Časopis pro pěstování matematiky

Beloslav Riečan

Subadditive measures and small systems

Časopis pro pěstování matematiky, Vol. 99 (1974), No. 3, 279--285
Persistent URL: http://dml.cz/dmlcz/117845

Terms of use:

© Institute of Mathematics AS CR, 1974

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.
This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

SUBADDITIVE MEASURES AND SMALL SYSTEMS

Beloslav Riečan, Bratislava

(Received July 7, 1973)

By a subadditive measure (see e.g. [1], [2], [3]) we mean a subadditive, monotone, non-negative real valued set-function μ defined on a ring and upper semicontinuous in \emptyset. It can be easily proved that μ is upper and lower semicontinuous in any set and therefore also σ-subadditive.

We shall assume that μ is a subadditive measure on a σ-ring \mathscr{S}. Let \mathcal{N}_{n} be the family of all sets $E \in \mathscr{S}$ for which $\mu(E)<2^{-n}$. Then all the properties of "small systems" (see Section 1 and also [4], [5], [6], [7], [8], [12], [14]) are satisfied. Originally, small systems were introduced for generalizations of some properties of measures, nevertheless, the results obtained can be applied also to any subadditive measure.

Section 1 contains, besides axioms and related results, a theorem on representation of small systems by subadditive measures. In Section 2 we present similar results for "subadditive integral" and "small systems" of functions. Finally, in Section 3 we produce small systems of sets from small systems of functions.

1. REPRESENTATION THEOREM

There are various systems of axioms for "small systems". The following one corresponds with our representation theorem and it was used in the paper [8].
1.1. Axioms. Let \mathscr{S} be a σ-ring of subsets of a set X. We shall assume that to any $n=0,1,2, \ldots$ a system $\mathscr{N}_{n} \subset \mathscr{S}$ is given in such a way that the following axioms are satisfied:
I. $\emptyset \in \mathscr{N}_{n}$ for all n.
II. If $E_{i} \in \mathscr{N}_{i}(i=n+1, n+2, \ldots)$ then $\bigcup_{i=n+1}^{\infty} E_{i} \in \mathscr{N}_{n}$.
III. If $E_{i} \in \mathscr{N}_{0}, E_{i} \supset E_{i+1}(i=1,2, \ldots)$ and $\bigcap_{i=1}^{\infty} E_{i}=\emptyset$ then to any n there is m such that $E_{m} \in \mathscr{N}_{n}$.
IV. If $E \subset F, F \in \mathscr{N}_{n}, E \in \mathscr{S}$ then $E \in \mathscr{N}_{n}$.
V. $\mathscr{N}_{n+1} \subset \mathscr{N}_{\underline{n}}$ for all n.

Many results in various papers were obtained by the help of the following condition weaker than II: To any n there is a sequence $\left\{k_{i}\right\}_{i=1}^{\infty}$ of positive integers such that $E_{i} \in \mathscr{N}_{k_{i}}(i=1,2, \ldots)$ implies $\bigcup_{i=1}^{\infty} E_{i} \in \mathscr{N}_{n}$. On the other hand, we shall use here a system of axioms a little stronger than the system 1.1. Of course, the systems induced by any measure or subadditive measure fulfil also the stronger axioms (with $\mathscr{N}_{0}=\{E \in \mathscr{S} ; \mu(E)<\infty\}, \mathscr{N}_{n}=\left\{E \in \mathscr{P} ; \mu(E)<2^{-n}\right\}$).
1.2. Axiom II*. If $E_{i} \in \mathscr{N}_{r_{i}}(i=1, \ldots, k)$ where $\sum_{i=1}^{k} 2^{-r_{i}} \leqq 2^{-n}$ and $E \in \mathscr{S}, E \subset$ $\subset \bigcup_{i=1} E_{i}$, then $E \in \mathcal{N}_{n}$.
1.3. Theorem. The axiom II* implies IV. If $\mathscr{N}_{0}=\mathscr{S}$ then the axioms II*, III and V imply II. The axioms $\mathrm{I}-\mathrm{V}$ do not imply II^{*}.

Proof. Let $E \subset F, F \in \mathscr{N}_{n}, E \in \mathscr{S}$. Since $2^{-n} \leqq 2^{-n}$ we have $E \in \mathscr{N}_{n}$ according to II*, hence IV is proved.

Put $r_{i}=2 i(i=1,2, \ldots)$. Let $E_{i} \in \mathcal{N}_{2 i}, i \geqq n+1$. Since

$$
\bigcup_{i=n+1}^{n+k} E_{i} \subset \bigcup_{i=n+1}^{n+k} E_{i} \text { and } \sum_{i=n+1}^{n+k} 2^{-2 i} \leqq 2^{-2 n-1}
$$

we have according to II*

$$
\bigcup_{i=n+1}^{n+k} E_{i} \in \mathscr{N}_{2 n+1}
$$

Put $F_{k}=\bigcup_{i=n+1}^{n+k} E_{i}, E=\bigcup_{i=n+1}^{\infty} E_{i}-\bigcap_{j=n+1}^{\infty} E_{j}$. Then $F_{k} \in \mathscr{N}_{2 n+1}(k=1,2, \ldots)$. On the other hand $E-F_{k} \searrow \emptyset(k \rightarrow \infty)$. According to III there is k such that

$$
E-F_{k} \in \mathscr{N}_{2 n+2}
$$

Finally $\bigcap_{j=n+1}^{\infty} E_{j} \subset E_{n+2} \in \mathscr{N}_{2 n+4} \subset \mathscr{N}_{2 n+3}$, hence

$$
E=\bigcap_{j=n+1}^{\infty} E_{j} \cup F_{k} \cup\left(E-F_{k}\right) \in \mathscr{N}_{2 n}
$$

and II is proved. The last assertion follows from the following example.
1.4. Example. Let $X=\langle 0,1\rangle, \mathscr{S}$ the family of all Borel subsets of $\langle 0,1\rangle, \mu$ the Lebesgue measure. Put $\mathscr{N}_{n}=\left\{E \in \mathscr{S} ; \mu(E)<2^{-n-1}\right\}, \mathscr{N}_{2}=\{E \in \mathscr{S} ; \mu(E)<$ $<1 / 3\}, \mathscr{N}_{1}=\left\{E \in \mathscr{S} ; \mu(E)<\frac{1}{2}\right\}, \mathscr{N}_{0}=\mathscr{S}$. Then all the axioms $\mathrm{I}-\mathrm{V}$ are satisfied but II* does not hold. Namely, $E_{1}=\left\langle 0, \frac{1}{4}\right\rangle \in \mathcal{N}_{2}, E_{2}=\left\langle\frac{1}{4}, \frac{1}{2}\right\rangle \in \mathscr{N}_{2}$, $E=\left\langle 0, \frac{1}{2}\right\rangle \subset E_{1} \cup E_{2}, 2^{-2}+2^{-2} \leqq 2^{-1}$, but $E \notin \mathscr{N}_{1}$.
1.5. Definition. A non-negative function $\mu: \mathscr{S} \rightarrow R$ is said to be equivalent to a sequence $\left\{\mathscr{N}_{n}\right\}_{n=1}^{\infty}$ of subfamilies of \mathscr{S} if the following two conditions are satisfied:
A. To any $\varepsilon>0$ there is a positive integer n such that $E \in \mathscr{N}_{n}$ implies $\mu(E)<\varepsilon$.
B. To any positive integer n there is $\varepsilon>0$ such that $\mu(E)<\varepsilon$ implies $E \in \mathscr{N}_{n}$.
1.6. Representation theorem. Let $\left\{\mathcal{N}_{n}\right\}_{n=0}^{\infty}$ be a sequence of subfamilies of a σ-ring \mathscr{S} satisfying the axioms II*, III and V. Let \mathscr{N}_{0} be closed under finite unions. Then there is a subadditive measure $\mu: \mathscr{S} \rightarrow R$ equivalent to the sequence $\left\{\mathscr{N}_{n}\right\}_{n=0}^{\infty}$.

Proof. Define first a function $\delta: \mathscr{S} \rightarrow R$ in the following way. If $E \in \bigcap_{n=1}^{\infty} \mathscr{N}_{n}$ then $\delta(E)=0$, if $E \notin \mathscr{N}_{0}$ then $\delta(E)=\infty$ and if $E \in \mathscr{N}_{n}-\mathscr{N}_{n+1}$ for some n then $\delta(E)=$ $=2^{-n}$. Further, put for any $E \in \mathscr{S}$

$$
\mu(E)=\inf \left\{\sum_{i=1}^{k} \delta\left(E_{i}\right) ; \quad E_{i} \in S, \quad E \subset \bigcup_{i=1}^{k} E_{i}, \quad k \text { positive integer }\right\}
$$

Evidently $\mu(E) \leqq \delta(E)$, hence $\mu(E) \leqq 2^{-n}$ for $E \in \mathscr{N}_{n} . \mu$ is clearly monotone, nonnegative and subadditive. We have to prove that μ is upper continuous in \emptyset.
Let $E_{n} \supset E_{n+1}, \mu\left(E_{n}\right)<\infty(n=1,2, \ldots), \bigcap_{n=1}^{\infty} E_{n}=\emptyset$. Since $\mu\left(E_{1}\right)<\infty$ there are $F_{j} \in \mathscr{N}_{0}$ such that $E_{1} \subset \bigcup_{j=1}^{p} F_{j}$, hence $E_{1} \in \mathscr{N}_{0}^{n=1}$. Therefore $E_{n} \in \mathscr{N}_{0}(n=1,2, \ldots)$. Let $\varepsilon>0$. Take n such that $2^{-n}<\varepsilon$. Then according to III there is such m that $E_{m} \in \mathscr{N}_{n}$. Hence for sufficiently large m

$$
\mu\left(E_{m}\right) \leqq \delta\left(E_{m}\right) \leqq 2^{-n}<\varepsilon
$$

and therefore

$$
\lim \mu\left(E_{m}\right)=0 .
$$

Now we prove the equivalency of μ and $\left\{\mathcal{N}_{n}\right\}_{n=0}^{\infty}$. Let $\varepsilon>0$. Take n such that $2^{-n}<\varepsilon$. If $E \in \mathscr{N}_{n}$ then $\mu\left(E_{n}\right) \leqq 2^{-n}<\varepsilon$. Let us point out that we have not used yet the axiom II*.

Finally, let n be a positive integer, Put $\varepsilon=2^{-n}$. If $\mu(E)<2^{-n}$ then there are $E_{i} \in \mathscr{N}_{r i}$ $(i=1, \ldots, k)$ such that

$$
E \subset \bigcup_{i=1}^{k} E_{i}, \quad \sum_{i=1}^{k} 2^{-r_{i}}<2^{-n}
$$

According to II* we have $E \in \mathscr{N}_{n}$.

2. SMALL SYSTEMS OF FUNCTIONS

Such systems (analogous to systems of small sets) were studied in [9], [10], [13] and [15]. Here we shall work with the following systems of axioms (see [9]):
2.1. Axioms. Let \mathscr{M} be the family of measurable functions (with respect to a measurable space $(X, S))$. Let $\left\{\mathscr{F}_{n}\right\}_{n=0}^{\infty}$ be a sequence of subfamilies of S satisfying the following conditions:
i. $0 \in \mathscr{F}_{n}$ for every $n ; f \in \mathscr{F}_{n} \Leftrightarrow-f \in \mathscr{F}_{n}$.
ii. If $f_{i} \in \mathscr{F}_{i}, f_{i} \geqq 0(i=n, \ldots, n+r)$, then $\sum_{i=n}^{n+r} f_{i} \in \mathscr{F}_{n-1}$.
iii. Let $f_{i} \in \mathscr{F}_{0}, f_{i} \geqq f_{i+1}(i=1,2, \ldots), \lim _{i \rightarrow \infty} f_{i}(x)=0$ for every $x \in X$ (in this case we write shortly $f_{i} \searrow 0$). Then to any n there is m such that $f_{m} \in \mathscr{F}_{n}$.
iv. If $f \in \mathscr{M}, g \in \mathscr{F}_{n}$ and $|f| \leqq|g|$, then $f \in \mathscr{F}_{n}$.
v. $\mathscr{F}_{n+1} \subset \mathscr{F}_{n}$ for every n.
2.2. Example. Let \mathscr{F}_{0} be the family of all integrable functions (with respect
to a measure μ), $\mathscr{F}_{n}=\left\{f \in \mathscr{F}_{0} ; \int|f| \mathrm{d} \mu<2^{-n}\right\}$. Evidently all asumptions i-v are satisfied.

More generally, we can construct a sequence $\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}$ by the help of a function $J: \mathscr{F}_{0} \rightarrow R$ with certain properties.
2.3. Definition. Let \mathscr{M} be the family of measurable functions, $\mathscr{F}_{0} \subset \mathscr{M}$. A mapping $J: \mathscr{F}_{0} \rightarrow R$ is called a subadditive integral (see also [9]) if it has the following properties:

1. \mathscr{F}_{0} is an additive group(with respect to the usual addition); $J(0)=0 ; J(f+g) \leqq$ $\leqq J(f)+J(g)$ for all non-negative f, g.
2. If $f, g \in \mathscr{F}_{0}, f \leqq g$ then $J(f) \leqq J(g)$; if $f \in \mathscr{M}, g \in \mathscr{F}_{0}$ and $|f| \leqq g$ then $f \in \mathscr{F}_{0}$.
3. If $f_{n} \searrow 0, f_{n} \in \mathscr{F}_{0}(n=1,2, \ldots)$, then $J\left(f_{n}\right) \searrow 0$.
2.4. Theorem. Let J be a subadditive integral. Put $\mathscr{F}_{n}=\left\{f \in \mathscr{F}_{0} ; J(|f|)<2^{-n}\right\}$. Then $\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}$ fulfils the axioms i-v. Moreover, $\left\{\mathscr{F}_{n}\right\}_{n=1}^{\infty}$ fulfils the following stronger conditions ii^{*}. If $0 \leqq f \leqq \sum_{i=1}^{p} f_{i}, f_{i} \in \mathscr{F}_{r_{i}}(i=1, \ldots, p)$ and $\sum_{i=1}^{p} 2^{-r_{i}} \leqq$ $\leqq 2^{-n}$, then $f \in \mathscr{F}_{n} ;$ ii**. If $f_{i} \in \mathscr{F}_{i}, f_{i} \geqq 0(i=n, n+1, \ldots)$ then $\bigcup_{i=n}^{\infty} f_{i} \in \mathscr{F}_{n-1}$.

Proof. i and ii follows from 1, iii form 3, iv from 2. The property v follows immediately from the definition.

$$
\begin{aligned}
& \text { If } 0 \leqq f \leqq \sum_{i=1}^{p} f_{i}, f_{i} \in \mathscr{F}_{r_{i}}(i=1, \ldots, p), \sum_{i=1}^{p} 2^{-r_{i}} \leqq 2^{-n} \text {, then } J(f) \leqq \sum_{i=1}^{p} J\left(f_{i}\right) \leqq \\
& \leqq \sum_{i=1}^{p} 2^{-r_{i}} \leqq 2^{-n} \text {, hence } f \in \mathscr{F}_{n} .
\end{aligned}
$$

Before proving ii** we prove first that $f_{n} \nearrow f$ implies $J\left(f_{n}\right) \not \nearrow J(f)$. Indeed, $f_{n} \rtimes f$ implies $f-f_{n} \searrow 0$, hence $J\left(f-f_{n}\right) \searrow 0$. But

$$
0 \leqq J(f)-J\left(f_{n}\right) \leqq J\left(f-f_{n}\right),
$$

hence also $J\left(f_{n}\right) \nearrow J(f)$.
Finally, we prove ii**. Evidently $J\left(\sum_{i=n}^{n+r}\left|f_{i}\right|\right) \leqq \sum_{i=n}^{n+r} J\left(\left|f_{i}\right|\right)<2^{-n+1}$. But $g_{r}=\sum_{i=n}^{n+r}\left|f_{i}\right| \nearrow$ $\nearrow \sum_{i=n}^{\infty}\left|f_{i}\right|$, hence $J\left(\sum_{i=n}^{\infty}\left|f_{i}\right|\right)=\lim _{r \rightarrow \infty} J\left(g_{r}\right) \leqq 2^{-n+1}$. Therefore also $\sum_{i=n}^{\infty} f_{i} \in \mathscr{F}_{n}$.
2.5. Theorem. Let $\left\{\mathscr{F}_{n}\right)_{n=0}^{\infty}$ be a sequence satisfying the axioms ii^{*}, iii, iv and v . Then there is a subadditive integral $J: \mathscr{F}_{0} \rightarrow R$ equivalent to the sequence $\left\{\mathscr{F}_{n}\right\}_{n=0}^{\infty}$, i.e., such that to any $\varepsilon>0$ there exists m such that $\left(f \in \mathscr{F}_{n} \Rightarrow J(|f|)<\varepsilon\right)$ and to any n there exists $\varepsilon>0$ such that $\left(J(|f|)<\varepsilon \Rightarrow f \in \mathscr{F}_{n}\right)$.

Proof. Put $\delta(f)=2^{-n}$ if $f \in \mathscr{F}_{n}-\mathscr{F}_{n-1}(n=2,3, \ldots), \delta(f)=0$ if $f \in \bigcap_{n=1}^{\infty} \mathscr{F}_{n}$. Further, for $f \geqq 0$ we define

$$
J(f)=\inf \left\{\sum_{i=1}^{k} \delta\left(f_{i}\right) ; \quad f \leqq \sum_{i=1}^{k} f_{i}\right\}
$$

and

$$
J(f)=J\left(f^{+}\right)-J\left(f^{-}\right)
$$

for any $f \in \mathscr{F}_{0}$. Evidently $\delta(f) \geqq J(f) \geqq 0$ for $f \geqq 0$, hence $0 \leqq J(0) \leqq \delta(0)=0$. Also the other properties from 1 and 2 are clear for nonnegative functions. In the general case they can be obtained by the decomposition $J(f)=J\left(f^{+}\right)-J\left(f^{-}\right)$.

Let $f_{n} \searrow 0, \varepsilon>0$. Choose n_{0} such that $2^{-n_{0}}<\varepsilon$ and m_{0} such that $f_{m_{0}} \in \mathscr{F}_{n_{0}}$. If $m>m_{0}$, then $0 \leqq f_{m} \leqq f_{m_{0}}$, hence $J\left(f_{m}\right) \leqq J\left(f_{m_{0}}\right) \leqq \delta\left(f_{m_{0}}\right)<2^{-n_{0}}<\varepsilon$, therefore $\lim _{m \rightarrow \infty} J\left(f_{m}\right)=0$.

Finally, we prove the equivalency of J and $\left\{\mathscr{F}_{n}\right\}_{n=0}^{\infty}$. Take $\varepsilon>0$ and n such that $2^{-n+1}<\varepsilon$. Let $f \in F_{n}$. Then according to iv also $f^{+}, f^{-} \in \mathscr{F}_{n}$. Therefore

$$
J(|f|) \leqq J\left(f^{+}\right)+J\left(f^{-}\right) \leqq \delta\left(f^{+}\right)+\delta\left(f^{-}\right) \leqq 2.2^{-n}<\varepsilon .
$$

On the other hand, let n be a positive integer. Put $\varepsilon=2^{-n-1}$. Let $J(|f|)<\varepsilon$. Then there are $f_{i} \in \mathscr{F}_{r_{i}}(i=1, \ldots, p)$ such that

$$
J(|f|) \leqq \sum_{i=1}^{p} \delta\left(f_{i}\right)<\varepsilon=2^{-n-1}
$$

Then $|f| \in \mathscr{F}_{n+1}$ according to $\mathrm{ii}^{*}, f^{+}, f^{-} \in \mathscr{F}_{n+1}$ according to iv and $f=f^{+}-f^{-} \epsilon$ $\in \mathscr{F}_{n}$ according to ii^{*}.

3. SMALL SYSTEMS OF FUNCTIONS AND SMALL SYSTEMS OF SETS

3.1. Theorem. Let $\left\{\mathscr{F}_{n}\right\}_{n=0}^{\infty}$ be a sequence of systems of measurable functions satisfying conditions i, iii, iv, v. Then $\mathscr{N}_{n}=\left\{E ; \chi_{E} \in \mathscr{F}_{n}\right\}, n=0,1,2, \ldots$ satisfies conditions I, III, IV, V. If $\left\{\mathscr{F}_{n}\right\}_{n=0}^{\infty}$ satisfies ii** then $\left\{\mathcal{N}_{n}\right\}_{n=0}^{\infty}$ satisfies II. If $\left\{\mathscr{F}_{n}\right\}_{n=0}^{\infty}$ satisfies ii^{*} then $\left\{\mathcal{N}_{n}\right\}_{n=0}^{\infty}$ satisfies II^{*}, hence II as well.

Proof. The properties I, IV and V are evident. Prove the condition III. Let $E_{n} \searrow \emptyset$. Then $\chi_{E_{n}} \searrow 0$, hence to any m there exists n such that $\chi_{E_{n}} \in \mathscr{F}_{m}$. Therefore to any m there is n such that $E_{n} \in \mathscr{N}_{m}$.

Now let ii** be satisfied. Let $E_{i} \in \mathscr{N}_{i}(i=\mathrm{n}, n+1, \ldots)$. Then $\chi_{E_{i}} \in \mathscr{F}_{i}$, hence $\sum_{i=n}^{\infty} \chi_{E_{i}} \in \mathscr{F}_{\cdot n-1}$. But $\chi_{\cup E_{i}} \leqq \sum_{i=n}^{\infty} \chi_{\cup E_{i}}$, hence $\chi_{\cup E_{i}} \in \mathscr{F}_{n-1}$ and $\bigcup_{i=n}^{\infty} E_{i} \in \mathscr{N}_{n-1}$.

The implication \mathscr{F}_{n} satisfies ii* $\Rightarrow \mathscr{N}_{n}$ satisfies II* is obvious.
3.2. Theorem. Let $\left\{\mathscr{N}_{n}\right\}_{n=0}^{\infty}$ satisfy $\mathrm{I}-\mathrm{V}$. Then there is $\left\{\mathscr{F}_{n}\right\}_{n=0}^{\infty}$ such that $\mathscr{N}_{n} \subset$ $\subset\left\{E ; \chi_{E} \in \mathscr{F}_{n}\right\}$ and $\left\{\mathscr{F}_{n}\right\}_{n=0}^{\infty}$ satisfies i , ii, iv, v and iii with f_{1} simple (i.e. $f_{1}=$ $\left.=\sum_{i=1}^{r} c_{i} \chi_{E_{i}}, \bigcup_{i=1}^{r} F_{i} \in \mathscr{N}_{0}\right)$.

Proof. For $E \in \mathscr{S}$ put $|E|=\inf \left\{2^{-n} ; E \in \mathscr{N}_{n}\right\}$. Further

$$
\begin{gathered}
\overline{\mathscr{F}}_{n}=\left\{f ; f=\sum_{i=1}^{k} c_{i} \chi_{E_{i}}, E_{i} \in \mathscr{S}, \sum_{i=1}^{k}\left|c_{i}\right|\left|E_{i}\right| \leqq 2^{-n}\right\}, \\
\mathscr{F}_{n}=\left\{f ; f \text { measurable, } \exists f_{i} \in \overline{\mathscr{F}}_{n}, f_{i} \nearrow|f|\right\} .
\end{gathered}
$$

Evidently i and v holds. First we prove iv. Let f, g be simple, $g \in \overline{\mathscr{F}}_{n},|f| \leqq|g|$. If $f=\sum c_{i} \chi_{E_{i}}, g=\sum d_{i} \chi_{E_{i}}, E_{i}$ disjoint, then $\left|c_{i}\right| \leqq\left|d_{i}\right|$, hence $\sum\left|c_{i}\right|\left|E_{i}\right| \leqq \sum\left|d_{i}\right|\left|E_{i}\right| \leqq$ $\leqq 2^{-n}$, since $g \in \overline{\mathscr{F}}_{n}$. It follows $f \in \overline{\mathscr{F}}_{n}$. Now let f, g be arbitrary, measurable, $f_{i} \nearrow|f|, g_{i} \nearrow|g|, g_{i} \in \mathscr{F}_{n}(i=1,2, \ldots)$. Put $h_{i}=\min \left(f_{i}, g_{i}\right)$. Then $\left|h_{i}\right| \leqq\left|g_{i}\right|$, hence $h_{i} \in \overline{\mathscr{F}}_{n}$. Since $h_{i} \nearrow|f|$ we get $f \in \mathscr{F}_{n}$.

Let $f_{i} \in \overline{\mathscr{F}}_{i}(i=n, \ldots, n+r), f_{i}=\sum_{j=1}^{k_{i}} c_{i}^{j} \chi_{E_{i}}^{j}, \sum_{j=1}^{k_{i}}\left|c_{i}^{j}\right|\left|E_{i}^{j}\right| \leqq 2^{-i}$. Then

$$
\sum_{i=n}^{n+r} f_{i}=\sum_{i=n}^{n+r} \sum_{j=1}^{k_{i}} c_{i}^{j} \chi_{E_{i} j}, \quad \sum_{i=n}^{n+r} \sum_{j=1}^{k_{i}}\left|c_{i}^{j}\right|\left|E_{i}^{j}\right| \leqq \sum_{i=n}^{n+r} 2^{-i}<2^{-n+1}
$$

hence $\sum_{i=n}^{n+r} f_{i} \in \mathscr{F}_{n}$.
If $f_{i} \in \mathscr{F}_{i}(i=n, n+1, \ldots, n+r)$, then there are $f_{i}^{j} \in \overline{\mathscr{F}}_{n}$ such that $f_{i}^{j} \rtimes\left|f_{i}\right|$. But $\sum_{i=n}^{n+r} f_{i}^{j} \nearrow \sum_{i=n}^{n+r}\left|f_{i}\right|(j \rightarrow \infty)$, hence $\sum_{i=n}^{n+r}\left|f_{i}\right| \in \mathscr{F}_{n-1}$ and also $\sum_{i=n}^{n+r} f_{i} \in \mathscr{F}_{n-1}$. Hence the condition ii is proved.

Let $f_{n} \searrow 0, f_{1}$ be simple. Put $M=\max f_{1}$. Let $f_{1}=\sum_{i=1}^{r} c_{i} \chi_{F_{i}}$. Take ε such that

$$
\varepsilon \sum_{i=1}^{r}\left|F_{i}\right|<2^{-m-1} .
$$

Further put $E_{n}=\left\{x ; f_{n}(x) \geqq \varepsilon\right\}$. Then $E_{n} \supset E_{n+1}(n=1,2, \ldots), \bigcap_{n=1}^{\infty} E_{n}=\emptyset$. Since $E_{n} \subset \bigcup_{i=1}^{r} F_{i}$ and f_{1} is simple, $E_{n} \in \mathscr{N}_{0}$ for all n. Choose k such that $2^{k=1}>2^{m+1} M$. Then there is n such that $E_{n} \in \mathscr{N}_{k}$. We get

$$
f_{n}=f_{n} \chi_{F-E_{n}}+f_{n} \chi_{E_{n}} \leqq \varepsilon \chi_{F}+M \chi_{E_{n}} \leqq \varepsilon \sum_{i=1}^{r} \chi_{f_{i}}+M \chi_{E_{n}}
$$

Put $g=\varepsilon \sum_{i=1}^{r} \chi_{F_{i}}+M \chi_{E_{n}}$. Then

$$
\sum_{i=1}^{r} \varepsilon\left|F_{i}\right|+M\left|E_{n}\right| \leqq 2^{-n-1}+M .2^{-k}<2^{-m}
$$

hence $g \in \mathscr{F}_{m}$ and therefore $f_{n} \in \mathscr{F}_{m}$. Hence to any m there is n such that $f_{n} \in \mathscr{F}_{m}$. The condition iii is proved.

If $E \in \mathscr{N}_{n}$, then $|E| \leqq 2^{-n}$, hence $\chi_{E} \in \overline{\mathscr{F}}_{n} \subset \mathscr{F}_{n}$.

References

[1] Алексюк В. Н., Безносиков Ф. Д.: Продолжение непрерывной внешней меры на булевой алгебре, Изв. ВУЗ 4 (119) (1972), 3-9.
[2] Dobrakov I.: On submeasures I, Dissertationes Mathematicae, 112 (1973).
[3] Drewnowski L: Topological rings of sets, continuous functions, integration, I, II, Bull. Acad. Pol. Sci. 20 (1972), 269-286.
[4] Komornik J.: Correspondence between semimeasures and small systems, Mat. Časop., to appear.
[5] Lloyd J.: On classes of null sets, The Journal of the Austr. Math. Soc., 14 (1972), 317-328.
[6] Neubrunn T.: On an abstract formulation of absolute continuity and dominancy, Mat. časop. 19 (1969), 202 - 215.
[7] Riečan B.: A bstract formulation of some theorems of measure theory, Mat.-fyz. Casop. 16 (1966), 268-273.
[8] Riečan B.: Abstract formulation of some theorems of measure theory II, Mat. Casop. 19 (1969), 138-144.
[9] Riečan B.: A generalization of L_{1} completness theorem, Acta fac. rer. nat. Univ. Comen., Mathem. 27 (1972), 37-43.
[10] Riečan B.: A general form of the law of large numbers, Acta fac. rer. nat. Univ. Comen., Mathem. 24 (1970), 129-138.
[11] Riečan B.: An extension of Daniel integration scheme, Mat. Casop., to appear.
[12] Riečanová Z.: On an abstract formulation of regularity, Mat. Casop. 21 (1971), 117-123.
[13] Rublik F.: Abstract formulation of the individual ergodic theorem, Mat. Casop. 23 (1973), 199-208.
[14] Ruttkayová M.: About the absolute continuity of functions defined on the σ-ring generated by a ring, Mat. Casop., to appear.
[15] Vavrová O.: A note on the completness of L_{q}, Mat. Casop. 23 (1973), 267-269.
Author's address: 81631 Bratislava, Mlynská dolina (Prirodovedecká fakulta UK).

