Časopis pro pěstování matematiky

Pavol Marušiak

Oscillation of solutions of the delay differential equation $y^{(2 n)}(t)+\sum_{i=1}^{m} p_{i}(t) f_{j}\left(y\left[h_{i}(t)\right]\right)=0, \backslash$ quad $n \geq 1$

Časopis pro pěstování matematiky, Vol. 99 (1974), No. 2, 131--141
Persistent URL: http://dml.cz/dmlcz/117835

Terms of use:

© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

OSCILLATION OF SOLUTIONS OF THE DELAY DIFFERENTIAL EQUATION

$$
y^{(2 n)}(t)+\sum_{i=1}^{m} p_{i}(t) f_{j}\left(y\left[h_{i}(t)\right]\right)=0, \quad n \geqq 1
$$

Pavol Marušiak, Žilina
(Received September 28, 1972)

Our purpose in this paper is to give some ocsillation criteria for the nonlinear delay differential equation

$$
\begin{equation*}
y^{(2 n)}(t)+\sum_{i=1}^{m} p_{i}(t) f_{i}\left[y_{h_{i}}(t)\right]=0, \quad n \geqq 1, \tag{1}
\end{equation*}
$$

where $y_{h_{i}}(t)=y\left[h_{i}(t)\right] i=1, \ldots, m$

$$
\begin{equation*}
p_{i} \in C\left[R_{+} \equiv[0, \infty), R_{+}\right] \quad(i=1, \ldots, m) \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
f_{i} \in C[R, R], \quad z f_{i}(z)>0 \text { for } z \neq 0, f_{i}(z) \text { is nondecreasing } \tag{3}\\
\text { on } R(i=1, \ldots, m)
\end{gather*}
$$

$$
\begin{equation*}
h_{i} \in C\left[R_{+}, R\right], \quad h_{i}(t) \leqq t \quad \text { for } \quad t \in R_{+} \quad(i=1, \ldots, m) . \tag{4}
\end{equation*}
$$

We shall assume the under the initial conditions $y(t)=\varphi(t), t \leqq t_{0}, y^{(k)}\left(t_{0}\right)=$ $=y_{0}^{(k)}, k=1, \ldots, n-1$, the equation (1) has a solution which exists for all $t \geqq$ $\geqq t_{0}>0$.

A solution $y(t)$ of (1) is called oscillatory if the set of zeros of $y(t)$ is not bounded from the right. A solution $y(t)$ of (1) is called nonoscillatory if it is of constant sign for sufficiently large t. The equation (1) is called oscillatory if every solution is oscillatory.

Burkowski [2], Gollwitzer [3], Odarič-Ševelo [9, 10] have given necessary and sufficient conditions for second order nonlinear delay differential equations to be oscillatory. Ladas [4], Marušiak [8] have given oscillation criteria for the differential equation

$$
y^{(n)}(t)+F(t, y(t), y[h(t)])=0 .
$$

Recently, Kusano and Onose [7], Sevelo and Varech [11] and Staikos and SFICAS [12] (these papers appeared while my article was being reviewed) have proved sufficient conditions for the oscillation of certain nonlinear delay differential equations of arbitrary order.

In the next part we shall need the following lemma due to Kiguradze [5, Lemma 2].
Lemma 1. Let $u(t), \ldots, u^{(m-1)}(t)$ be absolutely continuous and of cosnstant sign in the interval $\left(t_{0}, \infty\right)$. If $u(t) \geqq 0, u^{(m)}(t) \leqq 0$ for every $t \geqq t_{0}$, then there exists an integer k with $0 \leqq k<m, m+k$ is odd and
(a) $\quad u^{(i)}(t) \geqq 0, \quad i=1, \ldots, k, \quad t \geqq t_{0}$,
(b) $\quad .(-1)^{m+i-1} u^{(i)}(t) \geqq 0, \quad i=k+1, \ldots, m, \quad t \geqq t_{0}$,
(5) (c)

$$
u^{(k)}(t) \leqq \frac{i!}{\left(t-t_{0}\right)^{i}} u^{(k-i)}(t), \quad i=1, \ldots, k, \quad t \geqq t_{0}
$$

Analogous statement can be made if $u(t) \leqq 0, u^{(m)}(t) \geqq 0$ in the interval $\left(t_{0}, \infty\right)$.
Lemma 2. If $u(t), \ldots, u^{(m-1)}(t)$ are absolutely continuous and of constant sign in the interval $\left(t_{0}, \infty\right)$ and $u(t) u^{(m)}(t) \leqq 0$, then there exists an integer k with $0 \leqq k<m, m+k$ is odd and

$$
\begin{gather*}
u^{(i)}(t) u(t) \geqq 0, \quad i=0,1, \ldots, k \quad \text { and } \tag{6}\\
(-1)^{m+i-1} u^{(i)}(t) u(t) \geqq 0, \quad i=k+1, \ldots, m, \quad t \geqq t_{0},
\end{gather*}
$$

$$
\begin{equation*}
\left|u^{(k)}(t)\right| \geqq t^{m-k-1} u^{(m-1)}\left(2^{m-k-1} t\right), \quad t \geqq t_{0} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\left|u^{(k-i)}(t)\right| \geqq B_{i} t^{m-k+i-1}\left|u^{(m-1)}(t)\right|, \quad i=1, \ldots, k, \quad t \geqq 2^{m-k} t_{0} \tag{8}
\end{equation*}
$$

where

$$
B_{i}=\frac{2^{-(m+k+i)^{3}}}{(m-k) \ldots(m-k+i-1)}
$$

Proof. The correctness of (6), (7) follows from Kiguradze's lemma 1 [6] and its proof. Integrating (7) i times ($i \in\{1, \ldots, k\}$) from t_{0} to t and using (6), we obtain

$$
\left|u^{(k-i)}(t)\right| \geqq \frac{\left(t-t_{0}\right)^{m-k+i-1}}{(m-k) \ldots(m-k+i-1)}\left|u^{(m-1)}\left(2^{m-k-1} t\right)\right|, \quad t \geqq t_{0}
$$

If we put t instead of $2^{m-k-1} t$ into the last inequality and then use $u(t) u^{(k-i+1)}(t) \geqq$ $\geqq 0$, we get

$$
\begin{gather*}
\left|u^{(k-i)}(t)\right| \geqq\left|u^{(k-i)}\left(2^{-m+k+1} t\right)\right| \geqq \tag{9}\\
\geqq \frac{2^{-(m-k+i-1)^{2}}\left(t-2^{m-k-1} t_{0}\right)^{m-k+i-1}}{(m-k) \ldots(m-k+i-1)}\left|u^{(m-1)}(t)\right|, \quad t \geqq 2^{m-k-1} t_{0} .
\end{gather*}
$$

Let $t \geqq t_{1} \geqq 2.2^{m-k-1} t_{0}$, then $t-2^{m-k-1} t_{0} \geqq t / 2$ and from (9) with regard to the last inequalities we get (8).

Lemma 3. Let $u(t), \ldots, u^{(m)}(t)$ be continuous functions in the interval $\left(t_{0}, \infty\right)$ and $u^{(k)}(t) u(t)>0,(k=0,1, \ldots, m), u(t) u^{(m+1)}(t) \leqq 0(m$ is an integer and let A be a nonnegative real number. Then

$$
\lim _{t \rightarrow \infty} \frac{u(t)}{u(t+A)}=1
$$

Proof.

$$
1 \geqq \lim _{t \rightarrow \infty} \frac{u(t)}{u(t+A)} \geqq \frac{1}{1+A \lim _{t \rightarrow \infty} \frac{u^{\prime}\left(t_{1}\right)}{u(t)}}=1, \quad t_{1}=\left\{\begin{array}{ll}
t ; & m=1 \\
t+A ; & m>1
\end{array}\right\}
$$

because

$$
\lim _{t \rightarrow \infty} \frac{u^{\prime}\left(t_{1}\right)}{u(t)}=\lim _{t=\infty} \frac{u^{(m)}\left(t_{1}\right)}{u^{(m-1)}(t)}=0
$$

Theorem 1. Let functions p_{i}, f_{i}, h_{i} satisfy (2), (3), (4) and, in addition, suppose that

$$
\begin{equation*}
\sum_{i=1}^{m} \int^{\infty} t^{2 n-1} p_{i}(t) \mathrm{d} t<\infty \tag{10}
\end{equation*}
$$

Then the equation (1) has at least one nonoscillatory solution.
Proof. Let us consider the following system

$$
\begin{gather*}
y_{0}(t)= \begin{cases}1, & t \leqq t_{0} \\
1, & t \geqq t_{0}\end{cases} \tag{11}\\
y_{j+1}(t)=\left\{\begin{array}{l}
1, t \leqq t_{0} \\
1+\sum_{i=1}^{m}\left\{\int_{t_{0}}^{t} \frac{\left(s-t_{0}\right)^{2 n-1}}{(2 n-1)!} p_{i}(s) f_{i}\left(y_{j}\left[h_{i}(s)\right]\right) \mathrm{d} s+\right. \\
+\int_{t}^{\infty} \frac{\left(s-t_{0}\right)^{2 n-1}-(s-t)^{2 n-1}}{(2 n-1)!} p_{i}(s) f_{i}\left(y_{j}\left[h_{i}(s)\right]\right) \mathrm{d} s,
\end{array}\right.
\end{gather*}
$$

where t_{0} is chosen such that

$$
\begin{gather*}
\max _{1 \leqq i \leqq m} f_{i}(2) \sum_{i=1}^{m}\left\{\int_{t_{0}}^{t} \frac{\left(s-t_{0}\right)^{2 n-1}}{(2 n-1)!} p_{i}(s) \mathrm{d} s+\right. \tag{12}\\
\left.+\int_{t}^{\infty} \frac{\left(s-t_{0}\right)^{2 n-1}-(s-t)^{2 n-1}}{(2 n-1)!} p_{i}(s) \mathrm{d} s\right\} \leqq 1
\end{gather*}
$$

That we can do because (10) holds.

By mathematical induction, with regard to (11), (12) and (3), it is easy to show that $1 \leqq y_{j}(t) \leqq y_{j+1}(t) \leqq 2, j=0,1, \ldots, t \geqq t_{0}$ holds. From the last inequalities it follows that the sequence $\left\{y_{j}(t)\right\}_{j=0}^{\infty}$ of continuous functions is nondecreasing and uniformly bounded on $\left[t_{0}, \infty\right)$ and therefore uniformly convergent on every finite interval. Let $y(t)=\lim _{j \rightarrow \infty} y_{j}(t)$. Then $1 \leqq y(t) \leqq 2, t \geqq t_{0}$ and $y(t)$ is the solution of the equation

$$
\begin{aligned}
& y(t)=\left\{\begin{array}{l}
1, \quad t \leqq t_{0} \\
1+\sum_{i=1}^{m}\left\{\int_{t_{0}}^{t} \frac{\left(s-t_{0}\right)^{2 n-1}}{(2 n-1)!} p_{i}(s) f_{i}\left(y\left[h_{i}(s)\right]\right) \mathrm{d} s+\right.
\end{array}\right. \\
& \left.+\int_{t}^{\infty} \frac{\left(s-t_{0}\right)^{2 n-1}-(s-t)^{2 n-1}}{(2 n-1)!} p_{i}(s) f_{i}\left(y\left[h_{i}(s)\right]\right) \mathrm{d} s\right\} .
\end{aligned}
$$

However, it means that $y(t)$ is a nonoscillatory solution of the equation (1). The proof is therefore complete.

Theorem 2. Let functions p, f, h, satisfy (2), (3), (4) and, in addition, suppose that
(13) (i) $h(t)=t-g(t), 0 \leqq g(t) \leqq M, \quad t \in R_{+}$
(ii) there exists a number $\beta, 1<\beta$ such that

$$
\begin{gather*}
\liminf _{|z| \rightarrow \infty} \frac{f(z)}{|z|^{\beta}} \neq 0 \\
\int^{\infty} t^{2 n-1} p(t) \mathrm{d} t=\infty \tag{14}
\end{gather*}
$$

Then the differential inequality

$$
\begin{equation*}
y^{(2 n)}(t)+p(t) f(y[h(t)]) \leqq 0, \quad t \in R_{+} \tag{A}
\end{equation*}
$$

$$
\begin{equation*}
\left[y^{(2 n)}(t)+p(t) f(y[h(t)]) \geqq 0, \quad t \in R_{+}\right] \tag{B}
\end{equation*}
$$

has no positive [negative] solution on $\left[t_{0}, \infty\right)$ for every $t_{0} \in R_{+}$.
Proof. Suppose that the conclusion of Theorem 2 is false. Assume that there exists a positive solution $y(t)$ of (A) for $t \geqq t_{0} \in R_{+}$. (The case of the differential inequality (B) is treated similarly.) Since $\lim h(t)=\infty$ as $t \rightarrow \infty$ there exists a $t_{1} \geqq t_{0}$ such that $y[h(t)]>0$ for $t \geqq t_{1}$. (A) with regard to (2) and (3) implies

$$
\begin{equation*}
y^{(2 n)}(t) \leqq-p(t) f(y[h(t)])<0, \quad t \geqq t_{1} . \tag{15}
\end{equation*}
$$

From $y^{(2 n)}(t)<0, y(t)>0$ it follows that there exists $t_{2} \geqq t_{1}$ such that $y(t), y^{\prime}(t), \ldots$ $\ldots, y^{(2 n-1)}(t)$ have constant sign for $t \geqq t_{2}$. Then by Lemma 2 for $y(t)$ and its de-
rivatives (6)-(8) hold, where $k \in\{1,3, \ldots, 2 n-1\}$. By (6), $y^{(2 n-1)}(t)$ is decreasing and $y^{(2 n-1)}(\infty)=c \geqq 0$ holds.

Integrating (A) from $t\left(t \geqq t_{2}\right)$ to ∞ and neglecting $y^{(2 n-1)}(\infty)$, we get

$$
\begin{equation*}
y^{(2 n-1)}(t) \geqq \int_{t}^{\infty} p(s) f\left(y_{n}(s)\right) \mathrm{d} s, \quad t \geqq t_{2} \tag{16}
\end{equation*}
$$

and then in view of the monotonicity of $y^{(2 n-1)}(t)$ and (4) we obtain

$$
\begin{equation*}
y_{h}^{(2 n-1)}(t) \geqq \int_{t}^{\infty} p(s) f\left(y_{h}(s)\right) \mathrm{d} s, \quad t \geqq t_{2} \tag{17}
\end{equation*}
$$

I. From (7), for $k=1$ we get

$$
\begin{equation*}
y^{\prime}(t) \geqq t^{2 n-2} y^{(2 n-1)}\left(2^{2 n-2} t\right), \quad t \geqq t_{2} . \tag{18}
\end{equation*}
$$

If $k=1$ then, with regard to (6), $y^{\prime \prime}(t) \leqq 0$ for $t \geqq t_{2}, y^{(2 n-1)}(t)$ is decreasing and so from (18) we have

$$
\begin{aligned}
y^{\prime}(t-M) & \geqq[t-M)^{2 n-2} y^{(2 n-1)}\left[2^{2 n-2}(t-M]\right. \\
& \geqq[t-M]^{2 n-2} y^{(2 n-1)}\left(2^{2 n-2)} t\right), \quad t \geqq t_{3} \geqq t_{2}+M .
\end{aligned}
$$

From (16) using the last inequality we get

$$
\begin{equation*}
y^{\prime}(t-M) \geqq[t-M]^{2 n-2} \int_{2^{2 n-2 t}}^{\infty} p(s) f\left[y_{h}(s)\right] \mathrm{d} s, \quad t \geqq t_{3} . \tag{19}
\end{equation*}
$$

Integrating (19) from t_{3} to $t, t \geqq t_{3}$, we obtain

$$
\begin{align*}
& y(t-M)-y\left(t_{3}-M\right) \geqq \int_{2^{2 n-2 t_{3}}}^{22 n-2 t} \frac{\left[2^{2-2 n} s-M\right]^{2 n-1}-\left[t_{3}-M\right]^{2 n-1}}{2 n-1} \times \tag{20}\\
& \times p(s) f\left[y_{h}(s)\right] \mathrm{d} s+\frac{[t-M]^{2 n-1}-\left[t_{3}-M\right]^{2 n-1}}{2 n-1} \int_{2^{2 n-2 t}}^{\infty} p(s) f\left[y_{h}(s)\right] \mathrm{d} s .
\end{align*}
$$

From (20), with regard to the monotonicity of $y(t), f(z)$ and $t-M \leqq h(t)$, we get

$$
y(t-M) \geqq \int_{t_{3}}^{t} \frac{[s-M]^{2 n-1}-\left[t_{3}-M\right]^{2 n-1}}{2 n-1} p\left(2^{2 n-2} s\right) f[y(s-M)] \mathrm{d} s
$$

In the sequel we shall use the method due to Atrinson [1].
If we raise the last inequality by $-\beta(\beta>1)$, then multiply by $\left\{[t-M]^{2 n-1}-\right.$
$\left.-\left[t_{3}-M\right]^{2 n-1}\right\} p\left(2^{2 n-2} t\right) f[y(t-M)],\left(t \geqq t_{3}\right)$ and integrate the resulting in-
equality from t_{4} to $t_{5}\left(t_{3}<t_{4}<t<t_{5}\right)$, we have

$$
\begin{aligned}
& \text { (21) } \int_{t_{4}}^{t_{s}}\left\{[s-M]^{2 n-1}-\left[t_{3}-M\right]^{2 n-1}\right\} p\left(2^{2 n-2} s\right) f[y(s-M)][y(s-M)]^{-\beta} \mathrm{d} s \leqq \\
& \leqq \frac{(2 n-1)^{\beta}}{\beta-1}\left[\left\{\int_{t_{3}}^{t}\left([s-M]^{2 n-1}-\left[t_{3}-M\right]^{2 n-1}\right) p\left(2^{2 n-2} s\right) f[y(s-M)] \mathrm{d} s\right\}^{1-\beta}\right]_{t_{4}}^{t_{5}}
\end{aligned}
$$

For $t_{5} \rightarrow \infty$ the right hand side of (21) is bounded and therefore the integral

$$
\int_{t_{4}}^{\infty}\left\{[s-M]^{2 n-1}-\left[t_{3}-M\right]^{2 n-1}\right\} p\left(2^{2 n-2} s\right) f[y(s-M)][y(s-M)]^{-\beta} \mathrm{d} s
$$

is convergent: If we choose $t_{4} \geqq 2 M$, we can show easily that

$$
\begin{equation*}
J\left(t_{4}\right)=\int_{t_{4}}^{\infty} s^{2 n-1} p\left(2^{2 n-2} s\right) f[y(s-M)][y(s-M)]^{-\beta} \mathrm{d} s<\infty . \tag{22}
\end{equation*}
$$

By virtue of the assumption $y(t)>0, t \geqq t_{0}$ and Lemma 2 either $y(\infty)=b>0$ or $y(\infty)=\infty$. In either case, with regard to the continuity and the monotonicity of $f(z)$ and the assumption (ii) of Theorem 2 , there exists $T \geqq t_{4}$ such that

$$
\frac{f[y(t-M)]}{[y(t-M)]^{\beta}} \geqq d>0, \quad t \geqq T
$$

Then, from (22) we get
$\infty>J\left(t_{4}\right) \geqq J(T) \geqq d \int_{T}^{\infty} s^{2 n-1} p\left(2^{2 n-2} s\right) \mathrm{d} s=d\left(2^{2-2 n}\right)^{2 n-1} \int_{2^{2 n-2} T}^{\infty} t^{2 n-1} p(t) \mathrm{d} t$, which contradicts (14).
II. Let $k \in\{3, \ldots, 2 n-1\}$. Frome (8), for $i=k-1$) we obtain,

$$
y^{\prime}(t) \geqq K t^{2 n-2} y^{(2 n-1)}(t), \quad t \geqq 2^{(n-k} t_{2}=\bar{t}_{3},
$$

where $K=B_{k-1}$.
Then, with regard to (6) and (13) we have

$$
y^{\prime}(t) \geqq y^{\prime}(t-M) \geqq K[t-M]^{2 n-2} y^{(2 n-1)}(t-M), \quad t \geqq \bar{t}_{4} \geqq \bar{t}_{3}+M
$$

From (17), by means of the last inequality it follows

$$
y^{\prime}(t) \geqq K[t-M]^{2 n-2} \int_{t}^{\infty} p(s) f\left[y_{h}(s)\right] \mathrm{d} s, \quad t \geqq \bar{t}_{4},
$$

Further, exactly as in the case I we obtain

$$
\begin{equation*}
J\left(7_{s}\right)=\int_{i_{s}}^{\infty} s^{2 n-1} p(s) f[y(s-M)][y(s)]^{-\beta} \mathrm{d} s<\infty \tag{23}
\end{equation*}
$$

(6) implies $y(t)>0, y^{\prime}(t)>0, y^{\prime \prime}(t)>0$ and therefore $y(\infty)=\infty$. Then, by virtue of the assumption (ii) and Lemma 3

$$
\liminf _{t \rightarrow \infty} \frac{f[y(t-M)]}{[y(t)]^{\beta}}=\liminf _{t \rightarrow \infty} \frac{f[y(t)]}{[y(t+M)]^{\beta}}=\liminf _{t \rightarrow \infty} \frac{f[y(t)]}{[y(t)]^{\beta}}>0
$$

holds. In view of the last inequality there exitss $\bar{T} \geqq \bar{\tau}_{5}$ such that

$$
\frac{f[y(t-M)]}{[y(t)]^{\beta}} \geqq \bar{d} \geqq 0, \quad t \geqq \bar{T} .
$$

Then we get from (23)
$\infty>J\left(\bar{t}_{5}\right) \geqq J(\widetilde{T}) \geqq d \int_{T}^{\infty} s^{2 n-1} p\left(2^{2 n-2} s\right) \mathrm{d} s=\bar{d}\left(2^{2-2 n}\right)^{2 n-1} \int_{2^{2 n-2} T}^{\infty} t^{2 n-1} p(t) \mathrm{d} t$,
which contradicts (14).
This completes the proof of Theorem 2.
We shall now apply Theorem 2 to obtain the oscillatory character for the equation (1).

Theorem 3. Let functions p_{i}, f_{i}, h_{i} satisfy (2), (3), (4) and, in addition, suppose
(i) $h_{i}(t)=t-g_{i}(t), 0 \leqq g_{i}(t) \leqq M, t \in R_{+},(i=1, \ldots, m)$
(ii) there exists a number $\beta, \beta>1$ such that

$$
\liminf _{|z| \rightarrow \infty} \frac{\left|f_{i}(z)\right|}{|z|^{\beta}}>0, \quad(i=1, \ldots, m)
$$

Then the equation (1) is oscillatory if and only if

$$
\begin{equation*}
\int^{\infty} t^{2 n-1} p_{j}(t) \mathrm{d} t=\infty \tag{24}
\end{equation*}
$$

at least for one $j \in\{1, \ldots, m\}$.
Proof. I. The necessity follows immediately from Theorem 1.
II. The sufficient condition. Let us suppose that the conclusion of Theorem is false. Let $y(t)$ be a nonoscillatory solution of the equation (1). We may assume to be specific that $y\left[h_{i}(t)\right]>0(i=1, \ldots, m)$ for $t \geqq t_{1} \geqq t_{0} \in R_{+}$. Then from the equation (1), in view of (2), (3) we have

$$
\begin{equation*}
y^{(2 n)}(t)+p_{j}(t) f_{j}\left(y\left[h_{j}(t)\right]\right) \leqq 0, \quad t \geqq t_{1} \tag{25}
\end{equation*}
$$

and $y(t)$ is a solution of (25). By virtue of Theorem 2, the inequality (25) has no positive solution and this contradicts the fact that $y(t)$ is a positive solution of the equation (1). The proof of Theorem is complete.

Theorem 4. Let p satisfy (2) and, in addition,
(26) (a) $h \in C^{1}\left[R_{4}, R\right], \quad h^{\prime}(t) \geqq 0$ for $t \geqq T \in R_{+}, \quad h(t) \leqq t, \quad t \in R_{+}$, $\lim h(t)=\infty \quad$ as $t \rightarrow \infty$,
(b) $f \in C^{1}[R, R], \quad z f(z)>0$ for $z \neq 0, f^{\prime}(z) \geqq 0, z \in R$,
(c) for every $\varepsilon>0$

$$
\begin{gather*}
\int_{z}^{\infty} \frac{\mathrm{d} z}{f(z)}<\infty \quad\left[\int_{-z}^{-\infty} \frac{\mathrm{d} z}{f(z)}<\infty\right] \\
\int^{\infty}[h(t)]^{2 n-1} p(t) \mathrm{d} t=\infty \tag{27}
\end{gather*}
$$

Then the differential inequality $(\mathrm{A})[(\mathrm{B})]$ has no positive [negative] solutions on $\left[t_{0}, \infty\right)$ for every $t_{0} \in R_{+}$.

Proof. Suppose that the conclusion of Theorem 4 is false. Assume that there exists a positive solution $y(t)$ of (A) for $t \geqq t_{0} \in R_{+}$. [The case of (B) is treated similarly.] It follows from (26) that there exists $t_{1} \geqq t_{0}$ such that $y[h(t)]>0$ for $t \geqq t_{1}$. From (A), in view of (2) and (b) of Theorem 4 we get $y^{(2 n)}(t) \leqq 0$ for $t \geqq t_{1}$. From the last inequality, by virtue of $y[h(t)]>0, t \geqq t_{1}$, we can assert that the assumptions of Lemma 1 are fulfilled. Then (5), for $k=2 v+1, i=2 v(v \in\{0,1, \ldots, n-1\})$ implies

$$
0 \leqq y^{(2 v+1)}(t) \leqq \frac{(2 v)!}{\left(t-t_{1}\right)^{2 v}} y^{\prime}(t), \quad t>t_{1}
$$

By virtue of the last inequality there exists a constant $K, 0<K<1$ and a number $t_{2}>t_{1}$ such that

$$
\begin{equation*}
0 \leqq t^{2 v} y^{(2 v+1)}(t) \leqq K(2 v)!y^{\prime}(t), \quad t \geqq t_{2}, \quad v \in\{0,1, \ldots, n-1\} \tag{28}
\end{equation*}
$$

If we multiply (A) by $[h(t)]^{2 n-1} f^{-1}\left[y_{h}(t)\right]$, integrate the resulting inequality from $a\left(\geqq \max \left\{t_{2}, T\right\}\right)$ to t, use Lemma 1 , the assumption (b) and omit negative numbers, we obtain

$$
\begin{align*}
& \int_{a}^{t}[h(s)]^{2 n-1} p(s) \mathrm{d} s \leqq c_{1}+(2 n-1) \int_{a}^{t} y^{(2 n-1)}(s)[h(s)]^{2 n-2} h^{\prime}(s) \times \tag{29}\\
& \quad \times f^{-1}\left[y_{h}(s)\right] \mathrm{d} s \leqq c_{1}+(2 n-1) \int_{a}^{t} y_{h}^{(2 n-1)}(s)[h(s)]^{2 n-2} h^{\prime}(s) \times \\
& \times f^{-1}\left[y_{h}(s)\right] \mathrm{d} s \leqq c_{1}+(2 n-1) \int_{h(a)}^{t} y^{(2 n-1)}(x) x^{2 n-2} f^{-1}(y(x)) \mathrm{d} x
\end{align*}
$$

where $c_{1}=y^{(2 n-1)}(a)[h(a)]^{2 n-1} f^{-1}\left(y_{h}(a)\right) \geqq 0$.

If we integrate the last integral in (29) by parts $2(n-v-1)$ times and neglect negative numbers, we obtain

$$
\begin{equation*}
\int_{a}^{t}[h(s)]^{2 n-1} p(s) \mathrm{d} s \leqq C+(2 n-1) \ldots(2 v+1) \int_{h(a)}^{t} y^{(2 v+1)}(x) x^{2 v} f^{-1}(y(x)) \mathrm{d} x, \tag{30}
\end{equation*}
$$

where C is a positive constant.
From (30), in view of (28), we get

$$
\begin{aligned}
\int_{a}^{t}[h(s)]^{2 n-1} p(s) \mathrm{d} s & \leqq C+K(2 n-1)!\int_{h(a)}^{t} y^{\prime}(x) f^{-1}(y(x)) \mathrm{d} x \\
& \leqq C+K(2 n-1)!\int_{y[h(a)]}^{t} \mathrm{~d} z / f(z)<\infty \text { for } t \rightarrow \infty
\end{aligned}
$$

It means that $\int_{a}^{\infty}[h(s)]^{2 n-1} p(s) \mathrm{d} s<\infty$, but this contradicts (27). This completes the proof of Theorem 4.

Corollary 1. Let $p_{i}, i=1, \ldots, m$ satisfy (2) and, in addition,
(a) $h_{i} \in C^{1}\left[R_{+}, R\right], \quad h_{i}(t) \leqq t$ for $t \in R_{+}, \quad h_{i}^{\prime}(t) \geqq 0$ for $t \geqq T \in R_{+}$, $\lim h_{i}(t)=\infty$ as $t \rightarrow \infty(i=1, \ldots, m)$,
(32) (b) $f_{i}, i=1, \ldots, m$ satisfy the assumptions (b), (c) of Theorem 4. Then the equation (1) is oscillatory if

$$
\begin{equation*}
\int^{\infty}\left[h_{j}(t)\right]^{2 n-1} p_{j}(t) \mathrm{d} t=\infty \tag{33}
\end{equation*}
$$

at least for one $j \in\{1, \ldots, m\}$.
Proof. Let us suppose that the conclusion of Corollary is false. Let $y(t)$ be a nonoscillatory solution of the equation (1) and let $y\left[h_{i}(t)\right]>0(i=1, \ldots, m)$ for $t \geqq$ $\geqq t_{1} \geqq t_{0} \in R_{+}$. [The case $y(t)<0$ is treated similarly.] Then from the equation (1), in view of (2), (32) we have (25) and $y(t)$ is a positive solution of (25). This contradics Theorem 4.

The proof of Corollary is complete.
Finally, we shall study the oscillatory properties of the differential equation

$$
\begin{equation*}
y^{(2 n)}(t)+F\left(t, y_{h_{1}}(t), \ldots, y_{h_{m}}(t)\right)=0 . \tag{34}
\end{equation*}
$$

With regard to the equation (34) we assume that the following conditions are satisfied:

$$
\begin{align*}
& F\left(t, x_{1}, \ldots, x_{m}\right) \begin{cases}\geqq \sum_{i=1}^{m} p_{i}(t) \varphi_{i}(x), & x_{i}>0, \quad i=1, \ldots, m \\
\leqq \sum_{i=1}^{m} p_{i}(t) \psi_{i}(x), & x_{i}<0, \quad i=1, \ldots, m\end{cases} \tag{35}\\
& F(t, 0, \ldots, 0) \equiv 0
\end{align*}
$$

where (a) $p_{i}(t), i=1, \ldots, m$, satisfy (2),
(b) $\varphi_{i} \in C[(0, \infty),(0, \infty)], \psi_{i} \in C[(-\infty, 0),(-\infty, 0)], i=1, \ldots, m$,

Theorem 5. Let the equation (34) satisfy (35) and, in addition,
(i) $h_{i}, i=1, \ldots, m$, satisfy (4), (13),
(ii) $\varphi_{i}(z) \psi_{i}(z), i=1, \ldots, m$, are nondecreasing functions,
(iii) there exists $\beta>1$ such that

$$
\liminf _{z \rightarrow \infty} \frac{\left|\varphi_{i}(z)\right|}{|z|^{\beta}}>0, \quad \liminf _{z \rightarrow-\infty} \frac{\left|\psi_{i}(z)\right|}{|z|^{\beta}}>0, \quad i=1, \ldots, m
$$

Then the equation (34) is oscillatory if (24) holds at least for one $j \in\{1, \ldots, m\}$.
Proof. The proof of this Theorem is very similar to that of Theorem 2 and hence we omit it.

Theorem 6. Let the equation (34) satisfy (35) and, in addition,
(i) $h_{i}, i=1, \ldots, m$, satisfy (31),
(ii) there exist $\varphi_{i}^{\prime}(u), \psi_{i}^{\prime}(v)$ and $\varphi_{i}^{\prime}(u) \geqq 0$ for $u>0, \psi_{i}^{\prime}(v) \geqq 0$ for $v<0, i=1, \ldots$..., m,
(iii) for every $\varepsilon>0$

$$
\int_{\varepsilon}^{\infty} \frac{\mathrm{d} u}{\varphi_{i}(u)}<\infty, \quad \int_{-\varepsilon}^{-\infty} \frac{\mathrm{d} v}{\psi_{i}(v)}<\infty, \quad i=1, \ldots, m
$$

Then the equation (34) is oscillatory if (33) holds at least for one $j \in\{1, \ldots, m\}$.
Proof. The proof of this Theorem is very similar to that of Theorem 4 and hence we omit it.

Acknowledgment. The author wishes to thank Prof. J. Kurzweil for his helpful suggestions.

References

[1] Atkinson F. V.: On second-order non-linear oscillations. Pacific J. Math., 5 (1955), 643-647.
[2] Burkowski F.: Oscillation theorems for a second order nonlinear functional differential equation. J. Math. Anal. Appl. 33 (1971), 258-262.
[3] Gollwitzer H. E.: On nonlinear oscillations for a second order delay equation. J. Math. Anal. Appl. 26 (1969), 385-389.
[4] Ladas G.: Oscillation and asymptotic behavior of solutions of differential equations with retarded argument. J. Differential Equations 10 (1971), 281-290.
[5] Кигурадзе И. Г.: О колеблемости решений уравнения $\mathrm{d}^{m} u / \mathrm{d} t^{m}+a(t)|u|^{n} \operatorname{sgn} u=0$. Мат. Сборник Т. 65 (107) N_{2} (1964), 172-187.
[6] Кигурадзе И. Т.: К вопросу колеблемости решений нелинейных дифференциальных уравнений. Дифф. Уравнения, 8 (1965), 995-1006.
[7] Kusano T. and Onose H.: Oscillation of solutions of nonlinear differential delay equations of arbitrary order. Hiroshima Math. J. 2 (1972), 1-13.
[8] Marušiak P.: Note on the Ladas' paper on oscillation and asymptotic behavior of solutions of differential equations with retarded argument. J. Differential Equations, $13 \mathrm{~N}_{1}$ (1973), 150-156.
[9] Одарич О. Н. и Шевело В. Н.: Об осцилляторных свойствах решений нелинейных дифференциальных уравнениях второго порядка с запаздывающим аргументом. Мат. физика, вып. 4 „Наукова думмка" К. 1968.
[10] Шевело В. Н., Одарич О. Н.: Некоторые вопросы теории осдилляции (неосцилляции) решений дифференциальных уравнений второго порядка с запаздывающим аргументом. Украинский Мат. Журнал Т 23 (1971) № 4.
[11] Шевело В. Н. и Варех Н. В.: О некоторых свойствах решений дифференциальных уравнений с запаздыванием. Украинский Мат. Журнал, Т 24 (1972), 807-813.
[12] Staikos V. A. and Sficas Y. G.: Oscillatory and asymptotic behavior of functional differential equations. J. Differential Equations 12 No. 3 (1972), 426-437.
[13] Waltman P.: A note on an oscillation criterion for an euqation with a functional argument. Canad. Math. Bull. 11 (1968), 537-595.

Author's address: 01088 Žilina, Marxa-Engelsa 25 (Vysoká škola dopravná).

