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Časopis pro pěstování matematiky, roč. 99 (1974), Praha 

ON VOLTERRA-STIELTJES INTEGRAL EQUATЮNS 

ŠTEFAN SCHWABIK, Praha 

(Received April 3, 1973) 

In this note the Volterra-Stieltjes integral equation in the space of functions with 
bounded variation is dealth with. The integrals used here are Perron-Stieltjes inte
grals. The basic definitions and notations are the same as in [4]. 

1. INTRODUCTION AND AUXILIARY STATEMENTS 

The Volterra-Stieltjes integral equation under consideration has the form 

(1.1) x(s) = fdf[K(5, r)] x(t) + y(s) , 0 g s ^ 1 . 

By Vn(0, 1) = Vn we denote the space of all «-vector functions of bounded variation 
on [0, 1], Vn equipped with the norm ||x||Kfi = ||x(0)|| + var0 x forms a complete 
normed linear (Banach) space. Similarly, for an interval [a, b] we define the space 
Vn(a, b) of n-vector functions defined on [a, b] with bounded variation on [a, b]; 
the corresponding norm is ||x||Kn(<-fft) = ||x(a)|| + var* x for x e Vn(a, b). 

For a k x /-matrix A = (au), i = 1,..., k, j = 1,..., / we are setting ||A|| = 
i 

= max £lfly|-
i=l,...,fc J a l 
We suppose in the following that y e Vn. As for the kernel K(s, t), we suppose that 

it is an n x n-matrix for all (s, t) e [0, 1] x [0, 1] (K(s, t) : [0, 1] x [0, 1] -> 
-> L(Rn -> Rn)) such that 
(1.2) v(K) < +oo 

where v(K) denotes the twodimensional variation in the sense of Vitali for the matrix K 
in the interval I = [0,1] x [0, l]1). 

x) The number v(K) is defined by the relation v(K) == sup £ || WfcOT.?) || where the supremum 
i 

is taken over all finite systems of nonoverlapping intervals J$ c: /, Jf =» [«., bt] x [c(, dt] and 
where mK(Jf) = K(bt, dt) - K(bi9 c{) - K(ai9 d() + K(ai9 cx) (for this notion cf. [4] or [1]). 
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Further we assume that 

(1.3) var0K(l, .) < -foo 

where var0 K(l, .) denotes the variation of the matrix K(s, t) for s = 1 in the interval 
[0, 1], The variation of a matrix-valued function is defined in the usual way using 
the norm of a matrix. 

If (1,2) and (1,3) is satisfied then by Prop. 2,3 in [4] the integral J0 d,[K(s, t)] x(t) 
exists for any s e [0, 1] and x e V„. 

To the kernel K(s, t) : / -> L(Rn -+ Rn) we define a new kernel KA(s, t) : I -» 
-> L(Rn -• Rn) in the following way: 

(1.4) KA(s, t) = K(s, t) - K(s, 0) if 0 = t = s = 1 , 

' KA(s, t) = K(s, s) - K(s, 0) = KA(s, s) if 0 ^ s < t = 1 . 

Evidently, KA(s, 0) = 0 for any s e [0, 1] and KA(0, t) = 0 for any t e [0, 1]. 

The kernel KA is the triangular kernel corresponding to the kernel K, By Lemma 
1,3,1 in [2] and by the definition of KA we have 

" dt[KA(s, t)] x(t) = 0 
. 

I 

for any s e [0, 1] and x e Vn. Further we have 

fSd([K^(s, t)] x(t) = fd([K(s, 0] x(f) 
Jo Jo 

for any s e [0, 1], xeVn since Theorem 1,3,6 in [2] implies 

*df[K
A(s, 0 - K(s, t)] x(t) = 

I 0 

= lim [KA(s, T) - K(s, T) - K*(s, s) + K(s, s)] x(s) = 0 . 
T - + S -

Hence we have 

(1.5) f'dr[K(s, 0] x(f) = f 'd.fK^s, 0] x(0 
Jo Jo 

for any s e [0, 1] and x G Vn. By means of (1,5) the Volterra-Stieltjes integral equa
tion (1,1) can be rewritten in the form 

(1.6) x(s) = Cdt[K*(s, t)] x(t) + y(s), s e [0, 1] , 

Throughout the paper the equation (1,1) will be studied in this new form (1,6), 

256 



By the relations (1,4) a new matrix KA : I -> L(Rn -> K") is defined in terms of the 
matrix K : I -> L(/v" -* K"). For KA we have 

(1,7) v(KA)^2v(K)+variK(V.). 

This inequality can be established as follows: Let be given a net type subdivision 
of the interval I, i.e., let be given a finite sequence 0 = T0 < TX < ... < Tm = 1 and 
let us define intervals Jl7 = [ri-1, T£] X \TJ-I, T,-], i,j = 1, 2, ..., m; the system Jl7 

forms a net type subdivision of I. 
Let us define 

mK*(Ju) = K A (T„T, ) - K ^ - T , . - ) - K ^ f . l f xy) + KA(T^UTJ_X). 

From (1,4) we have mK
A(^u) = mK(Jij) f ° r 0 = J' < * = m> mK^{hj) = 0 for 

0 ___ i < I _g m and m^Jjj) = K(TJ9 T7) — K(T;, T ^ ) for j = 1, 2, ..., m. Hence 

m m i 

Z IK4L-0II = I Z I K 4 y II = 
. , j = i i = i j=i 

m i— 1 m m f — 1 

= 1 1 K(Lv)ll +Z K(L.-)II = Z Z K(Lv)ll + 
» = 1 / = 1 i = l i = l j = l 

m 

+ I ||*(t£. t() - K(t(, t ,_0 - K(0, t() + K(0, T,_0| | + 
1 = 1 

m 

+ Z ||K(0, T() - X(0, t(_ 0 | _i »(*) + vari K(0, .) . 
i = l 

The inequality (1,7) follows now from the definition of v(KA) if we use the inequality 
varj K(0, .) ^ v(K) + varj K(l, .) (see (2,14a) in [4]), 

Let us mention that the assumption that the subdivision is of the net type does not 
cause any loss of generality in the proof since any finite subdivision can be completed 
to a finite net type subdivision. 

Remark 1.1. From the inequality (1,7) it is easy to see that if (1,2) and (1,3) are 
satisfied, then v(KA) < oo. The definition (1,4) of KA ensures that var£ KA(0, .) < oo 
and varj K j(.,0) < oo. Hence the kernel KA(s, t) satisfies all the assumptions of Theo
rem 5,2 from [4]. Using this theorem we can conclude that for the equation (1,6) 
the Fredholm alternative is valid, i.e., either the equation (1,6) admits a unique solu
tion for any y e Vn or the corresponding homogeneous equation 

x(s) = f df[K
A(s, _)] x(t), s e [ 0 , l ] - Ј\[кҷ5,0] 

admits a finite number r of linearly independent solutions xu ..., xr e Vn. This 
alternative theorem can be formulated also in terms of the equation (1,1) and of the 
corresponding homogeneous equation. Our aim is to prove that in the case under 
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consideration the first possibility of the Fredholm alternative takes place, i.e., that the 
equation (1,1) is really a Volterra-type equation or, in other words, that the operator 
x e V„ -> JSdr[K(s, 0 ] *(0 G K has only one eigenvalue which is equal to zero. 

Proposition 1.1. Let L,M : I --> L(Rn -> JR") be such matrix valued functions defined 
on the interval I = [0, 1] x [0,1] that v(L) < oo, v(M) < co, L(s9 0) = M(s, 0) = 
= Ofor any s e [0, 1], L(0, t) = M(0, t) = 0 for any t e [0, 1] and L(s, t) = L(s, s), 
A1(s, 0 = M(s, s)for all 0 = s < f = 1, 

Let MS de/zne 

(1.8) Q(s, 0 = f dr[L(s, r)] Wl(r, t) : / - L(Rn -+ Rn). 

The matrix Q(s, t) is evidently defined for any (s, 0 £I. 

Then 

(1.9) Q(s, 0) = f dr[L(s, r)] M(r, 0) = 0 for any s e [0, 1] 

Q(0, 0 = [ dr[L(0, r)] M(r, t) = 0 for anj f e [0, 1] 

For O^t^s—^lwe have 

(1.10) Q(s, 0 = fdr[L(S, r)] M(r, r) + Pdr[L(s, r)] M(r, t) 

and for 0 ^ s < t ^ 1 we have 

(1.11) Q(s, I) = JSdr[L(s, r)] M(r, r) = Q(s, s) . 

Further, 

(1.12) v(Q) = v(L) v(M) < oo 

and 

(1.13) ||Q(s, 01 _ [ V M W # L W /or any (s, f) e I 

where 

(1,M) «AL(T) = oto.iixto.tiC-), M T ) = ^[o,i]x[0,t](^), T e [0, 1] 

is the twodimensional variation (in the above mentioned sense) in the interval 
[0,1] x [0, T] of L, M respectively2). 

2) The real function VL(T) is introduced in [4] (see (2,15b) in [4]). We have VL(0) =0, WLW = 
= v(L) and yr^ is a nondecreasing function in [0,1]; similarly for VM-
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Proof. The relations (1,9) are evident. For 0 g I g s ̂  1 we can write 

Q(s, t) = fdr[l.(s> r)] M(r, t) + fdr[L(s, r)] M(r, t) + f dr[L(s, r)] M(r, t) . 
Jo J t J s 

JfO^r^t then by the assumptions we have -M(r, t) = /W(r, r) and therefore 

Pdr[L(s, r)] M(r, t) = fdr[L(s, r)] M(r, r) . 
Jo Jo 

For O r g s g r r g l w e obtain also by the assumptions L(s, r) = L(s, s) and Theorem 
1, 3, 7 in [2] implies Js

1dr[L(s, r)] M(r, f) = 0. This yields the equality (1,10). The 
equality (1,11) can be obtained in the same way. 

To prove (1,12) let be given a finite sequence 0 = T o < T 1 < . . . < T m = = l . Let us 
construct the net type subdivision of I corresponding to this sequence, i.e., the finite 
system of intervals Ji} = [r^^ T,] X [TJ-_19 T,], i,j = 1, 2,..., m. We consider the 

m 

sum £ || niQ^ij) || where (by definition) 
- , I = i 

™<)(Jij) = Q(T.-> T;) - <?(*/> -ty-i) - O f a - i . T7) + Q ( T , - I , T , - I ) = 

= f Vw*, , r) - _<-:,_., r)] (M(r, r,) - M(r, -,_.)) . 

Using this expression for mQ(J,y) we can write 

K(L . , ) | | _̂  f J|M(r, r,) - M(r, T,_.)| | d v a r ^ r , .) - _(-,_., .))3) 

By (1,11) we have Q(s, i) - Q(s, s) for 0 g s < f ̂  1 and hence 
m m i 

(145) _ Im^Jy)! = E E |K(/Jk)|| _i 
1 ,7=1 i = l j = l 

m /*1 i 

-5 I E ||^l(r, *;) - A4(r, T,_Oil dvar0(L(Tf, .) - L(T<_,, .)) . 
»=iJo1=i 

From the assumptions on M(s, t) we obtain 

a) Art(r, Tj) — M(r, T ^ ) = 0 for r ^ Ty_x 

P) M(r, TJ) - M(r, T ^ , ) = M(r, r) - M(r, T,..,) and 

||M(r, T;) - M(r, Ty__)ll = 1 1 ^ ') ~ ^ f r *i-i) ~ ^v 0 ' 0 + *•(<>. *7-i)ll = 

^ vtort*iTj-iAM) f o r T i - i <r <TJ9 

3) This follows from the inequality \\$b
aA(r) dB(r)|| __ fJ||A(r)|| d[var_ B] where A, B are 

n x n-matrices of finite variation on [a, b]. It is easy to prove this inequality for example using 
the sum definition of the Perron-Stieltjes integral. Cf. [2]. 
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y) \\M(r> *j) ~ M(r> *7-i)ll = ll"l(r, h) - M(r, t ,_0 " ^(0, T,) -M(0, T,._0|| 
= %,r]x[t,_,,'tj](M)forTJ. g r. 

Let now some'r e [0, 1] and integer i, I <. i <. m be fixed. Then either a) r 2: T,-
or b) r < Tj. In the case a) it follows by y) and (2,12) from [4] that 

t ||M(r,T,) - AIO-.T^OI = I«W]x__,-,tiW) ^ 
/ = i 1=i 

-^ ^ C r l x C O , ! , ] ^ ) --- ^ [ 0 , l ] x [ 0 , r ] ( ^ ) = ^M{T) ' 

In the case b) there exists an index jr g i so that tjr-i ___ ̂  ___ TJV. Hence from a) 
and /?) we obtain 

i WM(r> h) ~ M(^ *7->)li = ' Z l ^ . *>) - M(r> *7-.)ll + 
7 = 1 7 r = l 

+ \\M(r, r) - M(r,T,v_0|| = Z "[cm . ,- . . r>](M) + 

1=1 

+ l ?[0 Jr]x[T , r_1 , r](A.) = l>[0,r]x[0,r](M) = < M r ) • 

Consequently, for any r e [0, 1] and i = 1, ..., m we have 

i| |AI(r,TJ)-Al(r,T7.1)ll-SM'")-
1=1 

This inequality together with (1,15) gives 

m m /•_ 

Z K(Lv)ll = Z M^dvaro^T, .) - L(T,-_0, 0) = 
..7=1 ' = lJo 

= fVM(r)d(f var^WT,, .) - ^ . _ . , .)]) ^ fVM(r)d^L(r) g 
Jo <=i Jo 

g <M0 f V *_(0 = M O *_(0 = «<-) K*0 . 

The second inequality in this relation is obtained from Lemma 3,1 in [3] and from 
(2,16a) in [4]. The inequality (1,12) follows now immediately. 

If 0 g r < t g 1 then 

\\M(r, 01 = ||M(r, r)|| = \\M(r, r) - M(r, 0) - M(0, r) + M(0, 0)|| g 

= v[o,ri*ioAM) _£ M 0 -

260 



Similarly, for 0 ^ t = r ^ 1 we have 

||M(r, 01 = \\M(r, t) - M(r, 0) - M(0, t) + M(0, 0)|| = 

= 1)[0,]X[0.,]('V1) ^ ^[0.1]x[0,r](M) = IAMW • 

This implies 

LW-. Oil = 

^ Í V M I 

dr[L(s, r)] /И(r, í) ś J j | / И ( r , ř ) | | d ( v a r 0 L ( s , ' . ) ) ^ 

(r)d(var 0L(s, . ) ) ^ I Vм(r)d(var0(L(s, .) - L(0, .))) š Çфм(r) dфL(r) 
o Jo 

since for rx < r 2 it holds 

|var0

2(L(s, .) - L(0, .)) - var0'(L(s, .) - L(0, .))[ = 

= var^(L(s, .) - L(0, .)) ^ v[0,s]x[ri,r2](L) ^ 

-^ P[0 f l ]x [ r„r2]( l ) = ^ 2 ) ~ ^ l ) 

and the above inequality is a consequence of Lemma 2,1 in [3]. The proof of the 
proposition is complete. 

Lemma 1.1. Let M : I -+ L(Rn -» Rn) be such a matrix valued function defined 
on the interval I = [0, 1] x [0, 1] that v(M) < oo, -M(s, 0) = 0 for any s e 
G [0, 1], M(0, t) = Ofor any t e [0, 1] and M(s, t) = M(s, s)for all 0 ^ s ^ f ^ 1. 

T/ten 

(i,iб) var0 d,[/И(s, 0] x(í) )s[ш àфм(t) = 

= ll*(0)|| [ M 0 + ) - -AM(0)] + | |x | |K„ ( 0, 4 ) [ M « ) - -AM(0+)] 

for any S e (0, 1] and x e V„ where ^ M is defined by (1,14) and ||x||i/n(o^) = | | x(0)| | + 

+ vаrő x. 

Proof. The kernel M(s, t) is a triangular one. Hence we have for any s e [0, d] 

f Sdr[/M(s, 0] x(f) = f d,[M(s, f)] x(f) 
Jo Jo 

(this can be obtained similarly as in the proof of (1,5)). 

Further, (2,24) from Proposition 2,3 in [4] yields 

(1,17) var'0 (JSdt[M(s, 0] x(f)) = var0 ( f V [ M ( s , .)] x(.)) g f||x(OII # M ( 0 • 
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Using Theorem 1,3,6 in [2] and the relations between the generalized Perron integral 
and the Perron-Stieltjes integral we obtain by simple computation 

(1,18) f ||x(0|| d^M(t) = ||x(0)|| tyM(0+) - M ° ) ] + Km f||x(r)|| d^M(t). 
Jo tf-o+J0 

Since 

I x(t)\\ dýM(t) š sup ||x(ř)|| . [M<5) ~ M * ) ] 
0 tel<r,d] 

for any 0 < a < 5, we can write by (1,18) and by the obvious inequlity a 
sup \\x(t)\\ S |x(0)| + var* x = |x | | F „ ( ( M ) the relation 

f ||x(t)|| d^M(t) = ||x(0)|| [iAM(0+) - IAM(O)] + ||x||Fn((M) lim fyM(5) - </,»] 
Jo tf-*0* 

This inequality together with (1,17) yields (1,16). 

Remark 1.2. In the proof of the next proposition the following will be essential: 
Ifh(t) is a real valued, nondecr easing, nonnegative,from the left continuous function 
in the interval [a, b], then 

(1.19) JV(T) d%) ^ --L. [h- i(b) _ h*+ !(„)] 

/or any k = 0,1,... (see Lemma 3,3 in [3]). 

Proposition 1.2. Ler M(s, t) :I -+ L(Rn -> jR") be swc/i a matrix valued functions 
defined on I = [0, 1] x [0, 1] that v(M) < oo, M(s, 0) = M(0, t) = 0 for s e [0, 1], 
t e [0, 1], M(s, t) = M(s, s)/or all 0 ^ s < t ^ 1 and let 

(1.20) lim ||M(s, t) - M(s, f0)|| = 0 
f - f o -

/0r any s e [0,1] and f0 e (0, 1] (i.e., M(s, *) is continuous from the left in the second 
variable t). 

Let us define for (s, t) e I 

(Ul) M^(s,t) = M(s,t), , 

M™(s, t) = Cdr[M(s, r)] M^~'\r, t) = f dr[M(s, r)] M<«Jl>(rf t) , 
Jo Jo 

c7 = 2,3,.... 
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Then 

(1,22) varj /W(«>(s, .) ^ [ipM(s)]*/q! jor any s e [0, l ] and a = 1, 2 , . . . , 

(1,-23) .(M(«>) = .(/W)«/a! for any q = 1, 2 , . . . . 

00 

The series _T M(g)(s, /) converges uniformly to S(s91): :I -* L(Rn -> KM) i.e., 

(1.24) f M^(s91) = £(s, 0 

and S(s9 0) = 3(0, t) = 0 for any s e [0, l ] , t e [0, 1], S(s91) = 3(s9 s) for 0 _g 

= s < t g 1. 

Further it is 
i 

(1.25) lim v( £ A1(<J) - 5) = 0 

/-+oo q= 1 

a/td 

(1.26) i?(S) g e"(M) - 1 . 

The matrix valued function 3(s9 t) satisfies for any (s, t) el the equation 

(1.27) 3(s9 t) = M(s9 t) + f dr[/Vl(s, r)] S(r, t) = M(s, *) + f *dr[M(s, r)] £(r, t) . 
J o Jo 

Proof. Since (1,20) holds the function ^ M ( T ) : [0, l ] -> K is nondecreasing, conti
nuous from the left (see Lemma 2,1 in [4]) and ^ ( 0 ) = 0, *A/vt(l) — v(M). 

We prove first the relation (1,22). Let 0 = T0 < T_ < .. . < xm = 1 be a subdivision 
of the interval [0, 1] and let s e [0, 1]. Let ms __ m be such a positive integer that 
Tms__! = s < Tms. Then by the assumptions about M(s91) we have 

__ | |M(S,T,) - M(s,xJ_l)\\ = __ | |M(S,T,) - M(s,Ty__)|| + |M(s,s) - (s,zms^)\\ = 
J = l _ j = l 

="__ W « T,) - M(s, T,__) - M(0, T,) + M(0, T.-OSI + 
J ' = l 

+ |iVI(s, s) - M(s, .„___) - M(0, s) + M(0, T - ^ O I g 
m s - l 

= £ ».o,__x[.__1,.i_(*0 + »to^x [T_-„*] ( M ) = 

= t;[0,l]x[0,s](M) = M S ) « 

Since the subdivision 0 = T0 < . . . < xm = 1 is arbitrary we obtain by passing 
to the supremum over all subdivisions of [0,1] the inequality (1,22) for q = 1. Let 
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now (1,22) be valid for q - 1 and let 0 = T0 < TX < ... < Tm = 1 be an arbitrary 

subdivision of the interval [0, 1], s e [0, 1]. Then (see Remark 1.2) 

L|/И<<>(s,т,)-/И<<>(s,т,_1)|| = 
1=1 

= 1 
J=І 

Ґd r[/И(s, г)] ( Л V - Ҷ r , т,) - Л.<«-»(r, т,_,)) 

/»5 m 

= ( E I ^ - I M j ) - M*-"(r,t J. l)||)d^r) ś 
J.o •>•=' 

. ž fvarj ЛI^Ҷr, .)dфм(r)S 
( « - l ) U 

ft"'W#«(t)š 

á - , rø - *Цo)] = - > Ц s ) . 
q\ q\ 

By passing to the supremum over all subdivisions of [0,1] we obtain (1,22) for the 
value q. In this manner (1,22) is proved by induction. 

To prove (1.23) let an arbitrary subdivision 0 = T 0 < T, < ... < Tm = 1 be given 
and let Jtj = [ T , - ! , ^ ] X [ T J - ^ T J i9j = 1,2, . . . , m be the corresponding net 

type subdivision of I = [0, 1] x [0, 1]. Let q be an arbitrary positive integer. Then 
we have 

m m 

' _ ||mM«„(Jy)|| = Z ||MW(ti,T,)-/VI<'"(T„T,_1)-/Vl<'"(TI._1,T,) + 
ij=i i,J = l 

+ M<">(Ti_„T,_i)|| = 
m | | /•_ 

= 1 df[A1(TI,r)-/vl(Ti_1,r)](/Vl<«-1>(r,T,)-^-1>(r,T,_1)) ^ 
» . J = i | | J o 

/•l m m 

= ( I lAK-'^T,) - M^-Xr.Tj.OID^Z var0(M(T„ .) - M(Ti_1, .))) ̂  
J o J = l <•=! 

g f 'var0 M<«-'>(r, .) d^M(r) g T - J - — ( ^ ' ( r ) d*M(r) g 

, = ~. *M-) - -7 KM)? q! a! 

and by passing to the supremum over all decompositions of [0,1] we obtain (1,23). 

For any (s, t)el, q = 1, 2, ... we have evidently 

|M<«>(s, 01 - ||Al(«>(s, 0 - M«>(s, 0) - Al<«>(0,.) + M<«>(0, 0)|| g t>(/V.<«>) g - " M l * 
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since by Proposition 1,1 Miq)(s90) = M(q)(0, t) = 0 for any se[0, 1], f e[0, 1]. 
This inequality yields immediately the uniform convergence of the series (1,24) 
to some matric valued function S(s91) :I -+ L(Rn -> Rn) since the majorizing series 

oo . 

X. lv(M)]9l^' = eViM) - ! evidently converges. 

The equalities <S(s, 0) = S(091) = 0 for s e [0,1], f e [0, 1] are easy consequences 
of the relation (1,9) in Prop. 1,1. From (1,10) in the same Proposition we obtain 
E(s, t) = S(s9 s) for 0 = s < t = 1. 

Using (1,23) we obtain the inequality 

v( £ M™ - S) = v( £ -M(«>) = £ v(M(^)= £ [K^)]'/^ ! 

.7=1 q=l+l q=l+l q=l+l 

which implies (1,25). The inequality (1,26) can be obtained as follows; 

v(S) = £ v(M^) g | [v(M)YJq\ = ey(M) - 1 . . 
q=i q=\ 

The uniform convergence of the series (1,24) for any (s, t) e I implies 

( \r{M(s, r)] S(r, t) = f ' d ^ s , r)] ( £ M<«>(r, .)) = 
Jo Jo 4=1 

= £ f dr[M(s, r)] M<«»(r, t) = I M<«+ "(- , . ) = S(s, f) - M(s, t) . 
.2=1 J o 4 = 1 

Hence 5(s, *) satisfies (1,27). 

Corollary 1.1. Let M(s9t):I-+L(Rn-+Rn) satisfy all assumptions from Pro
position 2. Let y eVn and let us set 

(Ty) (s) = CdttM(s, .)] y(t) = fd,[M(s, 0] y(t) 
Jo Jo 

for s e [0, 1]. T : Vn -.• Vn is a linear operator. 
If we define 

(T<y)(s) = T(T«->y)(s) 

for s e [0, 1] and q = 2, 3 , . . . then 

(1.28) |(Py) (s)|| = **£- ||y||Kn /or g = 1, 2, ..., s e [0, 1] , 
<?! 

(1.29) v a r o P y ^ i r K M ^ I y l ^ /or a = 1,2,..., 
tj! 

(1.30) ||-Fy||K„ = |T*y (0)| + varj P y = I [«{M)]« \\y\\Vn for q = 1, 2 , . . . . 
«! 
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Proof. For basic properties of the operator T (linearity, continuity, etc.) see 
Part 3 in [4]. By definition we have 

(T2y)(s) - T(Ty)(s) = j\[M(s, r)] Ty(r) = j\[M(s, r)] (j\[M(r, 0] y(t)) . 

The assumptions on M(s, t) and y make it possible in a similar way as in Prop. 2,4 
from [4] to demonstrate the possibility of interchanging the order of integration 
in this expression. Hence we obtain 

(T2y)(s) = Pd, I"J\[M(s, r)] M(r, t)\ y(t) - f dt[M™(s,«)] y(0 

where M<2)(s, . ) : / -> L(R" -• R") is defined in (1,21). 
If we continue this procedure then for any s e [0,1] we obtain 

(ui) (r«y)(s)=rdt[^>(s.0]y(0. «-"-,-,... 

where Miq)(s, t) is given by (1,21). Hence 

|(IV) (s)\ = f |y(0 | dvarS M<"(s, .) g |y|K„ varj M^(s, .) 

and the relation (1,28) follows immediately from (1,22). The inequality (1,29) is 
a direct consequence of (3,5) from (4) and of (1,23). Since \//M(0) = 0 we obtain 
(1,30) from (1,28) and (1,29). 

2. THE CASE OF A KERNEL WHICH IS LEFT CONTINUOUS 
IN THE SECOND VARIABLE 

In this part we study the Volterra-Stieltjes integral equation 

(2.1) x(s) = f Sdf[K(s, t)] x(t) + y(s) , 0 ^ s = 1 

in the space Vn with the kernel K(s, t):I = [0, 1] x [0,1] -• L(Rn -* Rn) satisfying 

(2.2) v(K) < oo 

(2.3) varj K(/, .) < oo 

and 

(2.4) lim ||K(s, 0 - K(s910)\\ - 0 
• t-+t0-

for any s e [0,1], t0 e (0,1]. The function y is assumed to be an element of the space 
K. 
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If we define for the kernel K the corresponding triangular kernel KA by the rela
tions (1,4) then the kernel KA also satisfies the relation (2,4), i.e., we have 

(2.5) lim | |K A (M) - KA(Mo)|| = 0 

for any s e [0,1], toe(0, 1]. This fact can be easily verified from the definition 
(1,4) of the kernel KA. We have also (cf. (1,7)) 

(2.6) v(KA) < oo 

and 

(2.7) varj KA(0, .) = 0, varj KA(., 0) = 0 . 

Hence we can conclude that the triangular kernel KA satisfies all assumptions of Pro
position 2 and, moreover, all assumptions from Parts 3 and 4 in [4]. 

In view of the relation (1,5), the equation (2,1) can be considered in the form 

(2.8) x(s) = f d,[KA(s, t)] x(t) + Y(s) , 0 ^ s = 1 . 

For this equation all the results from Parts 3 and 4 in [4] hold. 

Let us now define the linear operator T : Vn -* Vn by the relation 

(2.9) Tz(t) = f d,[KA(s, 0] z(t) = (°dt[K(s, t)] z(t) , zeVn, s e [0, 1] 
Jo Jo 

(cf. Part 3 in [4]). 

The equation (2,1) or (2,8) can be formally written in the form 

(2.10) x-Tx = y, yeVn. 

We set 

(2.11) <p0(s) = y(s) , (p^s) = <pt- ,(s) + Tp^^s) , / = 1, 2, . . . . 

Evidently 

(2.12) fi = y + l T » y , Z = l ,2 , . . . 

where 

(2.13) T"y = T(T'-1y), q = 2,3 

Let us denote 

(2.14) </'W = t'[o>i]x[o>t](K
A)) T 6 [ 0 , 1 ] 
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(î  is a nondecreasing, left continuous real function on [0,1], î (O) = 0, ^(1) = 
= v(KA)). The sequence {<Pi}T=i e Vn defined by (2,12) satisfies the relation 

+ m m 

\W,n - <p,\\vn = I I T"y\\vK ^ I \Vl\v. • 
q=l+l q=l+\ 

Using (1,30) from Corollary 1,1 we obtain 

.« 
q=l+l q\ 

This inequality implies that {<pi}f=1 forms a fundamental sequence in the Banach 
space Vn. Hence there exists an element x e Vn such that 
<pt -+ x for / -> oo in Vn, i.e., 

(2.15) Uni| |9i-x| |K | i = 0. 

Further, evidently 

(2.16) ^ - T p / = y - r + 1y, / = 1 , 2 , . . . 

and by (1,30) also 

lim lT9i - Tx||Kn ^ lim v(KA) | | ^ - x||Kn = 0 . 
I-+00 /->oo 

By (1,30) we obtain that lim ||Tl + 1y||Kn = 0. Passing to the limit / -> oo in (2,16) 
we therefore obtain /->*>.. 

x — Tx = lim (<Pi — T<pi) =? y — lim TI + 1y = y, 
J-+CO f-*oo 

i.e., x e Vn is a solution of the equation (2,10) and hence also of the equation (2,1). 
In this way we have shown that the Volterra-Stieltjes integral equation (2,1) has for 
any y e Vn a solution x e Vn. Since (2,15) and (2,12) hold, this solution can be written 
in the form 

(2.17) x = y + £ T«y. 
. 2 = 1 

The solution x is unique; in fact if xl9 x2 e Vn are solutions of (2,10) then we have 

*i - *2 = (T(*i - *2) = ... = Tl(x1 - x2) 

for any / = 1,2,.... Hence by (1,30) 

\\xl^x2\\Vn^
1-v(K^\\x1^x2\\Vn 

for any positive integer / which makes the desired unicity obvious.4) 

4) The unicity of the solution of the equation (2,1) is also a consequence of its existence 
for any right hand side y e Vn and the Fredholm alternative for this equation (see Theorem 5.2 
in [4]). 
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We return now to the definition (2,9) of the operator T and its powers (2,13). 
In the same manner as in the proof of Corollary 1,1 it can be shown that for y e Vn 

we have 

(2,18) 

where 

(2,19) 

M s ) = Í o d ' [ K f , ) ( S ' 0] У(0 . « є [0,] , q = 1, 2, 

Дs.O = I Kf,)(s'0 . (s,t)єl. 

K?iy(s, t) = K*(s, t) 

K?q)(s, t) = Cdr[K*(s, r)] Kf^^r, t) , q = 1, 3,... 

for any (s, t) e I. 

In view of (2,17) and (2,18) the solution x e Vn of the equation (2,1) can be written 
in the form 

(2,20) x(s) = Y(s) + t f d<[Kf,)(s> 0] y(0 . - e [0,1] . 

Let us denote (cf. Prop. 2. (1,24)-(1,27)) 

(2,21) 

Since (3,5) in [4] implies for any / = 1,2,... 

1 i CdlK^WYW - Cdt[r(s,t)]Y(t) 
htBlJo Jo 

= I f WI«&(-. 0 - it-. 0] y(0| = *r - i K?)\\Y\\V„ 
IIJ o « = l NK„ **-

/ 
and, by (1,25), lim v(r - £ Kf9)) = 0, we have 

l-*oo « = 1 

I [1d«)(s ,0 ly(0= fd,[r(s.0]y(0. »e[o,i]. 
«=1Jo Jo 

Hence (2,20) has the form (since the kernel T is by Prop. 1,2 a triangular one) 

(2,22) x(s) = y(s)+ fSdf[r(5,0]y(0^ *€ [0 ,1 ] . 

Resuming the above results together with Proposition 1,2 we obtain 
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Theorem 2.1. Let the kernel K:I -» L(Rn -> Rn) satisfy (2,2), (2,3), (2,4). Then the 
Volterra-Stieltjes integral equation (2,1) has precisely one solution x e Vnfor any 
Y e V„. This solution is given by the relation (2,22) where the resolvent kernel 
T(s, t) : I -> L(Rn -• Rn) is given by the series (2,21) with K* from (2,19). The resol
vent kernel T(s, t) satisfies the integral equation 

(2,23) r(s, t) = K*(s, t) + Cdr[K\s, r)] r(r, i). 

Remark 2.1. In the same way as above it is possible to consider the Volterra-Stieltjes 
integral equation of the form 

ř(s) = яГd r[K(5,í)]x(t) + y(s) 

where y e Vn, X is a real parameter and K(s, t) satisfies the assumptions from Theorem 
2,t. It can be shown that this equation has for any X a unique solution, which can be 
expressed in the form 

x(s) = Y(s) + [ drr(s, t, X) Y(t) 

where T(s, t, X) is given by the series 

T(s, t,X) = £ X«Kfq)(s, t) 
9=1 

with Kfq)(s, t) from (2,19). 
In other words, the operator T from (2,9) under the given assumptions has no 

eigenvalues different from zero. 

Remark 2.2. Since the kernel KA(s, t) satisfies all assumptions of Theorem 5,2 
in [4] and Theorem 2,1 does hold, the first case of the Fredholm alternative from 
Theorem 5,2 in [4] occurs. From the same Theorem in [4] we also obtain some 
conclusions about the adjoint equation in the sense of [4]. 

3. THE CASE OF A GENERAL KERNEL 

In the previous part the assumption (2,4) was essential. In this part we drop this 
assumption which concerns some continuity properties of the kernel K(s, t) : [0, 1] x 
x [0,1] -» L{Rn -> Rn) and replace it by a weaker one. Consequently the result 
is also weaker. We establish only the existence and unicity of the solution x e Vn 

of the equation 

(3,1) x(s) = f dr[K(5, t)]x(t) + Y(s) , s e [0,1] 
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for any y e Vn while no information about the analytic form of this solution is ob
tained. 

Let us suppose (as in Part 2) 

(3.2) v(K) < oo 

and 

(3.3) var0 K(l, .) = oo . 

We consider the homogeneous equation 

(3.4) x(s) -= f d,[K(s, t)] x(t), s G [0, 1] . 

Using the limit relation for Perron-Stieltjes integrals (cf. Theorem 1,3,6 in.[2]) 
we have 

fd,[K(s, t)] x(t) = lim Pd,[K(s, t)] x(t) + [K(s, s) - K(s, s-)] x(s) . 
Jo "-^-Jo 

Hence the homogeneous equation (3,4) can be written in the form 

x(s) - H(s) x(s) lim f d,[K(s, t)] x(t), s G [0, 1] 
* -s -Jo 

where 

(3.5) H(s) = K(s, s) - K(s, s - ) = K(s, s) - lim K(s, t) . 
t->s-

This form of (3,4) implies that for the unique determination of x(s) from the know
ledge of X(T) for T e [0, s) it is necessary to assume that the inverse matrix 
[/ — H(s)]"1 exists. The above form of the equation (3,4) is not convenient for 
further investigation. Therefore we define 

(3.6) M(s, t) = K(s, t-) = lim K(s, T) . 
t->t— 

We have 

(3.7) K(s, t) = M(s, t) + [K(s, t) - K(s, t-)] . 

Since (3,2) holds we have varj K(s, .) < oo for any s G [0, 1] (see (2,14a) in [4]). 
Hence for any s G [0, 1] the difference K(s, t) — K(s, t—) is different from zero only 
on an at most countable set of points t e [0, 1] and we have 

(3.8) pdt[K(s, 0 - K(s, ( - ) ] x(t) = [K(s, s) - K(s, s - ) ] x(s) = H(s) x(s) 

for any s e [0, 1] (this can be easily obtained from Corollary 2,2 and Proposition 
2,1 in [4]). 
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The homogeneous equation (3,4) assumes in view of (3,7) and (3,8) the form 

x(s) = Pd.[A1(s, t)] x(t) + H(s) x(s) 

OГ 

(3.9) x(s) = [I - H(s)] ~l ! d,[M(s, 0] x(r) . s e [0,1] 

where H(s) : [0, 1] -> L(JR" -» Rn) is given by (3,5) and M(s, t): : [0, 1] x [0, 1] -
-> L{Rn -> JRn) by (3,6). Let us mention that M(s, t) is evidently continuous from the 
left in the second variable, i.e. lim M(s, T) = M(s, f), t e (0, 1]. 

Lemma 3.1. If (3,2) and (3,3) are satisfied then the matrix H(s) : [0, 1] -> L(Rn -> 
-+ Rn) defined by (3,5) fulfils 

(3.10) varj H < oo 

and there exists a sequence {sj^j, st e [0, 1] swch fhaf H(s) = 0 if s #= s,-, i = 
= 1, 2,... . Consequently 

(3,U) variH = 2 f ||H(s,)|| < oo 
i = l 

Proof. Let us define ft(s, t) = K(s, t) - K(s, 0). By (3,2) we have v(K) < oo be
cause v(R) = v(K) by the definition of the twodimensional variation. Further it is 
var0 K(l, .) = varj K(l, .) since K(l, t2) - K(l, tt) = K(l, t2) - K(l, tt) for any 
*i, t2 € [0,1] and we have also varj K(., 0) = 0. Hence by Theorem 5,4 in Chapter III 
iu [1] the set of discontinuities of K(s, t) lie on an at most countable set of lines paral
lel to the coordinate axes and therefore K(s91) - K(s9 f - ) = K(s, t) - K(s9 f - ) 
equals the zero matrix except a countable set of lines which are parallel to the s-axis 
in [0,1] x [0,1]. This yields the existence of a sequence {sjjii , sf e [0,1] such that 
H(s) = K(s, s) - K(s9 s - ) = 0 for s # sh i = 1, 2, . . . . 

If 0 = <r0 < (7%1 < ... < <rk = 1 is an arbitrary finite sequence then ||H(erf) — 
- H(<r(_.)|| * ||H(<r()| 
= | | K ( s , s ) - K ( s , s - ) | £ 
+ K(l,s-) | | . 
Hence 

H(<-(_,)| for i = 1, 2,. . . , Jfc. Further we have ||H(s)|| = 
|K(1, s) - K(l, s-) | | + ||K(s, s) - K(s, s - ) - K(l, s) + 

£ |H(ff() - H(<r(_.)|| * [ £ ||H(<r()|| + H(ff(_.)||] ^ 2 £ ||H(cr()|| * 
i * l i«- l / - - l 

-i - I [||l-0., *«) - %., *.-) - K(l, <r() + K(l, <r(-)|| + 

+ ||K(1, <r() - K(l, <r (-)|] £ 2t<K) + 2 varj K(l, .) . 
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Therefore by (3,2) and (3,3) we obtain (3,10) if we take the supremum over all finite 
decompositions of [0, 1] on the left hand side of this inequality. The relation (3,11) 
is evident. 

Lemma 3.2. Let (3,2) and (3,3) hold and let for H(s) : [0, 1] -• L(Rn -> Rn) from 
(3,5) the inverse matrix [/ — H(s)]"1 exist for all s e [0, 1. For z s Vn(0, 1) we define 
the function v : [0, l ] -> Rn by the relation 

(3.12) y(s) = V-H(s)y1v(s), se [0 ,1] . 

Then v 6 V„(0, 1), i.e., the linear operator 

(3.13) Tz = v, veVn 

maps the Banach space Vn into the same space Vn. Moreover, the operator T is 
bounded, i.e., there exists a nonnegative constant C such that 

(344) |T«| r . <. C|«|„.. 

Proof. Since [/ - H^s)]'1 = / + H(s) [/ - ^s)]'1, we have v(s) = z(s) + 
+ ^( s ) [ ' ~ ^(s ) ] - 1 z(s)- ^ e consider the second term of this equality, i.e. the 
function 

„(s) = H(s) [ / - H(s)]-'z(s) . 

By Lemma 3,1 there is a sequence'{s,}^!, sf e [0, 1] such that H(s) = 0 for s ^ s: 

hence u(s) = 0 for s ^ st. It follows 

(3,15) varj u = 2 £ «U(s,.)|| = 2 J ||H(Si) [/ - ^s , ) ]" 1 z(s,.)| <. 
i = l i = l 

<-n- ik£ «H(s.)»«['- »(s . )r ii • 
i = i 

00 

Since £ ||H(sf)|| < oo, there exists an integer n0 > 0 such that ||H(s,)|| < 1/2 for 
i = l 

all i > n0. Consequently 

»[' - Hfo)]-1! < 1 + ||H(s()|| + ||H(Si)||
2 + ... = (1 - IIKs,)!)"1 < 2 

for i > n0. Furthermore, 

I «"(*.)« III' - "(^XTII < I |H(.0| • «[' - H(s,)r|| + 2 i ii^soii < 
i=-l i-=l i = i io+l 

<.{ sup | | [ ' -H(s i ) ] -1 | |+2} I | | / f (s f )« = C0<oo 
i = l n0 ' = 1 
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Hence by (3,15) 
var0u ^ C0||z||Kn(C0 < oo). 

This inequality gives 

varj v = var0 z + var0 u £ (1 + C0) \\z\\Vn = C^z^ 

and also v e Vn. 
By the definition of the norm in Vn we have further 

||T_|k = |k(0)|| + v a r j v ^ ||H(0)[. - H(O)]"1 z(0)|| + C . M - . jg 

-S (|[«(0)[# - H(O)]-1! + COHxil^ = C|}x||K„ 

where obviously C < oo. The proof of our Lemma is complete. 

Remark 3.1. Let us mention that in Lemma 3,2 the estimate (3,14) remains valid 
also for a smaller interval, for example for the interval [0, <>], where 0 < 5 < 1, i.e. 

\\T4vnlo,n^C\\4vnioM-

Lemma 3.3. Let M(s, t) : [0, 1] x [0, 1] -• L(Rn -> Rn) satisfy v(M) < oo, 
var0 M(l, .) < oo and M(s, t—) = lim M(s, T) = M(s, t) for any s e [0, 1] and 

x-*t-

*e(0, 1]. Then there exists a nondecreasing function £ : [0, 1] -> [0, + oo) which 
is continuous from the left in (0, 1] such that for any 5 e [0, 1] and xeVnwe have 

(3,16) 

var0 ( J \ [ M ( s , 0] *(<)) ^ «*(0)|| (C(0+) - C(0)) + ||x||Kn[(M] (C(_) - C(0+j).' 

Proof. Let 0 = s0 < sx < ... < st — 5 be an arbitrary decomposition of the 
interval [0, <5], If we define for M the corresponding triangular kernel MA (see (1,4)) 
then we have 

f Sd,[M(S, 0] x(0 = f ldt[M\s, t)] x(t) 
Jo Jo 

and 

var0(Td ([M(s, 0] x(f)) = var0 (Cd,[M\s, *)] x(.)) . 

Further it is 

(3,n) i 1 f_,[-%.*(_,, o - *%!-(.,:., o] < o _. 
i = 1 IIJo 

-̂  X f H0II d var0 (M
A(S(, .) - _*.-(_,_., .)) . 

i = l j 0 
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By the definition of MA(s, t) and from the inequality st ^ S for any * = 1,..., / 
it is easy to obtain that for t > 8 the real function var^(MA(sf, .) ** ^A(si-i , .)) 
of the variable t is constant. Hence 

£«*(<)» d var0(M*(s„ .) - * - ( „ _ . . .)) = Jj |x(0| | dvar0(^(S ( , .) - **( . ._ . , .)) 

for any i = 1,..., Z. 
This implies (cf. (3,17)) the inequality 

(3,18) i I fd.rM^,.) , 0 - M%_u t)l x(t)\\ = 
i = I IIJo 

= JW)| d (i^o(M\sb .) - iW-(5,-„ •)))• 

Further, (2,16a) in [4] implies for any tl912 e [0, <5] 

(3.19) | X [var?(M(Sl, .) - *M(s,.., .)) - var0'(M(S|, .) - Af(Sj_., .))]| <. 
t = l 

= |C(*2> - C(tOI 

where £ : [0, 1] -> [0, +oo) is defined by the relation' 

C(T ) .= ^ 0 ( l ] x [ 0 , r ] ( W A ) 

for T e [0, 1] (see also (2,15b) in [4]). We have £(0) = 0, £(l) = v(MA); is nonde-
creasing and continuous from the left in [0, 1]. The inequality (3,19) yields by Lemma 
3,1 from [3] the inequality 

f H O I d ( £ var^(M^, .) - M*(Si_u .)) ^ f ||x(r)|| d£(r) . 
Jo '=- Jo 

Hence by (3,18) we obtain 

(3.20) i 1 f ldt[M*(sh t) - M%_u t)] x(t)\\ = f ||x(f)|| d£(t) 
' = 1 IIJo II Jo 

and evidently also 

(3.21) var0 (£d,[M(S , <)] x(,)) < j j |x( ' ) | | dC(») 

since the estimate (3,20) is independent of the choice of the decomposition 0 = s0 < 
5. 
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If we use Theorem 1,3,6 from [2] then we obtain 

f WOII dC(0 = ||x(0)|| (C(0+) - C(0)) + Hm f||x(r)|| dC(r) 
Jo ^-^o+Ja 

and for any a > 0 we have evidently 

Í 4 x(0| dCít) ^ «-P ||x(0|| (C(í) - CW) š «x|k„(o,í,[C(á) - C(0+)] 
te[o,a] 

Summarizing these facts we obtain from (3,21) the inequality (3,16). 
Let us now consider the homogeneous equation (3,4) in the form (3,9). Formally 

the equation (3,9) can be written in the form 

(3.22) x = TMx , x e Vn 

where T: Vn -* Vn is the linear operator defined by (3,13) in Lemma 3,2 and M : 
:Vn-+Vn is the linear operator defined by the relation 

(3.23) Mx = z , xeVn 

where 

(3.24) z(s) = fdf[/M(s, *)] *(>) for x e Vn. 

By Lemma 3,3 evidently zeVn and, moreover, 

l l**lk - K0)|| + varj x = varj z g ||x(0)|| (C(0+) - C(0)) + 

+ Nk(C(<5)-C(0+)). 

This means that the operator M : Vn -> Vn is bounded. Since x(0) = 0 for any solu
tion x e Vn of the homogeneous equation (3,4), we obtain for any solution of (3,4) 
by Lemma 3,3 the inequality 

(3.25) ||x||Kn((M) = \\TMx\\Vni0,d) S C + \\Mx\\Vn(0t3) £ 

<i C(C(<5) - C(0+)) ||x||Fn((M) 

where C £ 0 is the bound of the operator T (see Lemma 3,2 and Remark 3,1), 
and C : [0,1] -> [0, +oo] is the function from Lemma 3,3. Therefore for sufficiently 
small 5 > 0 we have C(<5) - C(0+) < l/(2C) and consequently, by (3.25) 

(3>26) N IWk(o,a) S ±|Wk(o,*) 

holds for a sufficiently small 8 > 0. Hence ||x||Kn((M) = 0 and this implies the existence 
of a 8 > 0 such that x(t) = 0 for all t e [0, ,5] . 
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In this way we have obtained that if x e Vn is a solution of the homogeneous equa

tion (3,4) then there exists a positive <5 such that x(t) equals identically zero on the 

interval [0, <)]. 

If now t* e [0, 1] is the supremum of all such positive 5 that the solution x e Vn 

of (3,4) equals zero on [0, <5], we have x(r) = 0 for all t e [0, t*). Hence 

г d.[/И(s> í)]x(ř) = <,5) 

and since the matrix / — H(r*) is assumed to be nonsingular we obtain immediately 
x(t*) = 0. Now, assuming that t* < 1, we can prove essentially in the same manner 
as above that there is a positive <5 such that for the solution x e Vn of (3,4) we have 
also x(t) = 0 for t e [t*, t* + <5] and this contradicts the assumption t* < 1 and 
the definition of the supremum. Hence t* = 1 and for any solution x e Vn of (3,4) 
we have x = 0. 

Summarizing the above results we can formulate the following 

Theorem 3.1. Let for the kernel K(s, t) : [0, 1] x [0, 1] -> L(Rn -+ Rn) (3,2) and 
(3.3) be satisfied and let for any s e [0, l ] the inverse matrix [/ — (K(s, s) — 
— K^s^s — ̂ "1 exist. Then the homogeneous Volterra-Stieltjes integral equation 
(3.4) has only the zero solution x(t) = 0 for any t e [0, 1]. The corresponding 
nonhomogeneous equation 

(3,27) x(s) = fd,[K(s, 0] *(t) + <(s) , s e [0, 1] 

has precisely one solution x e Vnfor any y e Vn. 

Proof. Since (3,2) and (3,3) is satisfied the operator occuring in the equation (3,4) 
is completely continuous (cf. Theorem 3,1 in [4]); this can be proved via the cor
responding triangular kernel KA given by (1,4). Hence the Fredholm alternative 
for the Voltera-Stieltjes integral equation is valid (cf. Theorem 5,2 in [4]). We have 
proved above in this part that any solution of the homogeneous equation (3,4) is 
equal identically to zero and this together with the Fredholm alternative im
plies the existence and unicity of the solution of the nonhomogeneous equation 
(3,27). 

5) This follows from the fact that M(s, t) is continuous from the left in the variable t and there
fore the integral considered does not depend on the value x(t*). 
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