
Časopis pro pěstování matematiky

Jiří Jarník
On exponentially bounded solutions of linear parabolic difference-differential equations

Časopis pro pěstování matematiky, Vol. 99 (1974), No. 3, 244--254

Persistent URL: http://dml.cz/dmlcz/117843

Terms of use:
© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/117843
http://project.dml.cz


časopis pro pěstování matematiky, roč. 99 (1974), Praha 

ON EXPONENTIALLY BOUNDED SOLUTIONS OF LINEAR 
PARABOLIC DIFFERENCE-DIFFERENTIAL EQUATIONS 

JIR[ JARNIK, Praha 

(Received January 30, 1973) 

0. INTRODUCTION 

The purpose of the present paper is to establish some results concerning the number 
of linearly independent solutions of the equation 

(1) &( — X9t)u = b(x9t)u(x,t-1) 
\dx ox ct J 

which are exponentially bounded for t -> - c o . Here $£ denotes a parabolic dif­
ferential operator of the second order, x e Rn. It will be shown that under some 
assumptions there is only a finite number of linearly independent solutions with this 
property. 

Let us first recall some results by J. KURZWEIL [1] which will be used in our in­
vestigation. 

If X is a Banach space, W its linear subspace, then the codimension of W with 
respect to X is denoted by codim W= codim (ff|x). The restriction of a linear 
operator Q : X -> X onto JVis denoted by Q\w. 

If {kt}, {Qi} are sequences of real numbers, 

(2) kt integers, 0 = k0 < kl < k2 < ..., 0 g Q{ for i = 0 , 1 , . . . 

then Q({kt}9 {Q(}) denotes the set of all linear operators Q : X -* X such that there 
exists a sequence of linear subspaces X(i) of X with the following property: 

X = *<°, => *<-) =, *(-) 3 . . . , codim(X<%) <, fc.||g|X(l)|| ^ Ql. 

Theorem 0.1. [ l ; Theorem 2.1.] A linear operator Q.X-+X is completely 
continuous if and only if there exist sequences {k{\, {Q,\ satisfying (2) so that 
limei = 0 and QeQdk^ie,}). 
i->oo 
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If all operators from a set 9 of linear operators from X into X belong to 
Q({ki}, {Q(}) with the same sequences {kt}, {QI}, Qt -> 0, we shall say that the 
operators from 9 are uniformly completely continuous. 

Theorem 0.2. [1; Corollary 3.L] Let Qj : X -> X be linear operators, j = — 1, 
— 2, ... For c > 0 denote by Z(c) the set of such {xj\ j = 0 , - 1 , —2, ...} that 

(3) QJXJ = xj+i , j = - 1 , - 2 , . . . , 

(4) lim sup cj\\xj\\ = +oo . 
J - + - 0 0 

-7* Qy a r e uniformly completely continuous, then dim Z(c) < +oo/or any c > 0. 

Parallelly to equation (l) we shall consider equations 

(5) *(£•£•!• *')"=0' 
(6) *(5-£-s-"••)"-A*°-
Throughout the paper, we shall subject the operator J£? to the following conditions: 

/•\ ™ £ / \ ^2u £ / \ ŵ / \ ^M 

(i) _*n = X W > 0 ^~V~ + 2- a^ ') 7" + fl°(*'0 w ~ IT ' 
/ , /= i dXiOXj /= i OX; Or 

(ii) all coefficients of if are defined for all (x,t)eH,H = D x (— oo, + oo) where 
D <= Rn is a region and bar denotes the closure, and belong to Ha,(1/2)a, 0 < 
< a < 1 (see e.g. [4]), i.e., they are uniformly Holder continuous in their 

domain together with their derivatives DrDs
xa(x, t) (a stands for any one of the 

coefficients), 2r + s _ 2, with the exponents a, ^a in the variable x, t, respectively; 

(iii) 5£ is uniformly parabolic, i.e., there are positive constants X, \i such that 

ie ^ ai}(x, t) Ui _ V? 

for all (x, t) e H and all vectors £ = (£l9 ..., £„). 

The set D will be assumed to be bounded and to satisfy the following condition: 

(iv) For every point P e 3D there exists an n-dimensional neighborhood V(P) such 
that V(P) n dD can be represented for some i, 1 g i ^ n, in the form 

xf = n\Xi, ..., xt„i, x i + 1 , ..., xn) 

where h, Dxh, D2
xh, Dth are Holder continuous with exponent a. 

(Cf. [3], Definition of property (E) on p. 64. Since D is independent of t, it has even 
property (E) from [3], p. 65, i.e., DxDth, D2h exist and are continuous functions.) 
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It is well known that the solutions of (5) and (6) may be expressed in terms of the 
Green function or of the fundamental solution. (For definition and properties 
of Green functions and fundamental solutions see e.g. [3] or [4].) 

If G = G(x, t9 £9 T) is the Green function of (5), then 

(7) tt(x, 0 = f G(x, t9 £, T) q>(t) d« - [ T G(x, t, £, a) /(£, a) d£ &o 
JD J t j D 

is the solution of (6) with the initial condition M(X, T) = cp(x) (<p is a continuous 
function defined on D with <p = 0 on 3D) and zero boundary condition. 

Similarly, if P is the fundamental solution of (5) and S£ satisfies our assumptions 
with D = Rn

9 then 

(8) u(x9 t) = f F(x, t, {, T) <p(t) d^ - f T F(x, t9 £, o) / ({, a) d£ d<r 
J*n JTJ/J,. 

is a solution of (6), u(x9 T) = cp(x) for x e Rn. 

For the Green function G and the fundamental solution F the following estimates 
hold: 

(9) \DrDs
x G(x, t9 £, T)| = const (f - T)~? E(X9 t9 £, T) , 

(10) \Dr
tD

s
x F(x, *, & T)| = const (r - T)" ' F(x, r, {, T) , 

y = ^(W + 2r + s), £(x, t, §, T) = exp [-c|x - ĉ |2/(r - T)] (C > 0) for all non-
negative integers r, s such that 2r + s ^ 2 and for t > T. (See e.g. [4; pp. 427, 469].) 

1. INITIAL-BOUNDARY VALUE PROBLEM 

Let D c Rn be a bounded region which satisfies condition (iv) guaranteeing the 
existence of the Green function for the equation (5) (see e.g. [3; Theorem 16 on p. 82]), 
H = D x (—oo, + oo). Denote by C = C(D x < — l, 0>) the family of all continuous 
functions w : D x < —1, 0> ~> Rn which are identically zero on the boundary 3D x 
x < - 1 , 0>. If w e C, denote by Qs: C -» C the shift operator defined by 

(11) (6,w) (x, r) = w(x, 2s + t + 2 ) , 

where w(x, f) is the solution of (l) satisfying 

(12) w(x, 2s + t) = w(x, t) for (x, *) e D x < - 1 , 0> 

and 

(13) M(X, t) = 0 for x G 3D , f = 2s - 1 . 
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If G is the Green function of the equation (5), we can write the solution u of (1) 
satisfying (12), (13) in the form 

u(x, t) = f G(x, t, £, 2s) w(£, 0) di + f' f G(x, t, £, T) fc(£, T) H(& T - 1) d£ dT . 
JD J2sJD 

Hence according to (11), 

(14) (Q,w) (x, r) = f G(x, 2s + t + 2, { , 2s) w({, 0) d£ + 

+ G(x, 2s + * + 2, & T) b(£, T)II({, T - 1) d£ dT = 
J 2s JD 

= f G(x, 2s + t + 2, £, 2s)w(c;, 0) d£ + 

+ G(x, 2s + r + 2, { , 2s + T + 1) b(£, 2s + T + 1) w(£, T) d£ dT + 

+ G(x, 2s + t + 2), £, 2s + T + 1) b(£, 2s + T + 1) u({, 2s + T) d£ dT . 

Lemma 1.1. Let |b(x, f)| g B(t)for all xe D and t G R, 

pt+i 

(15) (* - T + 1)"1 / 2 B(2s + T + 1) dT ^ B, 

(16) P P (t - T + l)"1 S(2s + T + 1) dT dtZ \X(t2) - X(h)\ 

for all tut2, t e < — 1, 0> and i = 1, 2 , . . . , n. Here 2? is a constant and / : < —15 0> 
-+ R is a continuous nondecreasing function, x(0) = 0. 

Then for all tx, t2 e < —1, 0>, x1, x2 e D and w e C, Q5 satisfies 

(17) l e X * 1 * i,) - Qsw(*2> r2)| ^ const ||w|| (Hx1 - x2|| + \x(tx) - *(t2)|), 

s = - 1 , - 2 , . . . , ||w|| = sup|w(x, t)\ taken for all (x,t)eD x < - l , 0>. The con-
stant on the right hand side of (11) depends on the coefficients of (l) and on n. 

Remark . Conditions (15), (16) are satisfied e.g. if \B(t)\ ^ const for all t e R. 

Proof. Denote the right hand side integrals in (14) successively by Ix, I2s I3 . We esti­
mate these integrals by means of (9), taking into account that for x<1> = (x 1 ? . . . 
. . . , Xf _ i , Xj , Xj+ J, . . . , Xn) 

(18) G(x2, t, i, T) - G(x\ t, £, T) = f 'DXIG(X, t, «J, T) dx, , 

J * ' , 
provided the whole integration interval belongs to D. 
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Given two arbitrary points x1, x2 e I), we can pass from the former to the latter 
along a piecewise linear line formed by segments st parallel to coordinate axes which 
lies wholly in D. Moreover, the assumption (iv) guarantees that, denoting the length 
of s( by /(sf), st may be chosen so that 

Xlfai) = const ||xx - x2|| 
i 

where the constant depends on D but not on the points x1, x2. Hence we can write 

G(x2, U Z, T) - G(x\ t, £, T) = £ f DxG(x, t, £, T) dx 
1 J Si 

where every st is a segment parallel to a coordinate axis, say Xj, and Dx indicates 
differentiation with respect to x r 

Consequently, 

|I!(X2, 0 - / ^ , 0 1 = 

= const ||w|| X f f (* + 2)" (n + 1)/2 E(x, Is + t + 2, & 2s) dcj dx ^ 
f JsJD 

= const ||w|| ||xx - x2|| . 

Taking into account (15), (16) we obtain similarly 

|I2(x2, t) - I2(x\ t)\ = const ||w|| jlx1 - x2|| . 

The last integral I3 involves the values of w(^, 2s + T) for T G <0, 1>. Nevertheless, 

w(£, 2s + T) = G(£, 2s + T, rj, 2s) w(rj, 0) drj + 

r2s + t /• 

+ G(£, 2s + T, i;, a) % <j) u(rj, a - 1) drj da . 
J 2s J D 

Since a — 1 e <2s — 1, 2s> we can write u(rj, a — 1) = w(./, <j) where a = a — 1 — 
— 2s G < — 1, 0>. By virtue of (9), this implies the estimate 

|u(£,2s + T)| ^ const ||w|| . 

Hence we obtain by (15), (16) 

|/3(x
2, 0 - h(x\ t)\ g 

(..+1 
^ const |w|| ||x2 - xl\\\ (t - x + l ) " 1 / 2 B(2s + T + 1) dr g 

^ const |w | ||x2 - x ' l • 
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Similarly we estimate the differences in t9 using 

(19) G(x, t29 £, T) - G(x, ti9 f, T) = pDtG(x9 t9 £, T) d t , 

< const \\w 
J řц 

|f i(*. '2) - / . ( * , tl)| g 

(t + 2)" ( n + 2 ) / 2 E(x, 2s + t + 2, £, 2s) d£ dt = 

D 

= const ||w|| |t2 - tx| . 

For the second integral we have 

| I2(x, t2) - I2(x, tt)\ ^ const ||w|| P f f (t - T + 1)-<" + 2>/2 . 
Jt i J - i JD 

. E(x, 2s + t + 2, f, 2s + T + 1) B(2s + T + 1) d£ dT dt g 

= const ||w|| \x(t2) - x(^i)| 

and for the last one, assuming without loss of generality tt < tl9 

\h(x, t2) - I3(x9 f ,) | = [G(x, 2s + t2 + 2, <J, 2s + T + 1) -
I Jo JD 

- G(x, 2s + tl + 2, { , 2s + T + 1)] b(£, 2s + T + 1) ti({, 2s + r).df dT + 

+ 
•ь + 1 л 

G(x, 
ři +1 J D 

Ґ2 Л f l + 1 Ѓ 

íi Jo J D 

2s + t2 + 2, <*, 2s + т + 1) b(š, 2s + т + l)w(í, 2s + т) dţ dт < 

ČG 
(x, 2s + t + 2, <*, 2s + т + 1) 6(<ř, 2s + т + 1) м(£, 2s + т) 

. dš dт dí + 

+ 
rt2 +1 r 

| |G(x, 2s + t2 + 2, {, 25 + т + 1) Ң{, 2s + т + 1) ы(í, 2s + т)| d{ dт = 

J íi + l Jв 

< const w 

+ const \\w\\ 

Í: 
>ŕ2 + l 

(t - T + l ) " 1 B(2s + T + 1) dT dt + 

B(2s + T + 1) dT g const ||w|| \x(t2) - x(ti)\ 

Putting all these estimates together we obtain (17), which completes the proof 
of Lemma 1.1. 

Lemma 1.2. There exist constants /z, v such that the operators Qs defined by (11), 
s = — 1, —2,. . . belong to Q({kt}9 {DJ) with 

(20) Qo = Џy Qi = v> QІ = v / 2 ' 2 for i = 2, 3, ..., 

k0 = 0, fct = 1, fc, = (2'-2 + l) в + 1 for i = 2, 3, ... 
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Proof. Let us omit the subscript s. (14) together with (15), (16) implies \Qz(x9 t)\ ^ 
^ const ||z|| for all x e D, t e < - 1 , 0> and zeC. Hence || Q\\ ^ const = //. 

Fix a point x°#eD and denote dk = sup^e^lx^ — yk\ (x = (xl9 x2, ..., xw), y = 
= (yi> y2> ••> yw))- The set of points 

x = (x? + .M-./2'-2, x° + j2d2\V-2
9 ..., x„° + j.d-,/21-2) 

with jk integers forms a rectangular net. Choose one point xji""JneD in every 
(n-dimensional) rectangle of this net which has non-empty intersection with D and 
denote the set of these points by <9(i) (for fixed i). (Since D is a bounded set, <9(l) is 
finite and the number of its points is not greater than (2 i _ 2 + 1)".) Further, let 
& : <0, py -> < - 1 , 0> be such that x ° 3(C) = C for all C e <0, jB>. 

Denote 
K(0) = C, K(1) = {z e C | Qz(x°, 0) = 0} , 

K(i) = {zeC|Qz(x,S(yoiS/2i-2)) = 0 for xe6>(i), j 0 = 0, 1,..., 2f"2} . 

Then evidently codimK(i)|x = fcf, fc0 = 0, fct = 1, fcf = (2 i _ 2 + 1)"+1 for i = 
= 2 3 

Let z e l ( , ) , i ^ 2. For any (x, t) e D x < — 1, 0> there exist integers x09 xu ..., xn 

such that 

|. - %o/3/2'"-2)| g /?/2'"2 , \xk - xV "»| ?k dt/2'-2 . 

We have according to Lemma 1.1 

\Qz(x, t) - Qz(x*> "-, 9 M / 2 ' " 2 ) | S 

g const ||z|| (\x - x"« «"| + \x(t)(-x(KxoPlr-2))\) • 
Hence 

|Qz(x, 0| g const |z|| [ I K / 2 ' - 2 ) + /J/2'-2] 
fc=l 

as Qz(x, ?) = 0 by virtue of z e K(i). Consequently, 

||Qz|| g const J—(j^dk+P) = ^— 11 " 21"2 \=i 2 1 - 2 

where the constant v depends on the coefficients of the equation (1) and on the region 
D. Hence Qt = v/2 i_2 for i ^ 2. Since the cases i = 0, 1 are easy, we may consider 
the proof of Lemma. 1.2 complete. 

Theorems 0.1 and 0.2 enable us to establish 

Theorem 1.1. Denote by 3?(c) the set of all solutions w(x, t) of (l), (13) which 
fulfil u(x91) = w(x9 t)for (x9t)e D x < - 1 , 0>, weC9 such that 

(21) lim sup ecf|w(x, t)\ < + oo . 
f -+ - 00 
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Then for every real c, 

(22) d im^(c ) < +00 . 

Proof. Theorems 0.1 and 0.2 concern the set Z(c). Nevertheless, it is sufficient to 
define for a solution u : R~ -> R of (l), (13) functions us : D x < — 1, 0> -> R1, 
ws(x, t) = w(x, t + 2s) and 

W(u) = {us\s= - 1 , - 2 , . . . } 

and it is clear immediately that the restriction of W (the set of all W(u)) to 2£(c) is 
a bijection of %(c) onto Z(ec) for any real c. (Cf. [2; Definition 3.2 and Lemma 4.1].) 

2. SOLUTIONS PERIODIC IN x 

The results of Section 1 may be modified to the initial value problem with the 
coefficients of $£ and the initial function w periodic in x. Formulas (8), (10) used 
instead of (7), (9) enable us to establish a lemma formally identical with Lemma 
1.1. The space C = C(Rn x < — 1, 0>) denotes then the set of all functions 
w : Rn x < — 1, 0> -> R which are continuous and periodic in x with a given period 
(more precisely: periodic in xi9 i = 1, 2 , . . . , n with the periods Pt respectively). 
Defining the operators Qs by (11) again, Lemma 1.2 holds without any change. Hence 
we assert 

Theorem 2.1. Assume that the coefficients of S£ are periodic in xt with given periods 
P( (t = 1, 2, ..., n). Denote by %(c) the set of all solutions u of (1) which are 
periodic in xt with the same periods Pt (i = 1,2,..., n) and fulfil (21). 

Then for every real c, (22) holds. 

3. ESTIMATES OF dim iT(c) 

In this section we shall establish an estimate of dim 3f(c) which follows from 
Theorem 3.2 [ l ] . Let us briefly recall the notation of [1] which is adopted in the 
sequel. (Cf. [1; Definitions 1.2 and 2.2].) 

Let m be a positive integer, M(m) the set of real m x m matrices (atj), \atj\ — 1 
for z, j == 1,2,..., m. We denote 

g(m) = sup det (atj) over all (atj) G M(m) . 

Let m, p be positive integers, {fcf}, {#,} sequences of real numbers satisfying (2). 
Find the integer s _ 0 such that 

(23) m = pks + z , 0 < z ^ p(ks+1 - ks) . 
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Denote (empty product being equal to one by definition) 

(24) . S(m, p) = *(m) nV(*'*'-''><?." • 
i = 0 

Note that the estimate g(m) = mm/1 holds (see [1; p. 368]). 

Theorem 3.1. [1; Theorem 3.2.] Let Qs e Q{[kt)9 {Qt})for s = - 1 , - 2 , ..., ot -* 0. 
Let m, p be positive integers, c > 0, 

~(m, p)1/fMp < - . 
c 

"Tien dim Z(c) < m. 
The following lemma is a modification of [2; Lemma 3.1]. 

Lemma 3.1. Let m, p be positive integers, let kh 0, be defined by (20). Then 

m 
(i) E(m, p)1/mp = fl(m)1/mp/i provided k0 < - = k, ; 

P 

(ii) 3(m p)1/mp = g(m)1/mp
 At

p/m
v

(m-p)/m provided fc, < - = fc2 ; 
P 

(iii) S(m, p)1/mp = <?(m)1/mp v ^ " " j - ' + s + w ^ . i * , 
W 

m 
provided kr-x < — = fcr, r g 3. 

P 
Proof. If fc0 < m/p g kl then according to (23) s = 0, z = m and (i) follows 

immediately. Similarly, if Aq < m\p g fc2 then s = 1, z = m — p and (ii) follows. 
Finally, if kr-1 < mjp = fcr and r = 3, then 

r - 2 / ., \p2(ki+i-ki) / \p(m-pkr-i) 

S(m, p) = g(m) ^ ^ jf] ( ~ ) ( ^ ) 

r - 2 r - 2 / .. \ W/> 

-= g(m) up2vp2(ili(ki + l~ki)~kr-iy 2~p2Ci?2
(I'~2)(ki + 1"k , )~ ( r"3) fc r- l ] ( - — l = 

which proves the lemma. 

r - l 

The next step is to estimate ]T k{ for kt = (2 l~2 + 1)M + 1. By elementary calcula­
tion, i=3 

r - l r - 3 n+1 / , i \ r - 3 

l?, f c'-,?/2' + 1>,+1-fc?0( k j ,? . 2 '*-

---!:(:r)^--+2;?:c:1>--^ 
= r - 3 + 2(2 r"3 + 1)B+1 - 2(2n+1 1) = r - 1 + 2(2 ' - 3 + l )" + 1 - 2"+ 2 . 252 



This estimate together with g(m) _ mm/2 used in the assertion (iii) of Lemma 3.1 
yields 

\l/mp < l/2p / M Y m < 7 - r - f - 3 + ( p / w ) [ r - l + 2 ( 2 ' - 3 + l)n + i _ 2 " + 2] _(m, p)1/mp _ m1/2*v 

Since r _ 3, it is p(2r"3 + l ) n + 1 < m _ p ( 2 r " 2 + l)n + 1 ; hence 2 p m _ 1 ( 2 r - 3 + 
+ l)n + 1 < 2 and we can estimate the last exponent as follows: 

, ІP/m)-í 

- r + 3 + --- [r - 1 + 2(2 r-3 + l ) n + 1 - 2n + 2] g 
m 

+ 5 + ± [r - 1 - 2" + 2] g - r + 5 + £ (r - 5) = (r - 5) (± - lY 
m m \m / 

On the other hand, 2 r~2 ^ (m/p)1 / ( n + I ) - 1. Since p < m, we obtain 

(25) S(m(p)1/m" ;g ml">v fc)""j- [ " ( "Y^* 0 - i l l ' 

—(r(r*'v©' 
<P(£) = ^i/(»+i)^i/(n+i> _ j \ - i ri^i/(«+i) _, AII /C 

Now we are able to fdrmulate the desired estimate as 

Theorem 3.3. Let //, v and ki9 Q{have the meaning from Lemma 1.2, formula (20), 
let fijv _ E. 

Then to every e > 0 fhcrc exists X (e, E) so that the following assertion holds: 
IfQjeQdk^iQi}),] = - 1 , -2,... then 

dim Z(c) < i ( l + e) (8evc)n + 1 In (vc)n+1 

provided cv _ ^(2, E). 

Proof. Put m = [ i ( l + £)(8evc)n+1 ln(vc)n + 1], p = [ i ln (vc) n + 1 ] , the brackets 
denoting the whole part of a number. Then for cv sufficiently large it is m > 2n+1p 
and hence, substituting the above values of m, p into (25), we obtain 

S(m, p)1/mp _ V* f-\ 8ve(l + e)"1 / («+ 1 ) (Svec)"1 _ V* f-\ - (1 + e )" 1 / ( « + 1 ) 

where *P*(m/Jp) -> 1 if m//? -* +00. Hence there exists k = k(e, E) such that 

S(m, p)1/mp < -
c 
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provided cv ^ A(e, E) and Theorem 3 A implies the inequality for dim Z(c) which 
completes the proof. 

Taking into account the existence of a bijection of 2(y) onto Z(ey) where 2(y) 
is either the set from Theorem 1.1 or from Theorem 2A, we conclude 

Theorem 3.2. Let 2(c) have the meaning from Theorem 1.1. Then to every s > 0 
and E > 0 there exists /l(e, E) so that 

(26) dim 2(c) < i ( l + e) (8e1+cv)" + 1 (c + In v) (n + 1) 

provided ecv ^ /L(e, F), /z/v g F. 

Similarly we obtain 

Theorem 3.3. Let 2(c) have the meaning from Theorem 2.1. Then to every £ > 0 
and E > 0 there exists A(e, E) so that (26) ho/ds provided ecv ^ A(£, F), jti/v :g F. 
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