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Časopis pro pěstování matematiky, rol. 98 (1973), Praha 

ON BOUNDEDNESS OF THE WEAK SOLUTION FOR SOME CLASS 
OF QUASILINEAR PARTIAL DIFFERENTIAL EQUATIONS 

JOZEF KACUR, Bratislava 

(Received January 28, 1971) 

Introduction. This paper is connected with my paper [1]. The main aim of this paper 
is to find a bounded weak solution of the Dirichlet boundary value problem for the 
equation of the form 

(1) - £ — ax ( x, -f) + a0(x, u) = f(x) 
i = l OX i \ ex I 

where the growth of at(x, p) in p (p = (pl9 ..., pN)) and a0(x, u) in u satisfies con
ditions (3), (4) given below. 

Let us consider a bounded domain Q a EN (N-dimensional Euclidean space) 
with the Lipschitzian boundary dQ. We shall suppose 

(2) f(x)eLx(Q). 

Let us consider real functions g(u) e 0(— oo, oo) for which there exists a positive 
number u± so that 

I. u g(u) is even and convex for |M| ^ MX and 

lim (u g'(u) + g(u)) = oo . 

II. For each / > 1 there exists a constant c(l) such that 

g(lu) ^ c(l) g(u) for each u ^ ux . 

III. There exists / > 1 such that 

g(u) ^ \g(lu) for each u ^ ux. 

Now, we shall denote by Mt; M2; M3 the classes of the functions g(u) satisfying I; 
I and II; I, II and III respectively. 
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i = 1,2,...,N. 

The functions at(x, p) for i =*= 0, 1,..., N are real and defined for x e Q and \p\ < 
< co. They are continuous in p for almost all x e Q and measurable in x at fixed p. 
(If i = 0, then p € E1). 

Let us have gt(u) e M3 for i == 1, 2,..., N and suppose g{u) = ^(M) (or ^(M) = 

= 0j(M)) f° r a^ *>j = 1» 2, ..., N and M = MX. Then, the conditions for the growth 
of af(x, p) in p are of the form 

(3) \atx, p)\ £ c ( l + ^ m i n {\gfa)\> MPJ)\))
 f o r 

Now, let g0(u) e M. such that 

(4) ' \a0(x, u)\ g c(l + a0(«)) . 

In paper [1], the existence of a weak solution of equation (l) is proved — under 
the assumption of monotonicity and coerciveness — only if g0(u) e M3 in the con
dition (4). In this case a weak solution is found in the space Wx tG(Q). In this paper 
we shall also work in the space W1 G(Q) and therefore we sketch its construction — 
for details, see [1]. 

First we construct Orlicz spaces L*^) by means of functions G^M) = u g^u), 
where gt(u) for i = 0, 1, ..., N are those from conditions (3) and (4). More exactly, 

<;(„)= \u9i(u)> f o r M ="* 
iK \ct\u\», for \u\ = Ui 

where ut; c{\ pt > 1 are suitable constants. For the construction of Orlicz spaces, 
see [3]. Then, we construct the space W t G(Q) of Sobolev type, see [1], as follows: 
W l c(f i ) = W l c = {M e Lj0(fi), for which the distributive derivatives dujdx^ 
6 L*t(Q) for i = 1,2,..., N}. The norm in this space is defined by 

N 

Mw,.C = I' 
І = l 

дu 
ÕXІ 

+ |«|G. . 
d 

where ||. ||G| is the norm in the Orlicz space L£(.Q). Let us denote by °W 1 C the sub-
space of all functions u e Wj G satisfying 

in the sence of traces. 

If gt(u) e M3 for i = 0, 1,..., N, then the corresponding space W 1 C is reflexive 
(see [1]). In the general case gt(u) e Ml9 for i = 0, 1, ..., N, Wx G need not be refle
xive (see [5]) and in that case it is impossible to apply'the methods known from the 
reflexive spaces for seeking the weak solution. In this case the functional (potential) 
is constructed in paper [1] and its minimum is found. 

Considering the growth conditions (3) and (4), we shall proceed analogously, even 
if the conditions are more general, and we shall prove that the minimum of the 
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functional is attained for a bounded function. Then, it will be easy to prove that 
this minimum is at the same time also the weak solution. 

We shall suppose that the Dirichlet's boundary value condition is given by the trace 
of a function u0 e W x G, where 

(5) u(s)\9Q^uQ(s)\dQeLjdQ) 

in the sense of traces. 

M e W x G is called to be a weak solution of the Dirichlet boundary value problem 
(1), (5), if M - M0 e ° W 1 G and for all v e ° W 1 C 

£ — a t l x 9 — ) d x + va0(x, u) dx = vfdx 
i-iJndXi V fa/ Jo Jo 

holds. 
By means of the class M3 we can describe a growth, which is near to polynomials, 

e.g. M3, M3 In (|M| + 1) etc. However, we call the attention to the fact, that the class M3 

is essentialy larger then the set of polynomials |M|P. If g(u) e M3 then there exist 
p, q > 1 and constants cl9 c2, u1 such that (see [1], Assertion [1]) 

ct\u\p
 = M g(u) = c2\u\q for all |M| = MA . 

On the contrary, for all p, q > 1 with q > p there exists gPA(u) e M3 such that 
previous inequality holds, while this inequality does not take place for any p', q' > 1 
with p < p' < q' < q. 

By means of the class Mt we can describe a larger scale of the growths, e.g. 

sgn M . In (|M| + 1) , M exp (M2) etc. 

If g(u) e Mt and ^(M) £ M3, then the Orlicz space L*(.G) (G(u) = u g(u)) is not 
reflexive, which requires a different method to find a weak solution then in the case 
of reflexive spaces. 

Let us denote by EG(-3) the closure of the set of all bounded functions in the norm 
of the space L*(0). If #(M) e Mt and #(M) £ M2, then EG(.Q) is a nowhere dense set 
in L*(Q). If g(u) e M3, then EG((2) == L*(Q). Let us denote by P(v) the conjugate 
function to G(u) (see [3]) and by L*(Q) the Orlicz space constructed by means of the 
generating function P(v) (P(v) = max (MI? — G(u)). For u e L*(Q) and v e L*(Q) the 

« 
Holder inequality \$n u(x) v(x) dx\ S ||«||c • f̂ flp hlods. 

The results obtained here can be transferred without essential difficulties to more 
general boundary value problems. 

Let us denote 

/ Mr i , fw(x) for x such that |M(X)| < c 
u(x)]c == M]C = 1 v 7 i v /i -

(c sgn M(X) for all other x . 
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Lemma l.Ifue W1C?(.Q), then u\c e W1>c(fl)for each constant c ^ 0. 

Proof. As L£.(;G) <z lx(Q) algebraically and topologically for i = 0,1,..., N, 
it is u e W}(.Q). Thus, u\c e W}(.Q) - see [2] (Theorem 2.2, Lemma 2.3). Let us 
denote by dujdXi the derivative in the sense of distribution of the function u(x) 
and by [Su/dxJ the derivative in the ordinary sense. From the results of B. LEVI 

(see [2], Theorem 2.3), 

— = ( — | almost everywhere in Q , i = 1, 2, ..., N . 
dx: 

From this fact easily we deduce the lemma. 
On the basis of this lemma it is possible to suppose that u0(x) is bounded and 

(6) supess|w(x)| = KIL(wi) 
xeQ 

in the sense of traces. 
For the construction of the functional to equation (1), we suppose the symmetry 

/ 7 \ dat(x> P) =
 8aj(x> P) 

dpj dpi 

in the sense of distribution for ij = 1,2, ..., N . 

Supposing (3), (7), we define 

Jo Jo*--3X| \ dx) 

The functional $i(u) is continuous on the space W 1 G and has a Gatteaux differential 
at every point equal to 

DФ^u, v)=\ £ - - - a . (x, -£•) dx ; 
J й i = lŐXj \ õxj 

for the proof of this assertion see [ l ] (Lemma 1 and 2, § 2). The functional correspon
ding to equation (1) is of the form (see [4]) 

(8) <P(u) = ^x(u) + ( dM wa0(x, tu) dx - | wfdx . 
Jo JQ JQ 

To obtain the convexity of the functional ^t(u) we shall suppose 

(9) £(pi-qt)lalx,p)-ai(x,q)-]ZO. 
i = i 
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The coerciveness of $(M) will be guaranteed by 

N N 

(10) £ pflfa, p) ^ Cl I pa fat) - c2 
i = l i = l 

and 

(11) ua0(x, u) ;> cyu g0(u) - c2, u e E 1 

where cl9 c2 are constants and gt(u) for i = 0 , 1 , . . . , N are functions from (3) and (4). 

We shall consider such equations (1) for which there exist g{(u) e M3 for i = 
= 1, 2 , . . . , N, and g0(u) e Mt satisfying (3), (4), (10) and (11). 

In general, for the functional 

(12) # 2 (M) = dM ua0(x, tu) dx 

we admit the value + oo on the space L*0(O). 
We shall look for the minimum of the functional <P(u) on the convex and closed 

set M0 + °W 1 G . 

Lemma 2. If (2), (3), (4), (7), (10) and (11) are satisfied, then 

lim $(u) = oo , where ueu0 + ° W 1 C . 
IMIwlf<?-°° 

Proof. First we prove that ^ ( M ) -* oo, if 

/io\ v« ll^wll 
i==1ll3*i|lG. 

Let us set 

(AA\ « \ Tv II^IIT1 f v du ( du\A 
(14) X(u) = £ — • IrYcF-
Using Holder's inequality in (14) and regarding [1] (Lemma 1, § 2) we find easily that 
X(u) is a continuous functional on W 1 G , bounded from below on bounded sets. 
We shall show that X(u) -» oo if (13) holds. For this purpose it suffices to prove that 
from every sequence {un} satisfying (13) a subsequence {unk} can be extracted such 
that X(unk) -> oo with k -> oo. From (10) we obtain 

£ f Õun ( Õu„\, . Ç ţ дun /, 
î = l J й Ø X . \ CXJ J0І = 1 ÕXІ \ 

au.. 

dxtj 

As gt(u) e M3, for i = 1, 2,..., N, it follows from [1] (Theorem 1, Assertion 5) that 
it is possible to choose a subsequence {unk} from {un} such that 

L i = 1
 I I 5 * . I I G J Jf l i = l fot \8x,J 

oo with k -> oo . 
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Thus, we conclude that k(u„k) -> oo for fc -+ oo. Now, let {u„} be an arbitrary sequence 
satisfying (13). From the definition of k(u) we have 

Фi(un)= Çk(tun)dt.£ 
Jo *«i 

ðu, 
ÕXІ Gt 

k(tun) is a continuous function in t and so the integral is well-defined. There exists 
a constant c such that k(u) = — c for all u e W t G. Let K > 0. With regard to the 
properties of k(u), there exists L > 0 such that k(u) > 2K -f- c if 

I ču > L. 
i = l дXi G. 

N I 

\Щ\ >2L 
i = l 1 ðx/l ICł 

Let us choose N0 such that 

for n > N0. Then, we conclude 

f- fl/2 /*1 
A(mw) df = k(tun) At + k(tun) dt > -±c + K + \c = K 

Jo Jo J 1/2 
for n > N0. Thus, ^(u,.) -* oo with n -• oo and hence #i(u) -> oo if (13) is satisfied. 

Now, we prove that 

lim ( I df I ua0(x, tu) dx — J ufdx ) = oo . 
HlGb—AJo Jo Jo J 

For this purpose we prove that there exists a constant c such that 

(15) A 0 (X, s) ds - c3\u\ = \cx - g0 (^j - c 

where c 3 = ||f||Lao(.o). Let us suppose that u > 0. Then we obtain from (11), (4) 
/•« /•« 

a 0 (x, s) ds - c 3u ^ c x g0(s) ds - c4u . 
Jo Jo 

Because of go(u)eM± there exists s0 > ux such that g0(u) is increasing, odd for 
|u| ^ 50 and satisfies lim g0(u) = oo. For u > 2s0 we obtain 

M - + 0 0 

0O vs) ds u ^ #0(.s) ds - c 5u ^ - g0 ( - j - c5u 
Jo Cl Ju/2 2 W 

and hence 

so that (15) is proved for « > 0. 
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If u < 0, then conditions (11), (4) imply 

-a0(x9 - s ) = ct g0(s) - Ci *°r all s > 0 . 

Using the above estimates we deduce 

J a0(x,s)ds - c3|ii| = J U~a0(
x> ~ s ) d s " CM = 

Jo Jo 

4 a0(s)ds - c„|u| g - ; 9 « ; H 9 

2 2 

Using (15) we deduce 

J d H wa0(x, to) dx - | w fdx = f | a0(x, s) ds - c3 |w| dx = 
Jo JQ JQ JQJO J O 

= (Y [" a0(x9 s) ds - c3|uf) dx g i*i J ^ g0 Q j dx - c . 

Finally, 

£^o(^)d*-+oo, if l - U ^ 

holds (see [1]) and the proof is complete. 
In the space W 1 G we introduce the *X-convergence as follows (see [1]): 

un ^ u , for M„,i/eW1)C, 

if 

f uyo) dx -> f uv(0) dx and f —w v(i) dx -> f — v(i) dx 
Jft Jfl hSxt Jnaxf 

with n -> oo, for all v(i)(x) e EPf(0) and all i = 0,1, 2,. . . , N. Pf(i?) is the conjugate 
function to Gt(w). 

Lemma 3. Let us suppose (3), (7) and (9). T/ien, */ie functional $i(u) is Zower 
semicontinuous with respect to the *X-convergence and it is bounded from below 
and from above on bounded sets of u0 + °W1 G, 

Proof. Suppose {un}, ueu0 + ° W l 6 and un -> u with n -> oo. From (9) we 
deduce 

9t(uu) - *x(u) g D * ^ , ii. - II) . 

With regard to the *X-convergence and to 0i(u) e M3 for i == 1, 2,..., N we conclude 
that dunjdxt -*• Su/dx,- with n -> oo in Ljy.(-3) (the weak convergence in the space 
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LG<v°)). On the other hand, from [1] (Lemma 1, § 2) and with respect to (3) we 
conclude 

a | ( X , & ) 6 l f ' s ( l 6 7 

(the dual space to l*{), i = 1, 2,.. . , N. Thus, 

lim D$t(u, un — u) = 0 and hence lim inf î(w„) ^ ^(w) . 
n-*oo »-*oo 

The space °W 1 C is closed with respect to the *X-convergence (see [ l ] , Lemma 1, 
§ 3) and hence also u0 + °W1(- is closed with respect to the *X-convergence. Further, 
from every bounded sequence fromW1G we can choose a subsequence convergent with 
respect to the *X-convergence to some element from W 1 G (see [1], Lemma 1, § 3). 

Now, let us assume that ^x(uH) -» — oo for some bounded sequence {un} in u0 + 
+ 0W l iC, Then, there exist ueu0 + °W1 G and a subsequence {unk} such that 
unk -• u. Because of the lower semicontinuity, $x(u) = — oo, holds. On the other 

hand, ^(w) is well-defined on u0 + 0 W 1 6 (see [1], Lemma 1 and Lemma 2, §2) 
which is a contradiction. Regarding the Holder inequality we deduce from [1] 
(Lemma 1, § 2) that Q^u) is bounded from above on bounded sets. 

Theorem 1. Let us suppose (2), (3), (4), (7), (9), (10) and (11). Then, the functional 
$(w) attains its minimum on the set u0 + °W1C, 

Proof. Evidently, the functional from (15) is bounded from below on L*0(Q) 
(G0(u) = u g0(u)) and with regard to Lemma 2 also <P(u) is bounded from below on 
the set u0 + °W1C, Let us consider a minimizing sequence {un}eu0 +°W1 G . 
This sequence is bounded in the norm of the space W1 C , because of Lemma 2. 
There exist a subsequence {u„k} and u e u0 + °W1 G such that unk -> u, if k -> oo. 

Since W1>c c W}((2) (algebraically and topologically), we conclude by means of 
Theorems on imbeddings that there exists a subsequence {zn} from {unk} such that 
zn -> u in the norm of the space \-x(Q) and, moreover, zn(x) -» u(x) almost every
where in Q, with n -+ oo. There exists a constant c such that $(zn) ^ c. ^t(v) and 
Jo vfdx are bounded from below and from above on bounded subsets of Wx G-see 
Lemma 2 and [1] (Lemma 1, 2 § 2) so that the functional $2(v) from (12) is bounded 
on the sequence {zn}. As a consequence of Fatou's lemma we obtain 

dt lim inf zna0(x, tzn) dx ^ lim inf df zna0(x, tzn) dx . 
Jo Jo"-*00 »-*«> Jo JQ 

Finally, Lemma 2 implies: 

#(u) <£ lim inf $i(zn) + lim inf J dr zna0(x, tzn)dx - lim I zjdx ^ lim inf ̂ (z,,). 
n-*oo II-*OO J 0 J ^ n"*°°Jfl ""^^ 

Thus, #(t?) attains its minimum on the set u0 + °W 1 C at a point ti. 
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In the following theorem we shall prove that every point of the minimum of <P(u) 
is from L00(,Q). To that end we shall suppose additionally 

JV 

I (16) tpia,(x,p)žO foгall p, 

Theorem 2. Let the assumptions of Theorem 1 be fulfilled and in addition to it let 
us suppose (6) and (16). Then, every point of the minimum of $(u) is from -- (̂(2). 

Proof. With regard to Theorem 1, we can suppose that #(t?) attains its minimum 
at a point ueu0 + ° W 1 6 . We prove the theorem by contradiction. Suppose that u 
is not from 1^(0). Let us consider an increasing sequence {C,,}, Ci > ||wo||Loo(0fl)> 
with Cn -> oo for n -> co. Further, let us consider the sequence u(x)]c". In accordance 
with Lemma 1, w]Cne u0 + °W 1 G, Using the notation from Lemma 1, we get 

lex, J L«*J L«*i J 

almost everywhere in Q, for i = 1, 2, ...,N. 
Let us denote 

KCn^{xeQ; \u(x)\ > Cn} . 

From (16) we deduce 

..M«0-H£2-%(*.4->-
Jo J f l ^ l ^X i V 5 * / 

-f'd.f jL.A.a)*«»! #,(.). 
Jo J<--KCI.3*I \ dx/ 

Now, it suffices to prove that there exists an N0 such that 

(17) H«Yn) ~ \ ufnfdx < $2(u) - [ ufdx 
J n Jj? 

holds for all n ^ N0. 

Using the mean value theorem for the integral we deduce 

(18) 92(u) - #2("]Cn) - [ (U - u]c«)fdx £ 

a0(x9 s) ds - c\ \u - t<]Cn| dx -= 
u]c» J ft 

= f (« - «]c") a0(x, «]c" + 3(x) (« - «]c»)) dx - c f |« .- «]c"| dx . 
Jo Ja 
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The function 3(#) satisfying 0 ^ 9(x) ^ 1 can be determined in such a way that it 
is measurable — see [7] (footnote at the lemma 5,1). 

Condition (11) implies that 

sgn (u - u]Cn) = sgn a0(x, ufn + S(x) (u - w]Cn)) 

for sufficiently, large n and 

\a0(x, u]Cn + 9(x) (u - u]Cn))\ -> oo with n -» oo . 

From this and from (18) we deduce (17). Thus, for sufficiently large n we obtain 

*(«]c„)<*(«) 

which gives a contradiction with the minimum property of u. Hence the proof is 
complete. 

Theorem 3. Let the assumptions of Theorem 2 be fulfilled. Then, there exists 
a bounded weak solution of the boundary value problem (1), (5) 

Proof. Theorem 2 guarantees the existence of the minimum at a point u e u0 + 
+ ° W 1 C n L^Q). We shall show that this minimum is the weak solution. Let us 
take v e 2(Q) (@(Q) is the set of all functions which have all the derivatives in Q and 
possess a compact support in Q. 

<P(u + tv) is a continuous function in t and has the derivative at the point t = 0. 
As u + tv G u0 + °W 1 G and u is a point of the minimum, 

— Ф(u + tv)\tшQ = 0 
dí 

must hold. This means that 

(19) £ — a% ( x, --M dx + va0(x, u) dx = ifdx 

for all v 6 @(Q). But @(Q) = ° W 1 6 n EGo, where the closure is with respect to the 
norm of the space W 1 C (see [1], [2]). Since g0(u) is bounded, g0(u)eEPo a L*0 

(P0(
v) is conjugate to G0(w)). Further, 

a i(x ) |)eL*^(LS iy 

(Pi(v) being conjugate to G4(t?)). 

Thus, we obtain (19) for tfe°WlcnEGo by a limiting process (see Holder's 
inequality). Now, let us take v e 0 W 1 C . Let us consider the sequence v]Cn (the nota
tion is that from Theorem 2). With regard to Lemma 1, v]Cne ° W 1 6 n EGo. It is 
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evident from the definition of the *X-convergence that v]Cn -* *>• As at(x, dujdx) e Ep. 

and g0(w) e EPo, we obtain (19) for v e °W 1 G by a limiting process. It means that w 
is a weak solution. 

In the sequel we replace condition (16) by other conditions. Let us suppose the 
existence of da((x, P)/3xf and 

(20) 8afaS e L o Q / f l x for a l l f = l5 2, ..., N . 
dXi 

Theorem 4. Let us suppose (2), (3), (4), (6), (7), (9), (10), (11) and (20). Then there 
exists a bounded weak solution of the boundary value problem (1), (5). 

Proof. Let us consider a-(x, p) = af(x, p) — at(x, 0), a\(x, p) satisfying all the 
assumptions of Theorem 3. Really, condition (9) implies (16). With respect to (20) 
and Theorem 3, there exists a bounded weak solution of the equation 

V d >( du\^ ( \ /•_ v da& °) 
- I — ai[ *> — + <*o(x, « ) = / + ! —T -' > 

i = l CXi \ OX) i=l OXi 

i.e., 

(21) £ — a\ ( x, — ) dx + va0(x, u) dx = 
i=iJQdXi \ dx) ]Q 

= f (f+% d-^*S\vdx, forall ve°Y/1G. 
JQ\ -=- Sxt J 

Using Green's theorem, we obtain 

f £ gq,(x, 0) f ' . a « 
- | 2. . v dx = £ aix> °) T" d x I i = l ÔX: ß 1 дxř 

and then the identity (21) implies the required result. 
We give now conditions for the uniqueness of the weak solution. 

Assertion 1. Let us suppose that the assumptions of Theorem 3, or Theorem 4, are 
fufilled. Then, there exists a unique weak solution of the problem (1), (5), if (i), 
or (ii), is satisfied: 

(i) (sl - s2) [a0(x, sx) - a0(x, s2)] > 0 for st =J= s2 . 

(ii) In condition (9), the equality holds only when p^q; and further (s1 — s2) . 
- . [a0(x, Si) - a0(x, s2)] _ 0. 
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Proof If ut # «2 were two solutions of (1), (5), then 

+ \ (ui - ui) [«o(^ ui) - ao(*> w2)] dx = 0 

which yields a contradiction in case (i), as well as in case (ii). 

Now, we present some consequences of Theorem 3, or Theorem 4, considering 
the known results about the regularity of the bounded weak solution — see [6], [2], 

We shall suppose more special conditions instead of (3), (10) 

(22) I,Piai(x9p)^c1\p\m - c 
» = i 

(23) £ \ajx, p)\ (1 + |p|) S c2(l + \p\)m , where m > 1 . 
i = l 

C0,a(S) is the space of the Holder functions with the norm 

NU-cn, = max \u(x)\ + sup K*> " " ^ • . 
xeti x,yeU \x — y\* 

We shall suppose that the boundary value condition is given by the function 

(24) u0(x) G Wi(Q) n C°>*(H) for some 0 < a < 1 . 

Assertion 2. Let the assumptions of Theorem 3, or Theorem 4 with (24) be fulfilled. 
Let us suppose (22), (23) instead of (3), (10). Then, there exists /?, 0 < /? ̂  a SMC/I 

f/taf */ie weafc solution is from W,J, n C°^(S). 

This assertion is a consequence of [6] (Theorem 1.1, Chap. 4) and Theorem 3, 
or Theorem 4. 

Now, let us consider the equation 

(1') " I ^-(alJ(x)p) + a0(x,u)=f(x). 
i,i*l OXt \ OXjJ 

Let us suppose 

(25) atJ(x)eO><(n) 

(26) f(x)eC°"(G). 

Cl'*(S) being the set of all functions the first partial derivatives of which are 
from C°-«(fi). 
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Further, let us suppose 

(27) a0(x, s) e C\Q x < - K, K» for each K > 0 . 

Assertion 3. If the conditions of Theorem 3, or Theorem 4 are fulfilled and 
moreover if (27), (24), (25), (26), (i), or (ii), are satisfied, then there exists a classical 
solution of the problem (V), (5) from C2'y(H), 0 < y ^ a. 

With regard to Assertion 2, there exists a weak solution u e Wj n C0,1* of (1'), (5). 
Because of (27), a0(x, u) e C°tP(D). Then the assertion 3 is a consequence of Schauder's 
theorem - see [6] (Theorem 1.1, Chap. 3). 

Examples. 

1 - I +-\h(x)gil^)\ + a0(x)g0(u)=f íj-\h(x)gi(^)\ + a0(X)g0(u)=. 
i-=i OXÍ L \vxi/A 

where lt(x) = c > 0 for i = 1, 2, ..., N and ^(м) є УИ3 for i = 1, 2, ..., N, 
g0(u) є ІИlв 

2 -Au + a0(x, w) = f 

particularly, 
— Au + a0(x) u exp u2 = f. 
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