ap
proximation of a continuous function by means .of Holder continuous functions is 
required. This case is of importance in the theory of differential equations. Of course, 
the same method can be applied to other classes of continuous functions such as to 
the class of continuous functions of bounded variation etc. 

Let (R, Q) be a metric space, 0 =# M c R be a set and let d(M) be the diameter 
of M. A set A =# 0 of real continuous functions on M (in what follows only real 
continuous functions are considered) will be called a lattice of continuous functions 
on M if with each pair f,g e A also max (f, g) e A and min (f, g) e A. Ha(M) will 
mean the set of all Holder continuous functions on M of exponent a, 0 < a rg 1. 
Thus f e Ha(M) iff f is defined on M and there exists a constant L = L(f) > 0 such 
that for any two points x, y e M the inequality \f(y) - f(x)| ^ L[Q(X, y)]* is true. 
The following remarks will be of use. 

a) If d = d(M) < +oo, in virtue of the inequality \h(y) g(y) - h(x) g(x)\ g 
g \h(y) - h(x)\ . \g(y)\ + \g(y) - g(x)\ . \h(x)\9 x, y e M being arbitrary points, 
and by the boundedness of h, g e Ha(M) it follows that Ha(M) forms an algebra of 
continuous functions on M. 

b) Since for each feHa(M) also | f | e H a ( M ) , and on basis of the equalities 
max (a, b) = \(a + b + \a - fc|), min (a, b) = i(a + b - \a - b\) which are true 
for arbitrary real numbers a, 6, we get that Ha(M) is a lattice of continuous functions 
on M. 
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c) If d = d(M) < + oo, and p satisfies the inequalities 0 < a = /? = 1, then from 
the relation [o(x, y)]p

 = [O(x, y)]a and [Q(X, y)]p ^ ^ - o t [0 (x , j ) ] a , respectively, 
which is valid for Q(X, y) g 1 and 1 < Q(X, y) <; d (if d > 1), respectively, it follows 
that Hp(M) c Ha(M). 

d) If fe Ha(M) for 0 < a ̂  1, then there exists an extension f0 of the function / 
on R with the property f0 e Ha(R) ([1], p . 117-118). The proof of that statement is 
given in the euclidean space, but applies to an arbitrary metric space. 

The last remark deals with locally compact separable metric spaces. If (R, Q) is 
such a space, then there exists an increasing sequence {Mn} *= t of compact sets in R 

00 

such that R = U M„. This follows from the Theorem 3.18.3, [2], p. 62. 
«=1 

Before going to give the application of the Stone theorem, we shall state this 
theorem in an appropriate formulation. (For the proof, see [3], p. 150—152.) 

Stone's theorem. Let M be a compact set,fe C0(M) and let A be a lattice of con
tinuous functions on M with the following property: 

(a) For every pair X J , X - F y, of points of M, there exists a function geA such 
that g(x) = f(x), g(y) = f(y). 

Then there exists a sequence {fn} of functions fne A which uniformly converges 
tofonM. 

Recall that an algebra A of functions on M which separates points on M and 
vanishes at no point of M has the property (a) ([3], p. 149). 

Theorem 1. Let M be a compact set, a be a real number satisfying the inequalities 
0 < a ̂  1 and fe C0(M). Let further the functions Fl9 F2 eHa(M) and such that 
Fx(x) <I f(x) ^ F2(x) for each xeM. Then there exists a sequence fn e Ha(M), 
n = 1, 2, 3, ... which is uniformly convergent tofonM whereby 

(1) F^^f^^F.ix) 

for each xeM and all natural n. 

Proof. By the remarks a) and b), Ha(M) forms an algebra as well as a lattice of 
continuous functions on M. Since for x1eM the function Q(X, XX) e HX(M) c; Ha(M) 
(with regard to the remark c) is such that Q(X19 xt) = 0 < Q(X2, XX) for x2 eM, 
x2 4= xl9 and Ha(M) contains a constant function different from 0, the lattice Ha(M) 
has the property (a). Hence, by the Stone theorem, there exists a sequence gne 
e Ha(M)9 n = 1, 2, 3, ... which is uniformly convergent to f on M. 

Let us consider now the functions fn, n = 1, 2, 3 , . . . , defined on M in this way: 

(gn(x) if Ft(x) = gn(x) ^ F2(x) 
fn(x) = iF2(x) if F2(x) < gn(x) 

[Fi(x) if gn(x) < F,(x) 
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The sequence f„ already satisfies the inequalities (I) for each xeM and all natural n, 
and is uniformly convergent to f on M. Further by the remark b) as well as by the 
equality fn(x) = max {Fx(x), min \gn(x), F2(x)~\\, x e M, we have that allf, e Ha(M). 

Theorem 2. Let (R, Q) be a locally compact separable metric space and {Mm}m = l 
CO 

an arbitrary increasing sequence of compact sets in R such that R = \J Mm. Let 
m = l 

the number a satisfy the inequalities 0 < a = 1. Let the function f e C0(R). Then 
there exists a sequence {fn}n=i °f the functions fne Ha(R) which is uniformly con
vergent to f on each Mm, m = 1, 2, 3, ... 

If moreover there exist two functions Fl9 F2 such that Fl9 F2e Ha(R) (for each 
m = 1, 2, 3, ..., Fl9 F2 e Ha(Mm)) and Ft(x) = f(x) = F2(x) for every x e R, then 
the sequence {fn}n=i satisfies the inequalities (1) for each xeR and all natural n 
(the sequence {fn}n = i satisfies the inequalities (1) for each xe R and all natural n, 
but instead of fne Ha(R) it is only true that fn e Ha(Mm) for each m = 1, 2, 3, . . . ) . 

Proof. By Theorem I for each m = 1, 2, 3, ... there exists a function gm e Ha(Mm) 
such that \gm(x) - f(x)\ = 1/m, x e Mm. Let gm0 be its extension with gm0 e Ha(R) 
as it is mentioned in the remark d). Then, with respect to the inclusion Mm a Mm + l, 
m = 1, 2, 3, ..., the sequence {gn0} uniformly converges to / on each Mm, m = 
- 1 ,2 ,3 , . . . 

If Fl9 F2 e Ha(R) (if Fl9 F2 e Ha(Mm) for each m = 1, 2, 3, ...) and Ft(x) = f(x) = 

g F2(x), x e R, we define the functions fn, n = 1, 2, 3, ... on R by the relation fn(x) = 
= max {Fy(x), min \gn0(x), F2(xj]}. The sequence {f,}^°=1 satisfies the inequalities 
(1) for all x e R and all natural n, is uniformly convergent to f on each Mm and by the 
remark b) all fn e Ha(R) (all fn e Ha(Mm) for m = 1, 2, 3, . . .) . 

Remarks . 1. By approximating a continuous function by means of polynomials 
in the euclidean space R" we obtain Theorems 1 and 2 only in a special case when 
F! S f - e, F2 = / + e, e > 0. 

2. When the Stone theorem is considered in a compact topological space, then 
Theorem 2 is true for a ^-compact space R. 

3. Theorem 2 was applied to the proof of the existence of a generalized solution to 
the first boundary value problem for a nonlinear parabolic equation [4], Here 
another theorem is given by means of which a result in the theory of ordinary differen
tial equations will be improved. 

Theorem 3. Suppose a is a real number, f = f(x, y, z) is continuous on D = 
= <a, +oo) x l*2 and such that 

b) f is nondecreasing in y for fixed x, z,f is nondecreasing in z for fixed x, y, 

c) f(x, 0, 0) = 0 on <a, + oo). 
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Then there exists a sequence {/„} of functions fne C0(D) satisfying the condi
tions b) and c) as well as 

d) a Lipschitz condition with respect to z on each compact subset of D 
which uniformly converges to f on each compact subset of D. 

Proof. For each natural m, let Mm = <a, a + m> x (-m,m} x < - m , m>. 
Let us choose and fix an Mm. Let A be the set of all functions fe C0(D) having the 
properties b), c) and d). A 4= 0, since/^x, y, z) = y + z e A. When considering the 
restriction of the functions g e Aon Mm, we shall show that A is a lattice of continuous 
functions on Mm with the property (a). This will imply that there is a function fm e A 
such that |/(x, y, z) - /m(x, y, z)\ < \\m for (x, y, z) e Mm. Then {/m}^=1 will 
possess all required properties. 

If gx eA,g2e A, (x, yl9 z) e Mm, (x, y2, z) e Mm and g{x, yk, z) = gik, i, fc = 1, 2, 
then in the case gn = g 2 l , g l 2 = g22 

min (g12, g2i) = 9n = 02i ^ min (gli9 g2i) 

and 

max (gn, g2l) = g2l = g22 ^ max (gl2, g22) . 

The same result will be obtained in the other cases. It can be similarly proved that 
min (gt, g2) as well as max (gl9 g2) are nondecreasing in z, too. Hence min (gl9 g2\ 
max(0i, 92) possess the property b). The property c) is clearly shared by these two 
functions. Finally, by using the remark b) we have that A is a lattice of continuous 
functions on Mm. 

In proving that A satisfies the condition (a), the following lemma will be useful. 

Lemma 1. Given three points (yh zf), i = 0, 1, 2, on the plane and a function 
/ 0 = f0(y, z) which is the restrinction to these points of a function satisfying the 
condition b) from the last theorem, there exists an extension g0 of f0 on the whole 
plane which is continuous, fulfils the condition b) and satisfies a Lipschitz condition 
with respect to z on the entire plane. 

Proof. The straight lines y = yi9 z = zh i = 0, 1, 2, divide the plane into a system 
of rectangles, half-stripes and quadrants. f0 can be extended first to all vertices of 
those sets and then to the entire plane, by using the linear inter- and extrapolation 
in such a way that g0 possesses all the properties stated in the lemma. 

Now, consider two different points (xh yhz^eMm, i = 1,2. When xx 4= x2, 
by Lemma 1, there exist two functions gt = g{(x, y, z) defined on the plane x = x(, 
i = 1, 2, such that gt(xh 0, 0) = 0, g{xh yh zf) = f(xh yh zf), having the property b) 
and d). The functions gx can be extended into a function g e C0(D) possessing the 
required properties b), c) and d) and satisfying 

(2) g(xi9 yh *i) = f(xh yh zt), 1 = 1,2. 
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If Xj = x2, again by Lemma 1, there exists a function gx with the properties men
tioned in Lemma 1 such that gv(xu yh zt) = f(xl9 y{, zt), i = 1,2, and gx(xu 0, 0) = 
= 0. Then g(x, y, z) = g^x^ y, z) for x e <a, oo), y, z arbitrary shows all the desired 
properties. Thus g e A and satisfies the conditions (2). 

By means of Theorem 3 a theorem by L. K. Jackson [5], p. 342, will be improved. 
Preserving the notations from Theorem 3, the statement of the Jackson's theorem 
given here as Lemma 2 is as follows: 

Lemma 2. Let f = f(x, y, z) be continuous on D, satisfy the conditions b) and c). 
Assume either that f satisfies d) or is such that the solutions of initial-value problems 
for y" = f(x, y, y') are unique. 

Then for any real A the boundary-value problem 

(3) y" = f(x, y, y'), y(a) = A 

has a unique bounded solution on <a, oo). 

From the proof of that theorem it follows that this unique bounded solution y 
satisfies the inequalities: If A = 0 (A < 0), then 0 = y(x) = A, y'(x) = 0, for every 
x = a (then A = y(x) = 0, y'(x) = 0, for x = a). The bounds for y' from the other 
side are given by 

Lemma 3. Suppose that f satisfies all conditions from Lemma 2, for every x = a, 
y = 0, S(x, y) = {(s, t) : x = s = x + 1, 0 = t = y(l - s + x)} for every x = a, 
y < 0, S(x, y) = {(s, t) : x = s = x 4- 1, y(l - s + x) = t = 0}, M(x, y) = 

max f(s, t, 0), m(x, y) = min f(s, t, 0). Then /he unique bounded solution y 
(s,t)eS(x,y) (s,t)eS(x,y) 

of the problem (3) satisfies for x _ a the inequality 

(4) / = - > , - M ( x , y ) 

when A _ 0 and the inequality 

y' _ - y ~ w(*>y) 
* f A < 0 . 

Proof. Consider only the case -4 ;_ 0. The remaining case can be dealt with 
similarly. Let x, a ^ x < oo, be arbitrary but fixed. By the properties b) and c) off, 
M(x, y) >̂ 0. Two cases may happen: 1. y'(x) ^ — y(x). Then (4) is true at. x. 
2. y'(x) < -y(x). Then y(x) > 0 since otherwise y(x + S) < 0 for a 5 > 0. Let H 
be the hypotenuse of S(x, y). y must cross H at a point ft, x < ft _ x + 1. By the 
mean value theorem there is a point c, x < c < 6, such that y'(c) = — y(x). Then 
there exists cu x < cl S c, with y'(s) < — y(x) for x = s < c l9 y'(cj) = —y(x) 
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and (s, y(s)) e S(x, y), x ^ s ^ c1. This implies 

y'(^i) = -fa) = /(*) + [ 7 k y(*)> ?{*)) d* = ?(*) + [7 (* K*)> o)ds = 

= / ( x ) + M(x, >>) . 

Again (4) is true. 

Applying the last theorem and lemmas the following theorem will be proved. The 
notations will be the same as in Theorem 3. 

Theorem 4. Suppose f = f(x, y, z) is continuous on D and fulfils the conditions b) 
and c). Then for every real A the boundary-value problem (3) has at least one 
bourided solution on <a, oo). 

Proof. The case A = 0 is trivial. The case A < 0 can be dealt with similarly to the 
case A > 0, therefore only the last case will be considered. 

By Theorem 3, there exists a sequence {/„} of functions /„ e C0(D) satisfying the 
conditions b), c) and d) which is uniformly convergent to / on each compact subset 
of D. Lemma 2 then assures that the problem 

(5) y"=Ux,y,/), y(a) = A 

has a unique bounded solution yn on <a, oo). Following the remark after Lemma 2, 
and by Lemma 3, all yn satisfy the inequalities: 

(6) 0 = yn(x) = A , -A- M(x, A) = -yn(x) - M(x, yn(x)) = 

= y'n(x) = 0 , x = a . 

Choose an arbitrary positive integer m. By the continuity of /„ the inequalities (6) 
imply that {y"n} is uniformly bounded on <a, a + m> and so, both sequences {yn}, 
{y'n} are uniformly bounded and equicontinuous on <a, a + m>. Therefore there is 
a subsequence {y„k}k= i which is uniformly convergent on <a, a + m> together 
with {y„k}k=i to a function y, and its derivative, respectively. Making use of (5) we 
have that {y^J^Li is uniformly convergent to y" on the same interval and that y 
satisfies y" = f(x, y, y') on <a, a + m>. In this way for every m = 1, 2, 3, ... 
a sequence {ym>n}^=i can be constructed such that: 

1- {yi,«} is a subsequence of {yn}; 

2. {yM+i>n} is a subsequence of {ym,„} for every m = 1, 2, 3 , . . . ; ' .• • 

3. The sequences {ym,n}, {ym,„}, {ym,w} are uniformly convergent on <a, a + m> 
to a function ym and y'm, ym respectively, whereby ym(x) = f(x, ym(x), ym(x)) for every 
xe(a,a + m>. By 2., ym+1(x) = ym(x) for every x e {a, a + m> and so there 
is a function y on <a, oo) such that y(x) = ym(x) on <a, a + m>. From 1. and 3. it 
follows that y is a bounded solution of (3) on <a, oo). 
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