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CONTINUITY AND DIFFERENTIABILITY PROPERTIES 
OF NONLINEAR OPERATORS 

JOSEF KoLOMtf, Praha 

(Received October 5, 1970) 

1. INTRODUCTION 

A number of fixed-point theorems and approximate methods of solutions of non
linear equations involving continuous, weakly continuous and strongly continuous 
operators have been recently discovered by methods of the nonlinear functional 
analysis. Hence it is important to establish some simple conditions under which 
a mapping F or its derivative F'(M) possess certain continuity properties at some point 
u0 eX or on some subset M of a normed linear space X. 

This note is devoted to the study of the above mentioned problems and it is a con
tinuation of our papers [1], [2], [3], [4]. For the recent results concerning the related 
topics, see the bibliography in [1 — 4]. 

2. TERMINOLOGY AND NOTATION 

Let K, y be normed linear spaces, X*, Y* their (adjoint) dual spaces. The pairing 
between the points of X* or Y* and the elements of X or Y respectively we denote 
by <.,. >. We use the symbols "->", "--" to denote the strong and weak convergence 
in X, Y. To fix our notation we introduce the following well-known definitions. 
A mapping F : X -> Y is said to be 

a) "closable" if un -> 0, F(un) -• v implies v = F(0); 
b) weakly continuous at u0 e X, if uH -- u a implies F(un) -* F(u0); 
c) strongly continuous at u0 e X, if un -* u0 implies F(un) -• F(u0) ; 
d) bounded in X, if for each bounded subset M c X, F(M) is bounded in X; 
e) compact in X, if for each bounded set N c X, F(N) is compact in Y (a subset 

M c X i s called compact in X, if from each sequence (un) e M one can select 
a subsequence (unic) so that (unic) converges to some point u0eX); 

f) p — positively homogeneous on X, if F(tu) = tp F(u) for each t ^ 0 and ueX, 
(p > o). 
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A mapping F : X -+ X* is said to be monotone, if <F(w) — F(v), u — t?> ^ 0 
for each M, v e X. 

For the Gateaux, Frechet differentials and derivatives, the notions of compactness, 
strong continuity of the Frechet derivative and uniform differentiability of mappings 
see the terminology and notations given in the Vainberg's book [5, Chap. I.]. We 
need also the concept of the bounded differential which is due to SUCHOMLINOV [6]. 
This notion can be introduced equivalently as follows: We shall say that a mapping 
F : X -> y possesses a bounded differential dVF(u0, h) at M0 eX, if 

F(u0 + h) - F(u0) = dVF(M0, h) + CO(M0, h) , heX , 

where lim I|CO(M0, h)||/||h| = 0, dVF(M0, .) is bounded in some open neighborhood 
11*11-o1 

V(0) of 0 and dVF(M0, ah) = a dVF(M0, h) for each real a, heX. 
Suppose that there exists a linear Gateaux differential DF(M, h) in some neighbor

hood V(u0) of M0 e X. Then DF(M, h) is said to be 
g) continuous jointly at (M0, u0)eX x X, if (un) e V(u0), (hn) e X, un -> M0, hn -» M0 

imply 
DF(un, hn) -> DF(u0, M0) ; 

h) weakly continuous jointly (strongly continuous jointly) at (M0, M0) if (un) e V(u0), 
(hn)eX, un -- M0, hn - M0 imply DF(Mn, hn) - DF(M0, M0) (DF(un9 hn) -+ 
-> DF(M0, M0)). 

3. CONTINUITY AND DIFFERENTIABILITY OF NONLINEAR OPERATORS 

Theorem 1. Let X, Y be normed linear spaces, F a p-positively homogeneous 
mapping on X. Suppose one of the following two conditions to be fulfilled: i)F :X -» 
-* y, dim y < oo, F is "closable". 2) F : X -• X* is monotone on X, dimK < oo. 
Then F is continuous at 0 and bounded in X. 

Proof. First of all, F(0) = 0. Suppose that F is not continuous at 0. Then there 
exists a sequence (vn)eX, vn -> 0 and e0 > 0 so that |-F(0,,)|| ^ £o> Set 

Then | M J ^ (l/eo/P) ||^»|| -* 0 whenever n -> oo and 

'^'•Ki^^-^)'1^1-1 

for each n (n = 1, 2, . . . ) . Denote K = {y e Y: \\y\\ = 1}, K* = {<o*eX* : \\co*\\ = 

< 1}. As dim Y < oo and dim X = dim X* in the case 2), the Riesz's theorem implies 
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that K, K* are compact in Y,X*, respectively. Hence there exists a subsequence 
(F(unk)) o f (F(un)) so that F(w,J -> y as k -> oo and y e Y, yeX*, respectively. 
Assume 1), then unk -> 0, F(wnj -> y imply y = F(0) = 0, a contradiction to ||j>|| = 1. 
Assuming 2), we have <F(w) - F(unk), w - wMk> = 0, w e X. Passing to the limit in 
this inequality, we obtain <F(w) - y, w> ^ 0 for all u e X. Set u = tv, t > 0, v e X. 
Then <F(tv) - y, v} = 0, v e X. Since 

lim ||F(fw)|| = lim t*\\F(u)\\ = 0 , 
f->0 + f-»0ч 

we conclude that <y, v> = 0 for every veX. Therefore y = 0, a contradiction to 
lyl = 1. Hence F is continuous at 0 in the both cases 1), 2). Thus for given B = 1 
there exists <50 > 0 so that ||w|| = d0 => ||F(w)|| < 1. Let D*(0) = {ueX : ||w|| = R} 
be an arbitrary closed ball in X. Then there exists an integer n0 so that Rjn0 _̂  S0. 
For ue DR(0) it holds 

1̂ )11 -
' ( - ; • - ) 

= " S Ғ Í - Í - <ng 

Hence F is bounded in X. This completes the proof. 

Theorem 2. Let X, Y be linear normed spaces, F :X -> Y a p — positively homo
geneous operator. Let one of the following three conditions be fulfilled: (a) There 
exists an open subset G <= X, 0 e G, 50 fhaf sup ]|P(w)|| < -f-oo. (b) There exists 

ueG 

a Baire subset M c X of the second category in X such that sup ||F(w)| < + oo and 

(0 \\F(u - , ) | < / (max( |H , ||,||))max(||F(«)||, ||F(t,)||) 

for each u,veM, where a real function f(r) is defined on J = [0, -foo] and is 
bounded on each subinterval [0, a] of J. (c) (un)eX, u eX, un -* w => [|F(w)|| ^ 
^ lim IF^)!), X is of the second category in itself and F satisfies (1) on X. 

n-+oo 

Then F is continuous at 0 and bounded in X. 

Proof. First of all we prove (a). Assume e0 > 0 is such that ||w|| < e0 => w e G. 
Suppose F is not continuous at 0. Then there exists a sequence (wn) eX, un -> 0 
such that ||F(w„)|| ^ m > 0. Set 

Vn = 

2 k 
и - 1 , 2 , . . . 

Then vHeG and 

"м=Ш' Ш Í г Ш m 
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It is un -> 0, lim(eg/(2||w..|)p) = +00 and therefore sup \\F(vn)\\ = +00, a con-
n-+oo n = l , 2 , . . . 

tradiction to vn e G. Hence F is continuous at 0. Assume (b). According to the 

well-known theorem [7, Chap. 3] the set Wof all differences w = w — v, where w, v e 

e M, is a neighbourhood of 0. Using (1), we see that F is bounded on some open 

neighbourhood of 0. This fact together with the assertion (a) imply that F is conti

nuous at 0. Assuming (c), let Xn = {w eX : ||P(w)|| = n}. Then Xn are closed and 
00 

X = \J Xn. By the Baire Category Theorem at least one of Xn, say Xno contains an 
л = l 

open ball D 4= 0. Since X is of the second category in itself and D is open, D is 

a Baire subset of the second category in X. Moreover, sup ||F(w)|| = n0. Now it 
ueD 

suffices to apply (b). Hence F is continuous at 0 in all the cases (a), (b), (c). This 

property together with the p — positive homogeneity imply the boundedness of F 

in X. Theorem is proved. 

Let us remark that we need not require the assumption of the p — positive homo

geneity of F for the boundedness of F in (c). Compare with the proof of Theorem 1 

[3], Theorem 2 extends the Banach's results [8], see also [9], which concern the con

tinuity properties of linear operations. 

Theorem 3. Let X, Y be normed linear spaces, F : M -» Y, M c z X a bounded 

subset of X, K : X -> Y a linear compact mapping in X such that |F(w) — F(v) — 

- K(w — v)|| ^ a||w — v||, (a > 0) for each u,veM. Suppose there is a constant 

y > 0 such that \\F(U) — F(v)|| ^ y|w — v[|, w, veM. If y > a, then F is strongly 

continuous on M. 

Proof. For w, v e M we have 

\\F(u) - F(v)\\ g a\\u - v\\ + \\K(u - v)\\ ^ 

OL 
± - ||F(«) - F(v)\\ + \\K(u 

y 
Hence 

щ„)-ңv)lí(i-l)~lщ«-Щ, , И ) t ) e M 

Suppose w0 is an arbitrary point of M and (wn) eM, un-* u0. As K is compact and 

linear, Kwn -- Kw0. Since (Kw„) eK(M) and the weâ k convergence is equivalent with 

the strong one on a compact set [5, chapt. I.], Kwrt ^ Ku0. Hence K is strongly con

tinuous in X and in view of the last inequality F(un) -> F(w0). This concludes the 

proof. 

The following theorem is a completion and generalization of Proposition 1 [10]. 

Theorem 4. Let X, Ybe normed linear spaces, F :X-+Y a mapping having a linear 

Gateaux differential DF(u, h) on some convex neighborhood V(u0) of u0eX. 
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/ / DF(u9 .) is continuous jointly, weakly continuous jointly, strongly continuous 
jointly at (u0, u0), then F is continuous, weakly continuous, strongly continuous at 
u09 respectively. 

Corollary 1. Suppose that F : M -+ Y is a compact mapping on a convex bounded 
set M c X and that F possesses a linear Gateaux differential DF(u9 .) on M. 
If DF(u9 h) is weakly continuous jointly at the points of the diagonal AM of M 
(AM = {(u, u) :ue M})9 then F is strongly continuous on M. 

Corollary 2. Let M a X be an open convex bounded set, F : M -+Y a uniformly 
Frechet — differentiable mapping on M. Suppose F'(u) h is strongly continuous 
jointly at the points of the diagonal AM of M. If F'(u) is compact on M, then F'(u) 
is strongly continuous on M. 

Proof. Use Theorem 4 and the arguments similar to those in [5, Thm. 4.5]. 

Theorem 5. Let G c X be a convex bounded subset of X9 F : G -+ Y a mapping 
such that F possesses the Frechet derivative F'(u) and the second linear Gateaux 
differential D2F(u9 h9 k) on G. Assume D2F(u9 h9 k) is strongly continuous jointly 
in (u, fc) at the points of the diagonal AG of G for each (but fixed) heX.If F'(u) 
is compact on G, then F'(u) is strongly continuous on G. 

Proof. Let u0 e G be arbitrary (but fixed), (un) e G so that un --> u0, he X. By the 
mean-value theorem for any e* e y*, ||e*|| = 1, (n = 1, 2, . . .) , we have 

<F'(un) h - F'(u0) h9 e*y = <D2F(u0 + Tn(un - u0), h9 un - u0), e*ny = 

= <D2F(u0 + Tn(un - u0), h9 un)9 e*} -

- <D2F(u0 + Tn(un - u0), h9 u0), e*ny = 

= ||D2F(u0 + Tn(un - u0), h9 un) - D2F(u09 h9 u0)\\ + 

+ |JD2F(u0, ft, u0) - D2F(u0 + Tn(un - u0), h9 u0)\\ , 

where Tn = Tn(e*) e (0, 1). As un -*> u0 and u0 + Tn(un — u0) -- u0, the both terms 
on the right hand side of the last inequality tend to 0. By the Hahn-Banach theorem 
we can choose e*{0) eY* with \\e*(0)\\ = 1, (n = 1, 2,. . .) so that 

(F'(un) h - F'(u0) h9 < 0 )> = ||F'(u„) h - F'(u0) h\ . 

Hence F'(un) h -* F'(u0) h for each heX whenever n -» oo. As (F'(un)) e F'(G) = 
== {F'(u) :ueG} and F'(G) is a compact set in the space (X -> Y) of all linear con
tinuous operators from X into y, F'(un) -* F'(u0) as n -• oo in the norm of (X -* Y) 
by Lemma 4.2 [5]. This completes the proof. 
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Theorem 6. Let X, Y be normed linear spaces, F:X->Yap — positively homo
geneous operator on X. If F possesses a bounded differential dVF(u0, h) at some 
u0eX, then F has dVF(u, h) on the set {tu0, t > 0} and tpco(u0, h) = co(fw0, th) 
for each t > 0 and h e X. 

Proof. First of all, we prove the following fact: if F possesses the G&teaux differen
tial VF(w0, h) at w0, then VF(fw0, h) exists and VF(tu0, h) = f'1 VF(u0, h) for each 
t > 0 and heX. Indeed, 

VF(tu0, h) = lim - [F(tu0 + ah) - F('u0)] = 
a-o a 

= lim (1/0 [F(t(u0 + (a//) h)) - F(tu0)-] (tja) = 
a->0 

= f-1 lim 1 [F(w0 + a'h) - F(w0)] = t"'1 VF(w0, h), a' = a/f. 
a'->o a' 

Now it is easy to see that dVF(tu0, h) exists for each t > 0 and heX and that 

(2) dVF(rw0, h) = tp'x dVF(u0, h) . 

For each h e l w e have 

F(t(u0 + h)) - F(tu0) = <*VF(fw0, th) + co(tu0, th) . 

This equality, the p — positive homogeneity of F and (2) give 

fp(F(w0 + h) - F(w0)) = tp dVF(u0, h) + co(tu0, th), heX , (t > 0) . 

By the hypothesis 

F(u0 + h) - F(u0) = dVF(w0, h) + co(u0, h). heX. 

Our assertion follows immediately from the last two equalities. This concludes the 
proof. 

4. SOME REMARKS 

i) The following assertion is a simple consequence of Thm. 2(b). Suppose that X, Y 
are normed linear spaces, F : X -> 7 a p — positively homogeneous operator on X. 
Assume there exists a subset M c X of the second category in X, a mapping G : M —> 
-• Y having the Baire property in M (i.e. there exists a subset A c M of the first 
category inM so that the restriction G\(M — A) of G to M — A is continuous) so that 
u e M => | |F(M)| g ||G(u)||. If F satisfies the inequality (1) for each u, v e M, then F 
is continuous at 0 and bounded in X. 
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ii) Let us note that the existence of a linear G&teaux differential DF(w, h) of 
F :X -* Y in some convex neighborhood V(w0) of u0eX and its joint continuity at 
(MO» MO) do£s not imply the existence of the Frechet derivative Ff(u0), in general. 
A. Alexiewicz and W. Orlicz [11] proved that there exists a mapping / : c0 -» c0 

satisfying the condition of Lipschitz, having everywhere linear Gateaux differential 
DF(u, h) continuous in (u, h) jointly and being nowhere Frechet differentiable. The 
above conclusion does not hold even if we impose on X more restrictive conditions. 
Indeed, let h(u) — g(u(x), x) be an operator of Nemyckii, where a function g(u, x) 
satisfies the conditions of Thm. 20.2 [5]. Then [12] h(u) is Gateaux — differentiable 
in the space L2, Dh(u, v) is continuous jointly in (u, v) on L2 and h(u) satisfies the 
condition of Lipschitz on L2. However, h(u) is nowhere Frechet — differentiable 
in L2. 

iii) Let F : X -> Ybe a mapping having a bounded differential DVF(w0, h) at u0 e X. 
Then F is continuous at u0. Indeed, dVF(u0, .) is bounded in some open neigh
borhood U(0) of 0 and being homogeneous in heX, dVF(u0, .) is continuous at 0 
by Thm. 2 (a). Hence for given e = 1 there exists <50 > 0 so that heX, | h | ^ S0 => 
=-> \\dVF(u0, A)fl ^ 1. Let heX be arbitrary, then 

ҺÔ0 = v """-ы < 1 

Hence ||áVF(w0, h)\\ ^ 5o 1 | |^[| for each heX. Let (un)eX, u0eX, un -» u0. Then 
wn = wo + zn> (Zn) e ^> where zn -> 0. By our hypothesis 

\\F(u0 + z„) - F(ii0)|| ^ ||dVF(u0, z„)|| + \\co(u0, zn)\\ Í So'WzJH + 0(||z„||) . 

Hence F(M|I) -» F(u0). 

iiii) If F : X -> Yis p — positively homogeneous on K, (p > 1) and sup II F(u) II < 
ll-ll-i 

< -j- co, then F possesses the Fréchet derivative F'(0) at 0 and F'(0) = 0. 
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