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časopis pro pěstování matematiky, roč. 99 (1974), Praha 

THE NONEXISTENCE OF FREE COMPLETE VECTOR LATTICES 

MARIA JAKUBIKOVA, Ko§ice 

(Received November 6, 1972) 

Free vector lattices were investigated in [ l], [3], [9], [11] (cf. also [2], Chap. XV, 
§ 5). Since the class of all vector lattices is an equational one, for each cardinal m 
there exists a free vector lattice Xm with a set A of free generators such that card A = 
= m. HALES [4] proved that there does not exist a free complete Boolean algebra 
with an infinite set of free complete generators (this solved the problem proposed by 
RIEGER [8]). Using the result of Hales we show that there does not exist a free com
plete vector lattice with an infinite set of free complete generators. An analogous 
result concerning complete /-groups was proved in [5]. Further, we examine the 
existence of free (a, oo)-distributive vector lattices where a is an infinite regular 
cardinal. 

For the terminology, cf. [2], Chap. XV. Lattice unions and intersections are de
noted by v and A , respectively. Set unions, set intersections and the inclusion are 
denoted by u, n and c , respectively. A sublattice Lx of a lattice L is said to be a 
closed sublattice of L, if, whenever {x J (i e I) is a subset of Lx such that V** exists 
in L, then V*,- e Ll9 and if the dual condition also holds. A mapping <p of a lattice L 
into a lattice L is said to be a complete homomorphism if it fulfils the following con
dition (cx) and also the condition (c2) that is dual to (cx): If {xj c L and if V*i 
exists in L, then 

V(p(xi) exists in L' and <p(\/Xi) = W(**)-

Let us recall the definition of a vector lattice (cf. [2]). 

A real linear space Lwith elements/, g9..., is called a vector lattice if L is lattice 
ordered in such a manner that the partial ordering is compatible with the algebraic 
structure of L, i.e., 

(i) / S g implies/ + ft <£ g + h for every/, g,heL, 

(ii) / *> 0 implies <xf ^ 0 for every fe L and every real number a ^ 0. 
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Thus (L; +, A, v) is an Abelian lattice ordered group; hence (L; A, v) is a dis
tributive lattice and 

f+(gvh) = (f + g)v(f+h), 

f+(gAh) = (f+g)A(f+h) 

is valid for every/, g,h e L. 

Let A be a subset of a complete Boolean algebra B. We say that A completely 
generates B if Bx = B for each closed subalgebra Bt of B with A c Bx. The set A 
is said to be a set of free generators of B, if it satisfies the following conditions: 
(a) A completely generates B; (b) if B' is a complete Boolean algebra and if/ is a map
ping of the set A into J3' such that the set f(A) completely generates B\ then there 
exists a complete homomorphism \j/ of B onto £' such that ^(a) = /(a) for each 
aeA.(Cf.[4].) 

Now we introduce analogous notions for complete vector lattices. For any vector 
lattice X the corresponding lattice will be denoted by X. A vector sublattice Xx of 
a vector lattice X is said to be a closed vector sublattice of X, if Xx is a closed sublat
tice of X. Let A be a subset of a complete vector lattice X. We say that A completely 
generates X if Xx = X for each closed vector sublattice I j of I with A a Xu 

A homomorphism cp of a complete vector lattice X into a complete vector lattice X' 
is called a complete homomorphism if q> is a complete homomorphism of the lattice 
X into the lattice X'. Let ,4 be a subset of a complete vector lattice X. Then A is said 
to be a set of free complete generators of X if it fulfils the following conditions: (a) 
A completely generates X, and (b) for each complete vector lattice X' and each map
ping / : A -> X' such that f(A) completely generates X' there is a complete homo
morphism \// of X onto X' such that \j/(a) = /(a) for each a e A. If _4 is a set of free 
complete generators of a complete vector lattice X and card A = y9 then X is called 
a free complete vector lattice on y free complete generators. 

Let X be a complete vector lattice, 0 < e e X. The element e is called a weak unit 
of X if e A x > 0 for each 0 < x e X. The element e is a strong unit of X if for each 
0 < x e X there is a positive integer n(x) such that x — n(x) e. Each strong unit of X 
is a weak unit of X. Let e be a weak unit of K and let B(e) be the set of all elements 
et e X such that et = 0 and et. A (e — e.) = 0. The set £(e) is said to be a basis of X. 

We need the following results: 

Theorem A. (Cf. [6], p. 92.) Let e be a weak unit of a complete vector lattice X. 
Then the basis B(e) is a closed sublattice ofX and B(e) is a Boolean algebra. 

Theorem B. (Cf. [6], p. 131, Thm. 1.53.) Let B be a complete Boolean algebra. 
Then there is a complete vector lattice X and a weak unit eofX such that the basis 
B(e) is isomorphic to B. 
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Theorem C. (Cf. [4], § 4, Thm. 3.) Let m be an infinite cardinal. There exists a 
complete Boolean algebra Bm and a subset A c Bm such that A completely genera
tes Bm9 card A = Kg and card Bm = m. 

Theorem 1. Let a be an infinite cardinal. There does not exist a free complete 
vector lattice on a free complete generators. 

Proof. Suppose that a set A0 is the set of free complete generators of a complete 
lattice X09 card A0 = a. Let m be a cardinal, m > card X0. Let B = Bm be a Boolean 
algebra fulfilling the assertion of Thm. C. Further let X be a complete vector lattice 
satisfying the assertion of Thm. B. Since the Boolean algebras Bm and B(e) are iso
morphic we may put B(e) = Bm. Choose a09 ax e A0 and At <=. A0 \ {a09 a j , 
card Ax = K0. Let /x : Av -> A be a bijection and let / be a mapping of the set A0 

into X such that f(a0) = 09f(a1) = e9f(a) = /i(a) for each ae Ax and f(a) = 0 for 
each ae A0 \ (At u {a09 ax}). Let Y be the intersection of all closed vector sub-
lattices Yt of X with f(A0) cz Yt. Then yis a closed vector sublattice of X, hence Y 
is a complete lattice and Y is completely generated by the set/(A0). 

According to the definition of a free complete vector lattice, there is a complete 
homomorphism xj/ of X0 onto Y such that \\t(a) = f(a) for each ae A0. Since e is 
a weak unit of X, e is a weak unit of Y. By Thm. A, B(e) = B is a closed sublattice of 
X and hence the set B n Y = B0 is a closed sublattice of Y. Thus, since 0, e e B0, 
the set B0 is a complete lattice. Obviously B0 is distributive. Let b0e B0. Then 
l>0 G B(e), hence b0 A (e — b0) = 0. This implies e — b0e B(e) and so e — b0 e B0. 
Further we have b0 v (e — b0) = b0 + (e — fe0) = e, hence e — b0 is the comple
ment of b0 in the Boolean algebra B. This implies that B0 is a closed subalgebra of B. 
Since AL e B0 we obtain (because B is completely generated by A) that B0 = B. 
Therefore m = card B = card Y = card \j/(X0). This implies card X0 ^ m, which is 
a contradiction. 

Let a, j? be cardinals. Let us consider the following condition on a lattice L (cf. [4]): 
(dt) L satisfies the identity 

AseS VteTXs,t = VpeT-* As€SXs,<p(s) 

whenever card S ^ a, card T ^ /? and all joins and meets do exist in L. 
If L satisfies (dx) and the condition dual to (dt) then L is called (a, /^-distributive. 

If L is (a, /^-distributive for each cardinal /?, then it is said to be (a, oo)-distributive. 
It is easy to verify that a vector lattice is (a, /^-distributive if it fulfils the condition (dx). 

A complete (a, oo)-distributive Boolean algebra B is said to be a free complete 
{a, oo)-distributive Boolean algebra on y free complete generators if there is a subset 
A cz B with card A = y such that A is a set of free complete generators of B and every 
mapping / of A onto a subset A' of a complete (a, oo)-distributive Boolean algebra B' 
which completely generates B' can be extended to a complete homomorphism of B 
onto B\ 
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Replacing "Boolean algebra" by "vector lattice" everywhere in the above definition, 
we obtain the definition of a free complete (a, oo)-distributive vector lattice on y 
complete generators. 

Theorem C . (Cf. [4], p. 62.) Let y be an infinite regular cardinal. Let mbe a car
dinal, m ^ y. There exists a complete (y, <x>)-distributive Boolean algebra B^ and 
a subset i c f i j , such that A completely generates £$., card A = y, and card B^ = 
= m. 

Theorem D. (Cf. [7].) Let B be a Boolean algebra and let M be the Stone space 
of B. Then the lattice C(M) fo all real continuous functions on M is (a, fi)-dis-
tributive if and only if B is (a, ^-distributive. 

Theorem E. (Cf. [10], Thm. v. 3.1.) Let e be a strong unit of a complete vector 
lattice Y. Let M be the Stone space of the Boolean algebra B(e) = B. Then Y fa 
isomorphic with the vector lattice B(M) consisting of all bounded continuous func
tions on M. 

A subset P of a vector lattice Q is said to be convex ifpu p2 e P, q e Q, pt ^ q ^ p2 

implies q e P. 

Lemma. Let P be a vector sublattice of a vector lattice Q. Assume that P is a con
vex subset of Q and that for each 0 < q e Q there exists 0 < p e P with p A q > 0. 
Then P is (a, fi)-distributive. 

Proof. If {ft} is a subset of P and if fe P is the least upper bound of {/J in P* 
then / is also the least upper bound of the set {/,} in Q (since P is convex in Q). 
A similar assertion holds for greatest lower bounds of subsets of P. Thus if P is not 
(a, /^-distributive, then Q fails to be (a, ^-distributive. Assume that Q is not (a, /?)-
distributive. Then there exists a system {xSjt} c Q with card S ^ a, card T ^ ft such 
that all joins and meets standing in (dt) do exist in Q and 

0 = AseS VteTXs,t > V^eT* AseSXsMs) = U ' 

There exists 0 < / 1 e P with ft A (V - u) > 0. Denote 

(xStt A v) v u = xStt, 

(*,.. - «) A / 1 = -V,., • 

Then we have 

0 < / l A (v - U) = Ases VteTys,t * V<peTS AseS}}sMs) = ° ' 

hence P is not (#, ^-distributive. 
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Theorem 2. Let y be an infinite regular cardinal. Then there does not exist a free 
complete (y, oo)-distributive vector lattice on y complete generators. 

Proof. Suppose that X0 is a complete (y, oo)-distributive vector lattice with a set 
A0 of free complete generators, cardA0 = y. Let m be a cardinal, m > cardX0. 
Let B^ = B be as in Thm. C. Now we use a similar method as in the proof of Thm. 1. 
Let X be as in Thm. B. We may put B = B(e). Choose two distinct elements a0,axe 
e A0 and denote Ax -= A0 \ {a0, at}. Then there exists a mapping^ of At onto A 
and let f be a mapping of Al0 into X such thatf(a0) = 0,f(at) = e andf(a) = fx(a) 
for each a e A0. 

Let y be the closed vector sublattice of X generated by the set A u {0, e}. Then 
y is a complete vector lattice that is completely generated by the set A u {e} and e is 
a weak unit of Y. Let Y0 be the set of all y e Y satisfying — n(y) e g y g n(y) e for 
a positive integer n(y). The set Y0 is a complete vector lattice and it is a convex vector 
sublattice of Y; the element e is a strong unit of Y0. 

Let M be the Stone space of the Boolean algebra B. According to Thm. D, C(M) 
is (y, oo)-distributive and hence by the Lemma the vector lattice B(M) is (y, oo)-dis-
tributive. From Thm, E it follows that Y0 is isomorphic with B(M) and therefore Y0 

is (y, oo)-distributive. Since e is a weak unit of Y and since e belongs to Y0, according 
to the Lemma we obtain that Y is (y, oo)-distributive. Thus there is a complete homo-
morphism \j/ of X0 onto Y. By the same reasoning as in the proof of Thm. 1 we get 
that B(e) c Y. Therefore m ^ card Y ^ card X0, which is a contradiction. 
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